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Abstract The second componenynit selection deter-

. . : mines in a set of recorded acoustic units corre-
Traditional concatenative speech synthesis systems

use a number of heuristics to define the target an bonding to phanes (Hunt and Black, 1996) or hal-
) . arg ghones (Beutnagel et al., 1999a) the sequence of
concatenation costs, essential for the design of th

unit selection component. In contrast to these apy. nits that is theclosestto the sequence of fea-
P ' Piure vectors predicted by the text analysis frontend.

ﬁ]roe;f:rizwvgfkl?(t)rrol(jlgi(t:esslgg:\oenrail:]:tail::asélcsl gu(?[g_e'he final component produces an acoustic signal
9 b y from the unit sequence chosen by unit selection

matic speech recognition. Given appropriate datalijsing simple concatenation or other methods such

techniques based on that framework can result in as PSOLA (Moulines and Charpentier, 1990) and
more accurate unit selection, thereby improving theHNM (Stylianou et al., 1997) P ’

general quality of a speech synthesizer. They can Unit selection is performed by defining two cost
also lead to a more modular and a substantially more tions: )
unctions: thetarget costthat estimates how the

efficient system. : . features of a recorded unit match the specified fea-
We _present a new unit selection SySte”.‘ pased %fire vector and theoncatenation coghat estimates
statistical modeling. To overcome the ongm_al abfhow well two units will be perceived to match when
sence of data, we use an existing high-quality unit,, o nqeq. Unit selection then consists of finding,
selection system to generate a corpus of unit S&iven a specified sequence of feature vectors, the
quences. \We sh_ow that the co'ncatenanon_ cost cafj,¢ sequence that minimizes the sum of these two
be accurately estimated from this corpus using a Stazosts.
t'St!CaI n-gram language model over units. We used The target and concatenation cost functions have
Welght_ed automata and transducers for the repret'raditionally been formed from a variety of heuris-
sgntatlon of the componenf[s' of the SVSte.fT‘ and deﬁc or ad hocquality measures based on features of
signed a new and more efficient composition algoe 5,4ig and text. In this paper, we follow a differ-
rithm making use ostring potentialsor their com- ent approach: our goal is a syst’em based purely on
bination. The resultin'g statistical unit selection isstatistical modeling. The starting point is to assume
shown to be abol2.6 times fast_er than the last " that we have a training corpus of utterances labeled
lease of the AT&T Natural Voices Product while with the appropriate unit sequences. Specifically,

preserving the same quahty, _and offers much ﬂexTfor each training utterance, we assume available a
ibility for the use and integration of new and more sequence of feature vectofs= f, ... f, and the
complex components. corresponding units = wug ... u, that should be

L used to synthesize this utterance. We wish to esti-
1 Motivation mate from this corpus two probability distributions,

A concatenative speech synthesis system (Hunt anti(/|u) and P(u). Given these estimates, we can
Black, 1996; Beutnagel et al., 1999a) consists ofP€rform unit selection on a novel utterance using:
three components. The first component, toet-

analysis frontendtakes text as input and outputs u = arginaxp (ulf) (1)

a sequence of feature vectors that characterize the _ i (— log P oo P >
acoustic signal to synthesize. The first element of arginm( og P(flu) —log P(u)) (2)
each of these vectors is the predicted phone or half- _ _ _
phone; other elements are features such as the phsauation 1 states that the most likely unit se-

netic context, acoustic features (e.g., pitch, duraduence is selected given the probabilistic model
tion), or prosodic features. used. Equation 2 follows from the definition of

conditional probability and thaP(f) is fixed for a

* This author's new address is: Google, Inc, 1440 Broadway,QiVen Utterance_- The two terms gppearing in Equa-
New York, NY 10018y i | ey @oogl e. com tion 2 can be viewed as the statistical counterparts




of the target and concatenation costs in traditionatation by weighted transducers, and hence enables
unit selection. us to build a unit selection system using general
The statistical framework just outlined is simi- and flexible representations and methods already in
lar to the one used in speech recognition (Jelinekuse for speech recognition, e.g., those found in the
1976). We also use several techniques that havESM (Mohri et al., 2000), GRM (Allauzen et al.,
been very successfully applied to speech recogni2004) and DCD (Allauzen et al., 2003) libraries.
tion. For instance, in this paper, we show howOther unit selection systems based on weighted
—log P(u) (the concatenation cost) can be accu-transducers were also proposed in (Yi et al., 2000;
rately estimated using a statistieaigram language Bulyko and Ostendorf, 2001).
model over units. Two questions naturally arise.

() How can we collect a training corpus for build- (3) Unit selection algorithms and speed-up We

ing a statistical model? Ideally, the training cor- Présent a new unit selection system based on sta-
pus could be human-labeled, as in speech reCO3i_stical modeling. We used weighted automata and
nition and other natural language processing taskdransducers for the representation of the compo-
But this seemed impractical given the size of theN€nts of the system and designed a new and efficient
unit inventory, the number of utterances needed fofOMPosition algorithm making use efring poten-
good statistical estimates, and our limited resourcedials for their combination. The resulting statistical
Instead, we chose to use a training corpus geneHn't selection is shown to be abai6 times fast(_ar
ated by an existing high-quality unit selection SyS_than the last release of the AT&T Natural Voices

tem, that of the AT&T Natural Voices Product. Of Product while preserving the same quality, and of-
course, building a statistical model on that outputfers much flexibility for the use and integration of
can, at best, only match the quality of the origi- "€W and more complex components.

nal. But, it can serve as an exploratory trial to mea- . .
sure the quality of our statistical modeling. As we 2 Unit Selection Methods

will see, it can also result in a synthesis system thag.1 Overview of a Traditional Unit Selection

is significantly faster and modular than the original System

since there are well-established algorithms for repThis section describes in detail the cost functions
resenting and optimizing statistical models of theused in the AT&T Natural Voices Product that we
type we will employ. To further simplify the prob- will use as the baseline in our experimental results,
lem, we will use the existing traditional target costs,see (Beutnagel et al., 1999a) for more details about
providing statistical estimates only of the concate-this system. In this system, unit selection is based

nation costs+ log P(u)). on (Hunt and Black, 1996) but using units corre-
(b) What are the benefits of a statistical modeling SPonding to halfphones instead of phones. Uet
approach? be the set of recorded units. Two cost functions

are defined: thearget costCy(f;,u;) is used to
(1) High-quality cost functions. One issue €stimate the mismatch between the features of the

with traditional unit selection systems is that feature vectorf; and the unitu;; the concatena-

their cost functions are the result of the following tion costCe(u;, u;) is used to estimate the smooth-

compromise: they need to be complex enougH'ess of the acoustic signal when concatenating the

to have a perceptual meaning but simple enoughlnits u; andu;. Given a sequencg¢ = fi... f,

to be computed efficiently. With our statistical of feature vectors, unit selection can then be formu-

modeling approach, the labeling phase could pdated as the problerr_l fo_inding the sequence of units

performed offline by a highly accurate unit selec-% = u1 .. - u, that minimizes these two costs:

tion system, potentially slow and complex, while n n

the run-time statistical system could still be fast.  _ : L _ A

Moreover, if we had audio available for our training “ aﬁ%’?ﬁn(; Cillfis i) + ; Colui-1, ui))

corpus, we could exploit that in the initial label-

ing phase for the design of the unit selection systemln practice, not all unit sequences of a given length
are considered. A preselection method such as the

(2) Weighted finite-state transducer representa- one proposed by (Conkie et al., 2000) is used. The

tion. In addition to the already mentioned synthesiscomputation of the target cost can be split in two

speed and the opportunity of high-quality measureparts: the context cost,, that is the component of

in the initial offline labeling phase, another benefitthe target cost corresponding to the phonetic con-

of this approach is that it leads to a natural represertext, and the feature cost; that corresponds the



other components of the target cost: whereP is the probability distribution estimated by

our model. We used this new cost function to re-

Ci(fi,ui) = Cp(fiswi) + Cr(fi,u;) ()  place both the concatenation and context costs used
in the traditional approach. Unit selection then con-

For each phonetic contextof length 5, alistL(p)  sists of finding the unit sequeneesuch that:
of the units that are the most frequently used in the

phonetic contexp is computed. For each feature
vector f; in f, the candidate units fof; are com-
puted in the following way. Lep; be the 5-phone
context off; in f. The context costs betwegpnand

all the units in the preselection list of the phonetic
contextp; are computed and th&/ units with the
best context cost are selected:

n
u = argmin Z(Cf(fia i) +Cg(wilwi—g . .. ui—1))
ueUmn -1
In this approach, rather than using a preselection
method such as that of (Conkie et al., 2000), we are
using the statistical language model to restrict the
candidate space (see Section 4.2).

U; = M-best(Cy(fi,u;))

WL (o) 3 Representation by Weighted Finite-State

Transducers

An important advantage of the statistical frame-
work we introduced for unit selection is that the re-
sulting components can be naturally represented by
weighted finite-state transducers. This casts unit se-
lection into a familiar schema, that of a Viterbi de-
coder applied to a weighted transducer.

The feature costs betweghand the units irU; are
then computed and th& units with the best target
cost are selected:

U] = N-best(Cp(fi,wi) + Cr(fi, us))

u; €U;

The unit sequence verifying: 3.1 Weighted Finite-State Transducers

We give a brief introduction to weighted finite-state
transducers. We refer the reader to (Mohri, 2004;
Mohri et al., 2000) for an extensive presentation of

is determined usin lassical Viterbi rch. Th these devices and will use the definitions and nota-
S dete €d using a classical viterbi search. 1hUSy.,, introduced by these authors.

for each posit?on‘_, the N* concatenation costs be- A weighted finite-state transducg&ris an 8-tuple
tween the units inJ; and U/, , need to be com- — (S.A,Q,1,F,E, \ p) where. is the finite
puted. Th_e caching method for concatenation COStﬁwput alp’ha’bet’ o’f tﬁe 'Era’nsducek, is the finite out-
proposed in (Beutnagel et al., 1999b) can be used tBut alphabet() is a finite set of states, C () the

n
u = argmin (Z
wel! Ul

n =1

n

Ci(fiui) + ) Celui1,u;))

=2

improve the efficiency of the system.

2.2 Statistical Modeling Approach
Our statistical modeling approach was describe

in Section 1. As already mentioned, our general
approach would consists of deriving both the tar-

get cost—log P(f|u) and the concatenation cost
—log P(u) from appropriate training data using
general statistical methods. To simplify the prob-

set of initial statesF' C (@ the set of final states,
EC@QxXuU{e) x(Au{e}) xR x Q afi-

ite set of transitions) : I — R the initial weight
unction, andp : F' — R the final weight function
mappingF' to R. In our statistical framework, the
weights can be interpreted as log-likelihoods, thus
there are added along a path. Since we use the stan-
dard Viterbi approximation, the weight associated
by T to a pair of stringgz,y) € ¥* x A* is given

lem, we will use the existing target cost provided by 7

the traditional unit selection system and concentraté)y'

on the problem of estimating the concatenation cost. T)(z,y) —
We used the unit selection system presented in thé[ Y

previous section to generate a large corpus of more

than 8M unit sequences, each unit corresponding tahereR(1, z, y, F') denotes the set of paths from an

a unique recorded halfphone. This corpus was usetfitial statep € I to a final state; € F* with input

to build ann-gram statistical language model us- label z and output label, w[r] the weight of the

ing Katz backoff smoothing technique (Katz, 1987).path, A[p[r]] the initial weight of the origin state

This model provides us with a new cost function, theof 7, andp[n[r]] the final weight of its destination.

grammar cost,, defined by: A Weighted automatorl = (X,Q,I,F,E,\,p)

is defined in a similar way by simply omitting the

output (or input) labels. We denote b, (7) the

min

reR(a,y,F) Alp[l] + wia] + pln[x]]

Cy(ug|uy... up—1) = —log(P(ug|ug...uk—1))



(O 2-(1)2-(2)-(3)-1 @ log-likelihood:
(@) [G](u) = —log(P(u)). (5)

according to our probability estimat®. Since

a unit sequence: uniquely determines the corre-
sponding halfphone sequengethe n-gram statis-
tical model equivalently defines a model of the joint
distribution of P(z,u). G can be augmented to
define a weighted transducét assigning to pairs
(z,u) their log-likelihoods. For any halfphone se-

quencer and unit sequence, we defineG by:
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[G](z,u) = —log P(u) (6)
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The weighted transduceé¥ can be used to generate
all the unit sequences corresponding to a specific
halfphone sequence given by a finite automaipn
using compositionp o G. In our case, we also wish

) ) ) to use the language model transduGeto limit the
weighted automaton obtained frafhby removing  ymper of candidate unit sequences considered. We
its input labels. will do that by giving a strong precedence e

A general composition operation similar 10 grams of units that occurred in the training corpus
the composition of relations can be defined for(see Section 4.2).
weighted finite-state transducers (Eilenberg, 1974; . .
Berstel. 1979: Salomaa and Soittola, 1978: KuichExample Figure 2(a) shows the bigram modél
and Salomaa, 1986). The composition of two trans€Stimated from the following corpus:
ducersT; andT; is a weighted transducer denoted .g> ;1 42 ul u2 </ s>

by T o T5 and defined by: <s> ul u3 </s>

<s> ul u3 ul u2 </s>
[T 0 To](2,y) = min {[T1] (=, 2) + [T2](z, )}
Z€A where (s) and (/ s) are the symbols marking the

There exists a simple algorithm for constructing Start and the end of an utterance. When the upit
T = T, o T, from T, and T» (Pereira and Riley, S @ssociated to the halfphope and both unitsi,
1997; Mohri et al., 1996). The statesBfare iden- @nduz are associated to the halfphaong the corre-
tified as pairs of a state df, and a state of,. A sponding weighted halfphone-to-unit transducer
state(q1, g2) in T} o T, is an initial (final) state if and IS the one shown in Figure 2(b).

only if ¢ is an initial (resp. final) state df andg> 33 ynit Selection with Weighted Finite-State
is an initial (resp. final) state df,. The transitions Transducers

of T are the result of matching a transition
g of From each sequencgé = f; ... f, of feature vec-

and a transition ofl; as follows: (g1, a, b, w1, q}) - !

and (g2, b, ¢, ws, gb) produce the transition tors_specmed by the text analysis frontend, we can
straightforwardly derive the halfphone sequence to

be synthesized and represent it by a finite automa-

ton p, since the first component of each feature vec-

in T'. The efficiency of this algorithm was critical to tor f; is the corresponding halfphone. Uét be the

that of our unit selection system. Thus, we designedveighted automaton obtained by compositiorpof

an improved composition that we will describe later.with G and projection on the output:

Figure 1(c) gives the resulting of the composition of .

the weighted transducers given figure 2(a) and (b). W =1lz(poG) (7)

Figure 1: (a) Weighted automatdn. (b) Weighted
transducefly. () 13 o Ty, the result of the compo-
sition of 77 and7s.

((Q1>q2)>a7cawl +w2a(qi>qé)) (4)

3.2 Language Model Weighted Transducer W represents the set of candidate unit sequences
Then-gram statistical language model we constructwith their respective grammar costs. We can then
for unit sequences can be represented by a weightatse a speech recognition decoder to search for the
automatonG which assigns to each sequencés  best sequence sinceW can be thought of as the
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Figure 2: (a)n-gram language modél for unit sequences. (b) Corresponding halfphone-to-ueigiited
transducel.

counterpart of a speech recognition transduger, T from g to a final state:
the equivalent of the acoustic features arigd the

analogue of the acoustic cost. Our decoder uses a pi(e) = /\ i[x]
standard beam search @f to determine the best m€ll(q,F)
path by computing on-the-fly the feature cost be- Polq) = /\ oln]

tween each unit and its corresponding feature vec-
tor.

Composition constitutes the most costly opera-The string potentials of the states’bfcan be com-
tion in this framework. Section 4 presents severaputed using the generic shortest-distance algorithm

of the techniques that we used to speed up that aPf (Mohri, 2002) over the string semiring. They can
gorithm in the context of unit selection. be used in composition in the following way. We

will say that two stringse andy are comparableif
x is a prefix ofy or y is a prefix ofx.

mell(q,F)

4  Algorithms Let (g1, ¢2) be a state il = Ty o T,. Note
. ) ) ) that (¢1, g2) is a coaccessible state only if the out-
4.1 Composition with String Potentials put string potential of;; in 7, and the input string

In general, composition may createon- potential ofgy in 73 are comparable, i.ep,(q1) IS

coaccessible statege.. states that do not admit a & Prefix ofpi(az) or pi(g2) is a prefix of po(q1).
ence, composition can be modified to create only

path to a final state. These states can be removéﬁ : \ ;
after composition using a standard connection (oF ose states for which the string potentials are com-

trimming) algorithm that removes unnecessarypat'ble'

states. However, our purpose here is to avoid the AS 8n €xample, state= (1,5) of the transducer
creation of such states to save computational time! — 11 © T2 1n Figure 1 needs not be created since
To that end, we introduce the notion afring Po(1) = bed andp;(5) = bea are not comparable

- trings.
otentialat each state. S . . .
P The notion of string potentials can be extended

Leti[x] (o[r]) be the input (resp. output) label of 1, f,ther reduce the number of non-coaccessible
a pathr, and denote by /\ y the longest common  g(41e5 created by composition. Téetended input

prefix of two stringsz andy. Letq be astate in a  gying potentialof ¢ in 7', is denoted bys;(¢) and is
weighted transducer. Thaput (outpu) string po-  iha set of strings defined by
tential of ¢ is defined as the longest common prefix

of the input (resp. output) labels of all the paths in pi(q) = pi(q) - Gi(q) (8)



where(;(¢g) € ¥ and is such that for every € 4.3 Language Model Transducer — Shrinking

Gi(q), there exist a path from ¢ to a final state such A classical algorithm for reducing the size of an
thatp;(q)o is a prefix of the input label of. Theex-  ;,.gram language model is shrinking using the
tended output string potentiaf ¢, p,(q), is defined  entropy-based method of (Stolcke, 1998) or the
similarly. A state(qy, g2) in Ty o T5 is coaccessible  weighted difference method (Seymore and Rosen-
only if feld, 1996), both quite similar in practice. In our
experiments, we used a modified version of the
(Polq1) - X*) N (Pi(ga) - X%) #0 (9) weighted difference method. Let be a unit and
let h be its conditioning history within the-gram
Using string potentials helped us substantially im-model. For a given shrink factoy, the transition
prove the efficiency of composition in unit selection. corresponding to the-gram hw is removed from
the weighted automaton if:
4.2 Language Model Transducer — Backoff ~ ~ v
) log(P(wl[h)) — log(an P(w|h')) < (10)
As mentioned before, the transdudgrrepresents c(hw)

ann-gram backoff model for the joint probability narer is the backoff sequence associated whith
dlstrlputlon P(z,u). Thqs, backpff trgnsmons are Thus, a higher-orden-gram hw is pruned when
used in a standard fashion whehis viewed as an it goes not provide a probability estimate signifi-
automaton over paired sequencesu). Since we  cantly different from the corresponding lower-order
useG as a transducer mapping halfphone sequences.gram sequenct’w.
to unit sequences to determine the most likely unit This standard shrinking method needs to be mod-
sequence: given a halfphone sequeneé'we need ified to be used in the case of our halfphone-to-unit
to clarify the use of the backoff transitions in the weighted transducer model with the restriction on
compositionp o G. the traversal of the backoff transitions described in
Denote byO(V) the set of output labels of a set the previous section. The shrinking methods must
of transitionsV. Then, the correct use derived from take into account all the transitions sharing the same
the definition of the backoff transitions in the joint input label at the state identified withand its back-
model is as follows. At a given stateof G and for ~ Off stateh’. Thus, at each state identified within
a given input halfphone, the outgoing transitions G, a transition with input labet is pruned when the
with input « are the transitiond” of s with input  following condition holds:
labela, and for eachh ¢ O(V'), the transition of the

first backoff state of with input labela and output Z log(P(w|h)) — Z log(an P(w|h')) < C(;w)

b. wexy weX?,
For the purpose of our unit selection system, we . _ ,
had to resort to an approximation. This is because inWhere#' is the backoff sequence associate with
general, the backoff use just outlined leads to exam@ndX; is the set of output labels of all the outgoing

ining, for a given halfphone, the set of all units IOOS_trz_;msmons with input labet of the state identified
sible at each state, which is typically quite lafge. With k-
Instead, we restricted the inspection of the backoff5

: X o ” Experimental results
states in the following way within the composition )
poG. Astates; in p corresponds in the composed e used the AT&T Natural Voices Product speech

synthesis system to synthesize 107,987 AP news ar-
ticles, generating a large corpus of 8,731,662 unit
sequences representing a total of 415,227,388 units.
"We used this corpus to build severalgram Katz

backoff language models with = 2 or 3. Ta-

ble 1 gives the size of the resulting language model
weighted automata. These language models were

transducep o G to a set of stategsy, s2), s2 € So,
where S, is a subset of the states 6f. When
computing the outgoing transitions of the states i
(s1, s2) with input labela, the backoff transitions of
a states, are inspected if and only if none of the
states inSy has an outgoing transition with input la-

bela. built using the GRM Library (Allauzen et al., 2004).
— B . We evaluated these models by using them to syn-

By Th)'j Igc(’rr)esloonds to the conditional probabilifyu|z) = thesize an AP news article of 1,000 words, corre-
T,u z).

2Note that more generally thecabularysize of our statis- sponding to 8250 units or 6 minutes of synthesized

tical language models, about 400,000, is quite large coespar SPE€ech. Table 2 gives the unit selection time (in_ Sec-
to the usual word-based models. onds) taken by our new system to synthesize this AP



Model No. of statesNo. of transitions Model raw score| normalized scorg
2-gram, unshrunken 293,935 5,003,336 baseline system |3.54 + .20 3.09 £ .22

3-gram, unshrunkgn 4,709,404 19,027,244 3-gram, unshrunker8.45 + .20 2.98 + .21

3-gram;y = —4 2,967,472 14,223,284 3-gram;y = —1 3.40 £ .20 293+ .22

3-gramy = —1 2,060,031 12,133,965

3-gramy =0 1,681,234 10,217,164

3-gramyy =1 1,370,22( 9,146,797 Table 3: Quality testing results: we report for each
3-gramyy =4 934,914 7,844,25( system, the mean and standard error of the raw and

the listener-normalized scores.

Table 1: Size of the stochastic language models for .
differentn-gram order and shrinking factor. Ing standard error. The difference of scores between

the three systems is not statistically significant (first
column), in particular, the absolute difference be-
tween the two best systems is less than

g":si‘?ilne S composition Se‘:"rcr tOtZ‘!é'Sme Different listeners may rank utterances in dif-
2-gram, unshrunkdn ~ 2.9s 10s| 39s ferent ways. Some may choose the full range of
3-gram. unshrunken  1.2s 05s| 1.7s scores (1-5) to rank each utterance, others may se-
3-gram,y = —4 1.3s 05s| 1.8s lect a smaller range near 5, near 3, or some other
3-gram;y = —1 1.5s 0.5s| 2.0s range. To factor out such possible discrepancies in
3-gram;y =0 1.7s 0.5s| 2.2s ranking, we also computed the listener-normalized
3-gramyy =1 2.1s 0.6s| 27s scores (second column of the table). This was done
3-gramy =4 2.7s 09s| 3.6s for each listener by removing the average score over

the full set of utterances, dividing it by the stan-
. o . . __dard deviation, and by centering it around 3. The
-srsst,)tleen?Wﬁgrﬁs;%tlfonsgwtehggirzge}[zz gg%zef; trgoer\ll\ygsults show that the difference be_tween t_he _n_ormal-
article |;ed scores of the three systems is not significantly
) different. Thus, the MOS results show that the three
systems have the same quality.
news article. Experiments were run on a 1GHz Pen- We also measured the similarity of the two best
tium 11l processor with 256KB of cache and 2GB of systems by comparing the number of common units
memory. The baseline system mentioned in this tathey produce for each utterance. On the AP news ar-
ble is the AT&T Natural Voices Product which was ticle already mentioned, more than 75% of the units
also used to generate our training corpus using thevere common.
concatenation cost caching method from (Beutnagel )
etal., 1999b). For the new system, both the compub Conclusion
tation times due to composition and to the searctWe introduced a statistical modeling approach to
are displayed. Note that the AT&T Natural Voices unit selection in speech synthesis. This approach is
Product system was highly optimized for speed. Inlikely to lead to more accurate unit selection sys-
our new systems, the standard research software liems based on principled learning algorithms and
braries already mentioned were used. The searctechniques that radically depart from the heuristic
was performed using the standard speech recognethods used in the traditional systems. Our pre-
nition Viterbi decoder from the DCD library (Al- liminary experiments using a training corpus gener-
lauzen et al., 2003). With a trigram language modelated by the AT&T Natural Voices Product demon-
our new statistical unit selection system was aboustrates that statistical modeling techniques can be
2.6 times faster than the baseline system. used to build a high-quality unit selection system.

A formal test using the standard mean of opinionlt also shows other important benefits of this ap-
score (MOS) was used to compare the quality of thédroach: a substantial increase of efficiency and a
high-quality AT&T Natural Voices Product synthe- greater modularity and flexibility.
sizer and that of the synthesizers based on our new
unit selection system with shrunken and unshrunked*cknowledgments
trigram language models. In such tests, several lisWWe thank Mark Beutnagel for helping us clarify
teners are asked to rank the quality of each utteranceome of the details of the unit selection system in
from 1 (worst score) t® (best). The MOS results of the AT&T Natural Voices Product speech synthe-
the three systems with 60 utterances tested by 21 lissizer. Mark also generated the training corpora and
teners are reported in Table 3 with their correspondset up the listening test used in our experiments.
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