
Head-Driven Parsing for Word Lattices

Christopher Collins
Department of Computer Science

University of Toronto
Toronto, ON, Canada

ccollins@cs.utoronto.ca

Bob Carpenter
Alias I, Inc.

Brooklyn, NY, USA
carp@alias-i.com

Gerald Penn
Department of Computer Science

University of Toronto
Toronto, ON, Canada

gpenn@cs.utoronto.ca

Abstract

We present the first application of the head-driven
statistical parsing model of Collins (1999) as a si-
multaneous language model and parser for large-
vocabulary speech recognition. The model is
adapted to an online left to right chart-parser for
word lattices, integrating acoustic, n-gram, and
parser probabilities. The parser uses structural
and lexical dependencies not considered by n-
gram models, conditioning recognition on more
linguistically-grounded relationships. Experiments
on the Wall Street Journal treebank and lattice cor-
pora show word error rates competitive with the
standard n-gram language model while extracting
additional structural information useful for speech
understanding.

1 Introduction

The question of how to integrate high-level knowl-
edge representations of language with automatic
speech recognition (ASR) is becoming more impor-
tant as (1) speech recognition technology matures,
(2) the rate of improvement of recognition accu-
racy decreases, and (3) the need for additional in-
formation (beyond simple transcriptions) becomes
evident. Most of the currently best ASR systems use
an n-gram language model of the type pioneered by
Bahl et al. (1983). Recently, research has begun to
show progress towards application of new and bet-
ter models of spoken language (Hall and Johnson,
2003; Roark, 2001; Chelba and Jelinek, 2000).

Our goal is integration of head-driven lexical-
ized parsing with acoustic and n-gram models for
speech recognition, extracting high-level structure
from speech, while simultaneously selecting the
best path in a word lattice. Parse trees generated
by this process will be useful for automated speech
understanding, such as in higher semantic parsing
(Ng and Zelle, 1997).

Collins (1999) presents three lexicalized models
which consider long-distance dependencies within a
sentence. Grammar productions are conditioned on

headwords. The conditioning context is thus more
focused than that of a large n-gram covering the
same span, so the sparse data problems arising from
the sheer size of the parameter space are less press-
ing. However, sparse data problems arising from
the limited availability of annotated training data be-
come a problem.

We test the head-driven statistical lattice parser
with word lattices from the NIST HUB-1 corpus,
which has been used by others in related work (Hall
and Johnson, 2003; Roark, 2001; Chelba and Je-
linek, 2000). Parse accuracy and word error rates
are reported. We present an analysis of the ef-
fects of pruning and heuristic search on efficiency
and accuracy and note several simplifying assump-
tions common to other reported experiments in this
area, which present challenges for scaling up to real-
world applications.

This work shows the importance of careful al-
gorithm and data structure design and choice of
dynamic programming constraints to the efficiency
and accuracy of a head-driven probabilistic parser
for speech. We find that the parsing model of
Collins (1999) can be successfully adapted as a lan-
guage model for speech recognition.

In the following section, we present a review of
recent works in high-level language modelling for
speech recognition. We describe the word lattice
parser developed in this work in Section 3. Sec-
tion 4 is a description of current evaluation metrics,
and suggestions for new metrics. Experiments on
strings and word lattices are reported in Section 5,
and conclusions and opportunities for future work
are outlined in Section 6.

2 Previous Work
The largest improvements in word error rate (WER)
have been seen with n-best list rescoring. The best
n hypotheses of a simple speech recognizer are pro-
cessed by a more sophisticated language model and
re-ranked. This method is algorithmically simpler
than parsing lattices, as one can use a model de-
veloped for strings, which need not operate strictly



left to right. However, we confirm the observa-
tion of (Ravishankar, 1997; Hall and Johnson, 2003)
that parsing word lattices saves computation time by
only parsing common substrings once.

Chelba (2000) reports WER reduction by rescor-
ing word lattices with scores of a structured lan-
guage model (Chelba and Jelinek, 2000), interpo-
lated with trigram scores. Word predictions of the
structured language model are conditioned on the
two previous phrasal heads not yet contained in a
bigger constituent. This is a computationally inten-
sive process, as the dependencies considered can be
of arbitrarily long distances. All possible sentence
prefixes are considered at each extension step.

Roark (2001) reports on the use of a lexical-
ized probabilistic top-down parser for word lattices,
evaluated both on parse accuracy and WER. Our
work is different from Roark (2001) in that we use
a bottom-up parsing algorithm with dynamic pro-
gramming based on the parsing model II of Collins
(1999).

Bottom-up chart parsing, through various forms
of extensions to the CKY algorithm, has been ap-
plied to word lattices for speech recognition (Hall
and Johnson, 2003; Chappelier and Rajman, 1998;
Chelba and Jelinek, 2000). Full acoustic and n-best
lattices filtered by trigram scores have been parsed.
Hall and Johnson (2003) use a best-first probabilis-
tic context free grammar (PCFG) to parse the input
lattice, pruning to a set of local trees (candidate par-
tial parse trees), which are then passed to a version
of the parser of Charniak (2001) for more refined
parsing. Unlike (Roark, 2001; Chelba, 2000), Hall
and Johnson (2003) achieve improvement in WER
over the trigram model without interpolating its lat-
tice parser probabilities directly with trigram prob-
abilities.

3 Word Lattice Parser

Parsing models based on headword dependency re-
lationships have been reported, such as the struc-
tured language model of Chelba and Jelinek (2000).
These models use much less conditioning informa-
tion than the parsing models of Collins (1999), and
do not provide Penn Treebank format parse trees as
output. In this section we outline the adaptation of
the Collins (1999) parsing model to word lattices.

The intended action of the parser is illustrated
in Figure 1, which shows parse trees built directly
upon a word lattice.

3.1 Parameterization

The parameterization of model II of Collins (1999)
is used in our word lattice parser. Parameters are

* tokyo was the couldthatspeculation

unit

yen

the

rise

arise

NN NNP INAUX DT MD VBNNIN

and

in

CC

S

NP

S*

NP VP

*

Figure 1: Example of a partially-parsed word lat-
tice. Different paths through the lattice are simul-
taneously parsed. The example shows two final
parses, one of low probability (S

�

) and one of high
probability (S).

maximum likelihood estimates of conditional prob-
abilities — the probability of some event of inter-
est (e.g., a left-modifier attachment) given a con-
text (e.g., parent non-terminal, distance, headword).
One notable difference between the word lattice
parser and the original implementation of Collins
(1999) is the handling of part-of-speech (POS) tag-
ging of unknown words (words seen fewer than 5
times in training). The conditioning context of the
parsing model parameters includes POS tagging.
Collins (1999) falls back to the POS tagging of Rat-
naparkhi (1996) for words seen fewer than 5 times
in the training corpus. As the tagger of Ratnaparkhi
(1996) cannot tag a word lattice, we cannot back off
to this tagging. We rely on the tag assigned by the
parsing model in all cases.

Edges created by the bottom-up parsing are as-
signed a score which is the product of the inside and
outside probabilities of the Collins (1999) model.

3.2 Parsing Algorithm

The algorithm is a variation of probabilistic
online, bottom-up, left-to-right Cocke-Kasami-
Younger parsing similar to Chappelier and Rajman
(1998).

Our parser produces trees (bottom-up) in a right-
branching manner, using unary extension and binary
adjunction. Starting with a proposed headword, left
modifiers are added first using right-branching, then
right modifiers using left-branching.

Word lattice edges are iteratively added to the
agenda. Complete closure is carried out, and the
next word edge is added to the agenda. This process
is repeated until all word edges are read from the



lattice, and at least one complete parse is found.
Edges are each assigned a score, used to rank

parse candidates. For parsing of strings, the score
for a chart edge is the product of the scores of any
child edges and the score for the creation of the new
edge, as given by the model parameters. This score,
defined solely by the parsing model, will be referred
to as the parser score. The total score for chart
edges for the lattice parsing task is a combination
of the parser score, an acoustic model score, and a
trigram model score. Scaling factors follow those of
(Chelba and Jelinek, 2000; Roark, 2001).

3.3 Smoothing and Pruning

The parameter estimation techniques (smoothing
and back-off) of Collins (1999) are reimplemented.

Additional techniques are required to prune the
search space of possible parses, due to the com-
plexity of the parsing algorithm and the size of the
word lattices. The main technique we employ is a
variation of the beam search of Collins (1999) to
restrict the chart size by excluding low probability
edges. The total score (combined acoustic and lan-
guage model scores) of candidate edges are com-
pared against edge with the same span and cate-
gory. Proposed edges with score outside the beam
are not added to the chart. The drawback to this
process is that we can no longer guarantee that a
model-optimal solution will be found. In practice,
these heuristics have a negative effect on parse accu-
racy, but the amount of pruning can be tuned to bal-
ance relative time and space savings against preci-
sion and recall degradation (Collins, 1999). Collins
(1999) uses a fixed size beam (10 � 000). We exper-
iment with several variable beam (b̂) sizes, where
the beam is some function of a base beam (b) and
the edge width (the number of terminals dominated
by an edge). The base beam starts at a low beam
size and increases iteratively by a specified incre-
ment if no parse is found. This allows parsing to
operate quickly (with a minimal number of edges
added to the chart). However, if many iterations
are required to obtain a parse, the utility of starting
with a low beam and iterating becomes questionable
(Goodman, 1997). The base beam is limited to con-
trol the increase in the chart size. The selection of
the base beam, beam increment, and variable beam
function is governed by the familiar speed/accuracy
trade-off.1 The variable beam function found to al-
low fast convergence with minimal loss of accuracy
is:

b̂ � b
log

���
w � 2 ��� 2 � (1)

1Details of the optimization can be found in Collins (2004).

Charniak et al. (1998) introduce overparsing as a
technique to improve parse accuracy by continuing
parsing after the first complete parse tree is found.
The technique is employed by Hall and Johnson
(2003) to ensure that early stages of parsing do not
strongly bias later stages. We adapt this idea to
a single stage process. Due to the restrictions of
beam search and thresholds, the first parse found by
the model may not be the model optimal parse (i.e.,
we cannot guarantee best-first search). We there-
fore employ a form of overparsing — once a com-
plete parse tree is found, we further extend the base
beam by the beam increment and parse again. We
continue this process as long as extending the beam
results in an improved best parse score.

4 Expanding the Measures of Success

Given the task of simply generating a transcription
of speech, WER is a useful and direct way to mea-
sure language model quality for ASR. WER is the
count of incorrect words in hypothesis Ŵ per word
in the true string W . For measurement, we must as-
sume prior knowledge of W and the best alignment
of the reference and hypothesis strings.2 Errors are
categorized as insertions, deletions, or substitutions.

Word Error Rate �
100 Insertions � Substitutions � Deletions

Total Words in Correct Transcript (2)

It is important to note that most models — Mangu
et al. (2000) is an innovative exception — minimize
sentence error. Sentence error rate is the percent-
age of sentences for which the proposed utterance
has at least one error. Models (such as ours) which
optimize prediction of test sentences Wt , generated
by the source, minimize the sentence error. Thus
even though WER is useful practically, it is formally
not the appropriate measure for the commonly used
language models. Unfortunately, as a practical mea-
sure, sentence error rate is not as useful — it is not
as fine-grained as WER.

Perplexity is another measure of language model
quality, measurable independent of ASR perfor-
mance (Jelinek, 1997). Perplexity is related to the
entropy of the source model which the language
model attempts to estimate.

These measures, while informative, do not cap-
ture success of extraction of high-level information
from speech. Task-specific measures should be used
in tandem with extensional measures such as per-
plexity and WER. Roark (2002), when reviewing

2SCLITE (http://www.nist.gov/speech/
tools/) by NIST is the most commonly used alignment tool.



parsing for speech recognition, discusses a mod-
elling trade-off between producing parse trees and
producing strings. Most models are evaluated ei-
ther with measures of success for parsing or for
word recognition, but rarely both. Parsing mod-
els are difficult to implement as word-predictive
language models due to their complexity. Gener-
ative random sampling is equally challenging, so
the parsing correlate of perplexity is not easy to
measure. Traditional (i.e., n-gram) language mod-
els do not produce parse trees, so parsing metrics
are not useful. However, Roark (2001) argues for
using parsing metrics, such as labelled precision
and recall,3 along with WER, for parsing applica-
tions in ASR. Weighted WER (Weber et al., 1997)
is also a useful measurement, as the most often
ill-recognized words are short, closed-class words,
which are not as important to speech understanding
as phrasal head words. We will adopt the testing
strategy of Roark (2001), but find that measurement
of parse accuracy and WER on the same data set is
not possible given currently available corpora. Use
of weighted WER and development of methods to
simultaneously measure WER and parse accuracy
remain a topic for future research.

5 Experiments

The word lattice parser was evaluated with sev-
eral metrics — WER, labelled precision and recall,
crossing brackets, and time and space resource us-
age. Following Roark (2001), we conducted evalu-
ations using two experimental sets — strings and
word lattices. We optimized settings (thresholds,
variable beam function, base beam value) for pars-
ing using development test data consisting of strings
for which we have annotated parse trees.

The parsing accuracy for parsing word lattices
was not directly evaluated as we did not have an-
notated parse trees for comparison. Furthermore,
standard parsing measures such as labelled preci-
sion and recall are not directly applicable in cases
where the number of words differs between the pro-
posed parse tree and the gold standard. Results
show scores for parsing strings which are lower than
the original implementation of Collins (1999). The
WER scores for this, the first application of the
Collins (1999) model to parsing word lattices, are
comparable to other recent work in syntactic lan-
guage modelling, and better than a simple trigram
model trained on the same data.

3Parse trees are commonly scored with the PARSEVAL set
of metrics (Black et al., 1991).

5.1 Parsing Strings

The lattice parser can parse strings by creating a
single-path lattice from the input (all word transi-
tions are assigned an input score of 1.0). The lat-
tice parser was trained on sections 02-21 of the Wall
Street Journal portion of the Penn Treebank (Tay-
lor et al., 2003) Development testing was carried
out on section 23 in order to select model thresh-
olds and variable beam functions. Final testing was
carried out on section 00, and the PARSEVAL mea-
sures (Black et al., 1991) were used to evaluate the
performance.

The scores for our experiments are lower than the
scores of the original implementation of model II
(Collins, 1999). This difference is likely due in part
to differences in POS tagging. Tag accuracy for our
model was 93.2%, whereas for the original imple-
mentation of Collins (1999), model II achieved tag
accuracy of 96.75%. In addition to different tagging
strategies for unknown words, mentioned above, we
restrict the tag-set considered by the parser for each
word to those suggested by a simple first-stage tag-
ger.4 By reducing the tag-set considered by the pars-
ing model, we reduce the search space and increase
the speed. However, the simple tagger used to nar-
row the search also introduces tagging error.

The utility of the overparsing extension can be
seen in Table 1. Each of the PARSEVAL measures
improves when overparsing is used.

5.2 Parsing Lattices

The success of the parsing model as a language
model for speech recognition was measured both
by parsing accuracy (parsing strings with annotated
reference parses), and by WER. WER is measured
by parsing word lattices and comparing the sentence
yield of the highest scoring parse tree to the refer-
ence transcription (using NIST SCLITE for align-
ment and error calculation).5 We assume the pars-
ing performance achieved by parsing strings carries
over approximately to parsing word lattices.

Two different corpora were used in training the
parsing model on word lattices:

� sections 02-21 of the WSJ Penn Treebank (the
same sections as used to train the model for
parsing strings) [1 million words]

4The original implementation (Collins, 1999) of this model
considered all tags for all words.

5To properly model language using a parser, one should sum
parse tree scores for each sentence hypothesis, and choose the
sentence with the best sum of parse tree scores. We choose the
yield of the parse tree with the highest score. Summation is too
computationally expensive given the model — we do not even
generate all possible parse trees, but instead restrict generation
using dynamic programming.



Exp. OP LP (%) LR (%) CB 0 CB (%)
�

2 CB (%)
Ref N 88.7 89.0 0.95 65.7 85.6
1 N 79.4 80.6 1.89 46.2 74.5
2 Y 80.8 81.4 1.70 44.3 80.4

Table 1: Results for parsing section 0 (
�

40 words) of the WSJ Penn Treebank: OP = overparsing, LP/LR
= labelled precision/recall. CB is the average number of crossing brackets per sentence. 0 CB,

�
2 CB are

the percentage of sentences with 0 or
�

2 crossing brackets respectively. Ref is model II of (Collins, 1999).

� section “1987” of the BLLIP corpus (Charniak
et al., 1999) [20 million words]

The BLLIP corpus is a collection of Penn
Treebank-style parses of the three-year (1987-1989)
Wall Street Journal collection from the ACL/DCI
corpus (approximately 30 million words).6 The
parses were automatically produced by the parser
of Charniak (2001). As the memory usage of our
model corresponds directly to the amount of train-
ing data used, we were restricted by available mem-
ory to use only one section (1987) of the total cor-
pus. Using the BLLIP corpus, we expected to get
lower quality parse results due to the higher parse
error of the corpus, when compared to the manually
annotated Penn Treebank. The WER was expected
to improve, as the BLLIP corpus has much greater
lexical coverage.

The training corpora were modified using a utility
by Brian Roark to convert newspaper text to speech-
like text, before being used as training input to the
model. Specifically, all numbers were converted to
words (60 � sixty) and all punctuation was re-
moved.

We tested the performance of our parser on the
word lattices from the NIST HUB-1 evaluation task
of 1993. The lattices are derived from a set of
utterances produced from Wall Street Journal text
— the same domain as the Penn Treebank and the
BLLIP training data. The word lattices were previ-
ously pruned to the 50-best paths by Brian Roark,
using the A* decoding of Chelba (2000). The word
lattices of the HUB-1 corpus are directed acyclic
graphs in the HTK Standard Lattice Format (SLF),
consisting of a set of vertices and a set of edges.
Vertices, or nodes, are defined by a time-stamp and
labelled with a word. The set of labelled, weighted
edges, represents the word utterances. A word w is
hypothesized over edge e if e ends at a vertex v la-
belled w. Edges are associated with transition prob-
abilities and are labelled with an acoustic score and
a language model score. The lattices of the HUB-

6The sentences of the HUB-1 corpus are a subset of those
in BLLIP. We removed all HUB-1 sentences from the BLLIP
corpus used in training.

1 corpus are annotated with trigram scores trained
using a 20 thousand word vocabulary and 40 mil-
lion word training sample. The word lattices have a
unique start and end point, and each complete path
through a lattice represents an utterance hypothesis.
As the parser operates in a left-to-right manner, and
closure is performed at each node, the input lattice
edges must be processed in topological order. Input
lattices were sorted before parsing. This corpus has
been used in other work on syntactic language mod-
elling (Chelba, 2000; Roark, 2001; Hall and John-
son, 2003).

The word lattices of the HUB-1 corpus are anno-
tated with an acoustic score, a, and a trigram proba-
bility, lm, for each edge. The input edge score stored
in the word lattice is:

log
�
Pinput � � α log

�
a � � β log

�
lm � (3)

where a is the acoustic score and lm is the trigram
score stored in the lattice. The total edge weight in
the parser is a scaled combination of these scores
with the parser score derived with the model param-
eters:

log
�
w � � α log

�
a � � β log

�
lm � � s (4)

where w is the edge weight, and s is the score as-
signed by the parameters of the parsing model. We
optimized performance on a development subset of
test data, yielding α � 1 � 16 and β � 1.

There is an important difference in the tokeniza-
tion of the HUB-1 corpus and the Penn Treebank
format. Clitics (i.e., he’s, wasn’t) are split
from their hosts in the Penn Treebank (i.e., he ’s,
was n’t), but not in the word lattices. The Tree-
bank format cannot easily be converted into the lat-
tice format, as often the two parts fall into different
parse constituents. We used the lattices modified by
Chelba (2000) in dealing with this problem — con-
tracted words are split into two parts and the edge
scores redistributed. We followed Hall and John-
son (2003) and used the Treebank tokenization for
measuring the WER. The model was tested with and
without overparsing.



We see from Table 2 that overparsing has little
effect on the WER. The word sequence most easily
parsed by the model (i.e., generating the first com-
plete parse tree) is likely also the word sequence
found by overparsing. Although overparsing may
have little effect on WER, we know from the exper-
iments on strings that overparsing increases parse
accuracy. This introduces a speed-accuracy trade-
off: depending on what type of output is required
from the model (parse trees or strings), the addi-
tional time and resource requirements of overpars-
ing may or may not be warranted.

5.3 Parsing N-Best Lattices vs. N-Best Lists

The application of the model to 50-best word lat-
tices was compared to rescoring the 50-best paths
individually (50-best list parsing). The results are
presented in Table 2.

The cumulative number of edges added to the
chart per word for n-best lists is an order of mag-
nitude larger than for corresponding n-best lattices,
in all cases. As the WERs are similar, we conclude
that parsing n-best lists requires more work than
parsing n-best lattices, for the same result. There-
fore, parsing lattices is more efficient. This is be-
cause common substrings are only considered once
per lattice. The amount of computational savings is
dependent on the density of the lattices — for very
dense lattices, the equivalent n-best list parsing will
parse common substrings up to n times. In the limit
of lowest density, a lattice may have paths without
overlap, and the number of edges per word would
be the same for the lattice and lists.

5.4 Time and Space Requirements

The algorithms and data structures were designed to
minimize parameter lookup times and memory us-
age by the chart and parameter set (Collins, 2004).
To increase parameter lookup speed, all parameter
values are calculated for all levels of back-off at
training time. By contrast, (Collins, 1999) calcu-
lates parameter values by looking up event counts
at run-time. The implementation was then opti-
mized using a memory and processor profiler and
debugger. Parsing the complete set of HUB-1 lat-
tices (213 sentences, a total of 3,446 words) on av-
erage takes approximately 8 hours, on an Intel Pen-
tium 4 (1.6GHz) Linux system, using 1GB memory.
Memory requirements for parsing lattices is vastly
greater than equivalent parsing of a single sentence,
as chart size increases with the number of divergent
paths in a lattice. Additional analysis of resource
issues can be found in Collins (2004).

5.5 Comparison to Previous Work

The results of our best experiments for lattice- and
list-parsing are compared with previous results in
Table 3. The oracle WER7 for the HUB-1 corpus
is 3.4%. For the pruned 50-best lattices, the oracle
WER is 7.8%. We see that by pruning the lattices
using the trigram model, we already introduce addi-
tional error. Because of the memory usage and time
required for parsing word lattices, we were unable
to test our model on the original “acoustic” HUB-1
lattices, and are thus limited by the oracle WER of
the 50-best lattices, and the bias introduced by prun-
ing using a trigram model. Where available, we also
present comparative scores of the sentence error rate
(SER) — the percentage of sentences in the test set
for which there was at least one recognition error.
Note that due to the small (213 samples) size of the
HUB-1 corpus, the differences seen in SER may not
be significant.

We see an improvement in WER for our pars-
ing model alone (α � β � 0) trained on 1 million
words of the Penn Treebank compared to a trigram
model trained on the same data — the “Treebank
Trigram” noted in Table 3. This indicates that the
larger context considered by our model allows for
performance improvements over the trigram model
alone. Further improvement is seen with the com-
bination of acoustic, parsing, and trigram scores
(α � 1 � 16 � β � 1). However, the combination of
the parsing model (trained on 1M words) with the
lattice trigram (trained on 40M words) resulted in
a higher WER than the lattice trigram alone. This
indicates that our 1M word training set is not suf-
ficient to permit effective combination with the lat-
tice trigram. When the training of the head-driven
parsing model was extended to the BLLIP 1987
corpus (20M words), the combination of models
(α � 1 � 16 � β � 1) achieved additional improvement
in WER over the lattice trigram alone.

The current best-performing models, in terms of
WER, for the HUB-1 corpus, are the models of
Roark (2001), Charniak (2001) (applied to n-best
lists by Hall and Johnson (2003)), and the SLM of
Chelba and Jelinek (2000) (applied to n-best lists by
Xu et al. (2002)). However, n-best list parsing, as
seen in our evaluation, requires repeated analysis of
common subsequences, a less efficient process than
directly parsing the word lattice.

The reported results of (Roark, 2001) and
(Chelba, 2000) are for parsing models interpolated
with the lattice trigram probabilities. Hall and John-

7The WER of the hypothesis which best matches the true
utterance, i.e., the lowest WER possible given the hypotheses
set.



Training Size Lattice/List OP
WER Number of Edges

S D I T (per word)
1M Lattice N 10.4 3.3 1.5 15.2 1788
1M List N 10.4 3.2 1.4 15.0 10211
1M Lattice Y 10.3 3.2 1.4 14.9 2855
1M List Y 10.2 3.2 1.4 14.8 16821

20M Lattice N 9.0 3.1 1.0 13.1 1735
20M List N 9.0 3.1 1.0 13.1 9999
20M Lattice Y 9.0 3.1 1.0 13.1 2801
20M List Y 9.0 3.3 0.9 13.3 16030

Table 2: Results for parsing HUB-1 n-best word lattices and lists: OP = overparsing, S = substutitions (%),
D = deletions (%), I = insertions (%), T = total WER (%). Variable beam function: b̂ � b � log

���
w � 2 ��� 2 � .

Training corpora: 1M = Penn Treebank sections 02-21; 20M = BLLIP section 1987.

Model n-best List/Lattice Training Size WER (%) SER (%)
Oracle (50-best lattice) Lattice 7.8

Charniak (2001) List 40M 11.9
Xu (2002) List 20M 12.3

Roark (2001) (with EM) List 2M 12.7
Hall (2003) Lattice 30M 13.0

Chelba (2000) Lattice 20M 13.0
Current (α � 1 � 16 � β � 1) List 20M 13.1 71.0
Current (α � 1 � 16 � β � 1) Lattice 20M 13.1 70.4

Roark (2001) (no EM) List 1M 13.4
Lattice Trigram Lattice 40M 13.7 69.0

Current (α � 1 � 16 � β � 1) List 1M 14.8 74.3
Current (α � 1 � 16 � β � 1) Lattice 1M 14.9 74.0

Current (α � β � 0) Lattice 1M 16.0 75.5
Treebank Trigram Lattice 1M 16.5 79.8

No language model Lattice 16.8 84.0

Table 3: Comparison of WER for parsing HUB-1 words lattices with best results of other works. SER =
sentence error rate. WER = word error rate. “Speech-like” transformations were applied to all training
corpora. Xu (2002) is an implementation of the model of Chelba (2000) for n-best list parsing. Hall (2003)
is a lattice-parser related to Charniak (2001).

son (2003) does not use the lattice trigram scores
directly. However, as in other works, the lattice
trigram is used to prune the acoustic lattice to the
50 best paths. The difference in WER between
our parser and those of Charniak (2001) and Roark
(2001) applied to word lists may be due in part to the
lower PARSEVAL scores of our system. Xu et al.
(2002) report inverse correlation between labelled
precision/recall and WER. We achieve 73.2/76.5%
LP/LR on section 23 of the Penn Treebank, com-
pared to 82.9/82.4% LP/LR of Roark (2001) and
90.1/90.1% LP/LR of Charniak (2000). Another
contributing factor to the accuracy of Charniak
(2001) is the size of the training set — 20M words
larger than that used in this work. The low WER

of Roark (2001), a top-down probabilistic parsing
model, was achieved by training the model on 1 mil-
lion words of the Penn Treebank, then performing a
single pass of Expectation Maximization (EM) on a
further 1.2 million words.

6 Conclusions
In this work we present an adaptation of the parsing
model of Collins (1999) for application to ASR. The
system was evaluated over two sets of data: strings
and word lattices. As PARSEVAL measures are not
applicable to word lattices, we measured the pars-
ing accuracy using string input. The resulting scores
were lower than that original implementation of the
model. Despite this, the model was successful as a



language model for speech recognition, as measured
by WER and ability to extract high-level informa-
tion. Here, the system performs better than a simple
n-gram model trained on the same data, while si-
multaneously providing syntactic information in the
form of parse trees. WER scores are comparable to
related works in this area.

The large size of the parameter set of this parsing
model necessarily restricts the size of training data
that may be used. In addition, the resource require-
ments currently present a challenge for scaling up
from the relatively sparse word lattices of the NIST
HUB-1 corpus (created in a lab setting by profes-
sional readers) to lattices created with spontaneous
speech in non-ideal conditions. An investigation
into the relevant importance of each parameter for
the speech recognition task may allow a reduction in
the size of the parameter space, with minimal loss of
recognition accuracy. A speedup may be achieved,
and additional training data could be used. Tun-
ing of parameters using EM has lead to improved
WER for other models. We encourage investigation
of this technique for lexicalized head-driven lattice
parsing.

Acknowledgements
This research was funded in part by the Natural Sci-
ences and Engineering Research Council (NSERC)
of Canada. Advice on training and test data was
provided by Keith Hall of Brown University.

References
L. R. Bahl, F. Jelinek, and R. L. Mercer. 1983. A maxi-

mum likelihood approach to continuous speech recog-
nition. IEEE Transactions on Pattern Analysis and
Machine Intelligence, 5:179–190.

E. Black, S. Abney, D. Flickenger, C. Gdaniec, R. Gr-
ishman, P. Harrison, D. Hindle, R. Ingria, F. Jelinek,
J. Klavans, M. Liberman, M. Marcus, S. Roukos,
B. Santorini, and T. Strzalkowski. 1991. A procedure
for quantitatively comparing the syntactic coverage of
English grammars. In Proceedings of Fourth DARPA
Speech and Natural Language Workshop, pages 306–
311.

J.-C. Chappelier and M. Rajman. 1998. A practical
bottom-up algorithm for on-line parsing with stochas-
tic context-free grammars. Technical Report 98-284,
Swiss Federal Institute of Technology, July.

Eugene Charniak, Sharon Goldwater, and Mark John-
son. 1998. Edge-Based Best-First Chart Parsing. In
6th Annual Workshop for Very Large Corpora, pages
127–133.

Eugene Charniak, Don Blaheta, Niyu Ge, Keith Hall,
John Hale, and Mark Johnson. 1999. BLLIP 1987-89
WSJ Corpus Release 1. Linguistic Data Consortium.

Eugene Charniak. 2000. A maximum-entropy-inspired
parser. In Proceedings of the 2000 Conference

of the North American Chapter of the Association
for Computational Linguistics, pages 132–129, New
Brunswick, U.S.A.

Eugene Charniak. 2001. Immediate-head parsing for
language models. In Proceedings of the 39th Annual
Meeting of the ACL.

Ciprian Chelba and Frederick Jelinek. 2000. Structured
language modeling. Computer Speech and Language,
14:283–332.

Ciprian Chelba. 2000. Exploiting Syntactic Structure
for Natural Language Modeling. Ph.D. thesis, Johns
Hopkins University.

Christopher Collins. 2004. Head-Driven Probabilistic
Parsing for Word Lattices. M.Sc. thesis, University of
Toronto.

Michael Collins. 1999. Head-Driven Statistical Models
for Natural Language Parsing. Ph.D. thesis, Univer-
sity of Pennsylvania.

Joshua Goodman. 1997. Global thresholding and
multiple-pass parsing. In Proceedings of the 2nd Con-
ference on Empirical Methods in Natural Language
Processing.

Keith Hall and Mark Johnson. 2003. Language mod-
eling using efficient best-first bottom-up parsing. In
Proceedings of the IEEE Automatic Speech Recogni-
tion and Understanding Workshop.

Frederick Jelinek. 1997. Information Extraction From
Speech And Text. MIT Press.

Lidia Mangu, Eric Brill, and Andreas Stolcke. 2000.
Finding consensus in speech recognition: Word error
minimization and other applications of confusion net-
works. Computer Speech and Language, 14(4):373–
400.

Hwee Tou Ng and John Zelle. 1997. Corpus-based
approaches to semantic interpretation in natural lan-
guage processing. AI Magazine, 18:45–54.

A. Ratnaparkhi. 1996. A maximum entropy model for
part-of-speech tagging. In Conference on Empirical
Methods in Natural Language Processing, May.

Mosur K. Ravishankar. 1997. Some results on search
complexity vs accuracy. In DARPA Speech Recogni-
tion Workshop, pages 104–107, February.

Brian Roark. 2001. Robust Probabilistic Predictive Syn-
tactic Processing: Motivations, Models, and Applica-
tions. Ph.D. thesis, Brown University.

Brian Roark. 2002. Markov parsing: Lattice rescoring
with a statistical parser. In Proceedings of the 40th
Annual Meeting of the ACL, pages 287–294.

Ann Taylor, Mitchell Marcus, and Beatrice Santorini,
2003. The Penn TreeBank: An Overview, chapter 1.
Kluwer, Dordrecht, The Netherlands.

Hans Weber, Jörg Spilker, and Günther Görz. 1997.
Parsing n best trees from a word lattice. Kunstliche
Intelligenz, pages 279–288.

Peng Xu, Ciprian Chelba, and Frederick Jelinek. 2002.
A study on richer syntactic dependencies in structured
language modeling. In Proceedings of the 40th An-
nual Meeting of the ACL, pages 191–198.


