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Abstract cisions as to which parts of an utterance are not suf-
_ _ _ _ ficiently well understood.
This paper investigates the correlation be- The aim of this paper is to investigate how

tween acoustic confidence scores as re-  well acoustic confidences correlate with recognition
turned by speech recognizers with recog-  quality and to use machine learning (ML) techniques

nition quality. We report the results of two  to improve this correlation. In particular, we will
machine learning experiments that predict  conduct two different experiments. First, we try
the word error rate of recognition hypothe-  to predict the word error rate (WER) of a recogni-
ses and the confidence error rate for indi-  tion result based on its overall confidence score and
vidual words within them. show that we can improve on this by using ML clas-
sifiers. Second, we will consider individual word
1 Introduction confidence scores and again show that ML tech-

_ _ nigues can be fruitfully applied to the task of decid-
Acoustic confidence scores as computed by speefity whether individual words were recognized cor-
recognizers play an important role in the design ofectly or not.
spoken dialog systems. Often, systems solely de- The paper is organized as follows. In the next sec-
cide on the basis of an overall acoustic ConﬁdenCﬁon' we exp|ain the genera| experimenta| Setup' in-
score whether they should accept (consider correcgioduce acoustic confidences, and explain how we
clarify (ask for confirmation), or reject (prompt for |apeled our data. Sections 3 and 4 report on the ac-

repeat/rephrase) the interpretation of an user uttefga| experiments. Section 5 summarizes and con-
ance. This behavior is usually achieved by setting|udes the paper.

two fixed confidence thresholds: if the confidence
score of an utterance is above the upper threshold?t Experimental Setup

is accepted, when it is below the lower threshold it i§Ne use the ATIS2 corpus (MADCOW, 1992) as our
rejected, and clarification is initiated in case the con- cech data source pThe corpus cémtains approx

. o S
fidence score lies in between the two thresholds. Tl“fg 000 utterances and has a vocabulary size of about
GoDiS spoken dialog system (Larsson and Ericssoq,.doo words. In order to get “real” recognition data

2002) is an ex_ample of such a system. More e!ab?/ve trained and tested the commercial NUANCES.0
rated and flexible system behavior can be achieved " . :

. I . recognition engine on the ATIS2 corpus. To this end
by making use of individual word confidence scores

) . ) we first split the corpus into two distinct sets. With
or slot-confidencésthat allow more fine-grained de- : . L
the first set we trained a statistical language model

Some recogpnition platforms allow the application program-{trigram) for the recognizer. This model was then
mer to associate semantic slot values with certain words of

an input utterance. The slot-confi dence is then defined as the?ht t p: / / ww. nuance. com

acoustic confi dence for the words that make up this slot.



used to recognize the other set of utterances (using Abs. Perc.
1-best recognition). Finally, we split the set of rec- WERO 3824  51.0%
ognized utterances into three different sets. A train- WERS50 3204 42.7%
ing set (75%), a test set (20%) and a development WER100 | 283 3.8%
set (5%). Rejections 5 0.1%

. ) Timeouts | 187 2.5%
2.1 Acoustic Confidences Total 7503 100.1%

The NUANCE recognizer returns an overall acous-
tic confidence score for each recognition hypothe-
sis as well as individual word confidence scores for
each word in the hypothesis. Acoustic confidences
are computed in an additional step after the actual

recognition process. The aim is to estimate a nor- In our first experiment we will use the three cate-

malized probability of a (sub-)sequence of Wordsgories WERO0, WERS50, and WER100 to establish a

that can be interpreted as a predmtor whether the s rrelation between the overall acoustic confidence
quence was correctly recognized or not (see (Wessgiore for an utterance and its word error rate. The

etal., 2001) for a comparison of different confidenc%asic idea is that these three classes might be used

estlmqtors). Acoustic confldencg scores are ther%—y a system to decide whether it should accept, clar-
fore different from the unnormalized scores com-

L T ify, or reject an hypothesis.
puted by the standard Viterbi decoding in HMM
based recognition which selects the best hypothesks3 Labeling Words

among competing alternatives. We also labeled each word in the set of recognized

We will use acoustic confidence scores to derVgerances as either correctly or incorrectly recog-
baseline values for the two experiments reported ijjzed. The labeling is based on the Levenstein dis-
Sections 3 and 4. tance between the actual transcription of an utter-
ance and its recognition hypothesis. The Leven-

i ] ] stein distance computes an alignment that minimizes
We first give a general overview of the performancey, s nymber of insertions, deletions, and substitutions

of the NUANCE speech recognizer. Table 1 reportghen comparing two different sentences. However,
the overall word error rate (WER) in terms of inseér-yjs gistance can be ambiguous between two or more
tions, deletions, and substitutions as computed Byjisnment transcripts (i.e. there are can be several
the recog_nltlc_m engine (but see the discussion on tr\l,gays to convert one string into another using the
Levenstein distance in the next paragraph). minimum number of insertions, deletions, and sub-
stitutions). (1) shows two possible alignments for a
recognized utterance from the ATIS2 corpus, where
‘m’ stands for match, ‘i’ for insertion, and ‘s’ for
Table 1: Overall WER substitution.

Table 2: Recognition results grouped by WER

2.2 Recognition Results

Insertions| Deletions| Substitutions| WER
1342 | 1693 | 5856 | 11.83

Table 2 shows the absolute number and percent) Ambiguous Levenstein alignment _
ages of the sentences that where recognized cor- Trans.. are there any stops on that .ﬂlght
rectly (WERO), recognized with a WER between R(_acog.. what are the stops on the flight
1% and 50% (WER50), and with a WER greater ~ ~1gnl: s-s-s-m-m-s-m
than 50% (WER100). Rejections and timeouts refer Align2: i-m-s-d-m-m-s-m
to the number of utterances completely rejected by To avoid this kind of ambiguity, we converted
the recognizer and utterances for which a proces@ll words to their phoneme representations using
ing timeout threshold was exceeded. In both caséee CMU pronunciation dictionafy We then ran
the recognizer did not return a hypothesis. " Shttp: //ww speech. cs. cnu. edu/ cgi - bi n/

crudi ct



the Levenstein distance algorithm on these repré.1 Machine Learners

sentations and converted back the result to the wogg predicted the WER-class for recognized sen-
level. This procedure gives us more intuitive alignyences hased on their overall confidence score, and
ment results because it has a bias towards subsfjiih the two machine learners TiMBL (Daelemans
tuting phonemically similar words (e.g. Align2 in & al., 2002) and Ripper (Cohen, 1996). TiMBL
(1) above). Of course, the Levenstein distance 0g 5 software package that provides two different
the phoneme level can again be ambiguous but thi§emory based learning algorithms, each with fine-
is more unlikely since the to-be aligned strings argnaple metrics. All our TIMBL experiments were
longer. - o _ done with the IB1 algorithm that uses thenearest

We will use the individually labeled words in our pejghpor approach to classification: the class of a
second experiment where we try to improve the Conyest jtem is derived from the training instances that
fidence error rate qqd the detection-error tradeoff,e most similar to it. Memory-based learning is
curve for the recognition results. often referred to as “lazy” learning because it ex-
plicitly stores all training examples in memory with-
out abstracting away from individual instances in the
The purpose of the first experiment was to find outearning process.
how well features that can be automatically derived Ripper, on the other hand, implements a “greedy”
from a recognition hypothesis can be used to predid¢arning algorithm that tries to find regularities in the
its word error rate. training data. It induces rule sets for each class with

As already mentioned in the previous section, albuilt-in heuristics to maximize accuracy and cover-
recognized sentences were assigned to one of thge. With default settings, rules are first induced
following classes depending on their actual WERfor low frequency classes, leaving the most frequent
WERO (WER 0%, sentence correctly recognized)glass being the default. We chose TiMBL and Rip-
WERS50 (sentences with a WER between 1% anger as our two machine learners because they em-
50%), and WER100 (sentences with a WER greatgioy different approaches to classification, are well-
than 50%). The motivation to split the data into thes&nown, and widely available.
three classes was that they can be associated with the~or all experiments we proceeded as follows:
two fixed thresholds commonly used in spoken diakFirst we used the training set to learn optimal con-
log systems to decide whether an utterance shoufitlence thresholds for the baseline classification and
be accepted, clarified, or rejected. the development set to learn program parameters for

We are aware that this might not be an optimathe two machine learners, which were then trained
setting. Some spoken dialog systems only spot famn the training set. We then tested these settings on
keywords or key-phrases in an utterance. For themihe test set. To be able to statistically compare the
does not matter whether “unimportant” words wergesults, in a third step, we used the learned program
recognized correctly or not and a WER greater thaparameters to classify the recognition results in the
zero is often acceptable. The main problem is thatombined training and test sets in a 10-fold cross-
what counts as a keyword or key-phrase is systewalidation experiment. The optimization and evalu-
and domain depended. We cannot simply base oation were always done on the weightgg-scoré
experiments on the WER for content words likefor all three classes.
nouns, verbs, and adjectives. In a travel agenc
application, for example, the prepositions ‘to’ an
‘from’ are quite important. In home automation, As a baseline predictor for class assignment we use
quantifiers/determiners are important to distinguisithe overall confidence score of a recognition result
between the commands ‘switch off all lights’ andreturned by the NUANCE recognizer. To assign the
‘switch off the hall lights’ (this example is borrowed three different classes, we have to learn two confi-
from David Milward). For further examples see also

415 is the unbiased harmonic mean of precisiphgnd re-
(Bos and Oka, 2002). call (r): f5 =2pr/(p+7)

3 Experiment 1

.2 Baseline



dence thresholds. Whenever the overall confidence Automatic classification of the recognition re-
of the recognition result is below the lower threshsults was done with different parameter and fea-
old, we classify it as WER100, whenever it is abovedure settings for the machine learners. We hereby
the upper threshold we classify it as WERO, andoarsely followed (Daelemans and Hoste, 2002)
when it is between we classify it as WER50. Wewho showed that parameter optimization and fea-
report the weighted 5-score for the test set and theture selection techniques improved classification re-
cross-validation experiment as well as the standarsults with TIMBL and Ripper for a variety of dif-
deviation for the cross-validation experiment in Taferent tasks. First, both learners were run with their
ble 3. default settings. Second, we optimized the param-
eters for the two learners on the development set.
Finally, we used a forward feature selection algo-
rithm interleaved with parameter optimization for
TiMBL. This algorithm starts out with zero features,
Table 3: Baseline results adds one feature, and performs parameter optimiza-
tion. This is done for all features and the five best
The confidence scores that maximized the resulfgsults are stored. The algorithm then iterates and
for the NUANCE recognizer on the test set were 6&dds a second feature to these five best parameter

| Weightedf; St. Deviation
test set 63.57% -
crossval 64.13% 1.67

and 43. settings. Again, parameter optimization is done for
o every possible feature combination. The algorithm
3.3 ML Classification stops when there is no improvement for either of the

We computed a feature vector representation fdive best candidates when adding an additional fea-
each recognition result which served as input foture. Keeping the five best parameter settings en-
the two machine learners TiMBL and Ripper. Al-sures that the feature selection is not too greedy. If,
together, 27 features were automatically extractetdr example, a single feature gives good results but
from the recognizer output and the wave-form fileghe combination with other features leads to a drop
of the individual utterances. These features caim performance, there is still a change that, say, the
be grouped into the following seven different catesecond or third best feature from the previous itera-
gories. tion combines well with a new feature and leads to
better results.
1. Recognizer Confidences: Overall confidence We report the results for TIMBL (Table 4) and
score, max., min., and range of individual Ripper (Table 5), respectively.
word confidences, descriptive statistics of the

individual word confidences Weightedfs St Deviation

2. Hypothesis Length: Length of audio sample, Default Settings
number of words, syllables, and phonemes test set 60.44% -~
(CMU based) in recognition hypothesis crossval|  61.24% 146

3. Tempo: Length of audio sample divided by Parameter Optimization
the number of words, phones, and syllables testset | 68.44% -

4. Recognizer Statistics: Time needed for de- crossval|  68.59% 2.03
coding Feature Selection

5. Site Information: Atwhich site the speech file testset |  66.41% -
was recorded] crossval| 67.01% 2.14

6. fO Statistics: Mean and max. f0, variance,
standard deviation, and number of unvoiced
frames .. . 5The ATIS2 data was recorded at several different sites

7. RMS Statistics: Mean and max. RMS, vari- The f0 and RMS (root mean square; a measure of the s'ignal
ance, standard deviation, number of framesnergy level) features were extracted with Entropiesf0 tool.
with RMS < 100

Table 4: TiIMBL results



Weightedf s St. Deviation other results. The other four machine learning re-

Default Settings sults (parameter optimization and feature selection

test set 67.97% - for TIMBL as well as defaults and parameter op-
crossval| 68.60% 1.54 timization for Ripper) significantly outperform the
Parameter Optimization baseline. We could not find a significant differ-

test set 68.11% - ence between the TiIMBL (excluding default set-

crossval| 68.23% 1.46 tings) and Ripper results. In all comparisons, t-test

) and Wilcoxon signed ranks lead to the same results.
Table 5: Ripper results

3.5 Ripper Rule Inspection

During learning, Ripper generates a set of (human
readable) decision rules that indicate which features

The results show that TIMBL profits from Ioaram_were most important in the classification process.

eter optimization and feature selection. One reasoWe cannot give a detailed ana!y3|s of the induced
for this is that, with default settings, TIMBL only rules because of space constraints, but Table 6 pro-

considers the nearest neighbor in deciding whicMIdes a simple breakdown by feature groups that
class to assign to a test item. In our experiment, <:or,§—howS how often features from each group appeared

sidering more than one neighbor lead to a befter in the rule sef.

score for the majority class (WERO) which in turn 1. Recognizer Confidences: 25
had an impact on overall weightefds-score. A sur- Hypothesis Length: 12
prising finding is that the feature selection algorithm Tempo: 1

did not lead to an improvement. We expected a bet- Recognizer Statistics: 8

ter score based on (Daelemans and Hoste, 2002) and Site Information: 0

because some aspects in the feature vector specifi- fO Statistics: 3

cation (e.g. tempo) are heavily correlated which can RMS Statistics: 2

cause problems for memory based learners. How-

ever, it turned out that our algorithm stopped after Table 6: Features used by Ripper
selecting only seven of the 27 features which indi-

cates that it might still be too greedy. Another ex- \we can see that all feature groups except “Site
planation for the results is that optimization with nformation” contribute to the rule set. The single

feature selection can be particularly prone to overyost often used feature was the mean of all individ-
fitting: The weightedf ;5-score for the development 5] \ord confidences (9 times), followed by the min-
data, which we used to select features and optimizg, ,m individual word confidence and recognizer la-
parameters, was 77.40% (almost 11% better than tl?@ncy (both 8 times). The overall acoustic confi-

performance on the test set). . dence score appeared in 4 rules only.
Parameter optimization did not improve the re-

sults for Ripper. Compared to TiMBL the smaller4 Experiment 2

standard deviation in the cross-validation results in-

dicates a more uniform/stable classification of thg he aim of the segond experiment was to investigate
data whether we can improve the confidence error rate

(CER) for the recognized data. The CER measures
3.4 Significance how good individual word confidence scores predict
Rhether words are correctly recognized or not. A

No O WNE

We used related t-tests and Wilcoxon signed ran X X ) )
statistics to compare the cross-validation results. Afenfidence threshold is set according to which all
test were done two-tailed at a significance level O\fvords are either tagged as correct or incorrect. The

p = .01. We found that the results for TIMBL  "The figures reported in Table 6 were obtained by training

with default settings are significantly worse than alRipper on the training set with default parameters. Altogethe
16 classifi cation rules were generated.



CER is then simply defined as the number of insets in Table 7. The machine learners were only run
correctly assigned tags divided by the total numwith their default settings.
ber of recognized words. The CER is a very sim-

ple measure that strongly depends on the tagging CER St Deviation
threshold and the prior probability of the classes- Baseline
rect andincorrect Since we have a strong bias to- testset | 11.47% -
wards correct words in our data, we complement the crossval| 11.23% __ 0.67
CER evaluation with a second evaluation matrix, the TIMBL
detection-error tradeoff (DET) curve which plots the testset | 11.44% -
false acceptance rate (the number of incorrect words crossval| 11.30% 055
tagged as correct divided by the total number of in- Ripper
correct words) over the false rejection rate (the num- testset | 13.17% -
ber of correct words tagged as incorrect divided by crossval| 10.82% 0.68
the total number of correct words). This curve is Table 7: CER results

instructive because it shows the results for several
different tagging thresholds and how they effect the As in Experiment 1, we used related t-tests and
prediction accuracy for the two classes. Wilcoxon signed ranks statistics to compare the re-
sults. Unfortunately, we could not find a significant
improvement for the machine learners as compared
The feature vector for the machine learners in thep the baseline. Both tests show that there is no sig-
second experiment consisted of 17 features whichificant difference between either of the three results
were automatically derived from the recognition re<for two tailed tests ap = .01. Note, however, that
sults and the output of Experiment 1. We can agaithe CER is strongly dependent on the prior probabil-
group them into different categories. ities of the classesorrectandincorrect It is there-
fore interesting to compare the performance on the
1. Overall Confidence: Overall confidence scoreminority class(incorrect) for the baseline, TIMBL,
of the hypothesis the to-be-classified word ap-and Ripper. Table 8 shows precision, recall, gnd
pears in scores on the test set.
2. Leftword context: The two word forms left of
the to-be-classified word and their individual

4.1 Features

| prec  recall fs
baseline| 56.93 8.90 15.39

3 "Q’;r‘yog‘:‘de?ciscﬁres.f. 4 word f " TIMBL |51.79 3554 42.15
. ora. e [0-pe-classified wor rom, Its Rlpper 5084 2755 35.74

individual word confidence, and two length
measures Table 8: Minority class classification
4. Right word context: The two word forms left
of the to-be-classified word and their individ- We can see that the baseline performs very poor
ual word confidence scores on the minority class. Indeed the optimal thresh-
5. WER estimate: The WER class as assigned told computed during training was 15 which means
the sentence the to-be-classified word appeanhat almost every word is tagged as correct. This
in based on the best results from Experiment Idifference does not show up in the CER because it
6. Sentence Length: Three different length meais “overshadowed” by the majority class. The next
sures for the recognition hypothesis the to-beparagraph will show the advantage of the machine
classified word appears in learners when we give equal weight to both the ma-
jority and minority classes.

4.2 Confidence Error Rates

We report the confidence error rates for the test sé3 Detection-Error Tradeoff
and cross-validation on the combined train and test/e use the data from all words in the training and
test sets to plot detection-error tradeoff curves. To



get the baseline DET curve (based on the individual 1y Bacaind
word confidence computed by the NUANCE recog- i "TiMBL"
nizer) we simply vary the tagging threshold between 081

100 and 0 and apply it to the data. A threshold of
50, for example, will classify all words with a con-
fidence higher or equal than 50 as correct and all 0.4

others as incorrect. The result is a gradual decline in \M

the false rejection rate: When the threshold is 100, 02 o,

all instances will be tagged as incorrect, when it is 0 ‘ ‘ b
0, all instances will be tagged as correct. 0 0z 04 06 08 !

False acceptance rate

0.6 -

False rejection rate
R

4.4 Training Set Composition Figure 1: DET for TIMBL

We classified the same data with the machine learn-

ers using several 5-fold cross-validation experi- 1y v
ments. One big obstacle with the machine learn- i "Ripper”

ers was that we wanted to force them to gradually 08 ‘

produce more false acceptances and less false rejec- ; 06 %

tions. Ripper provides a parameter to change the % ‘x&ﬁxn

“loss ratio”, i.e the ratio of the cost of a false neg- 5 o4 *

ative to the cost of a false positive. This is exactly i K%&

what we want but we found that we cannot linearly 02 - g,

vary this parameter in a way that gives us a smooth o e

transition between false acceptances and false rejec- 0 02 04 0.6 08 1
. False acceptance rate
tions.

We solved this problem by conducting experi- Figure 2: DET for Ripper
ments were we changed the ratio of examples from
the two classes within the training set. This was
done as follows. During cross-validation we first
set aside an equal number of examples from both
classes from the training set. Depending on the rgrove over the baseline, especially for false accep-
tio value, we then added a certain fraction of one ofance rates (FAR) up to 0.5. This is an interesting
these two sets to the other set. For example, to gefiading because we are often interested in a good
50/50 ratio, we simply combined the two sets; for gperformance for the minority class without loosing
75/25 ratio we took the first set and added to it 50%00 much accuracy on the majority class. For spoken
(randomly selected) items from the second set. Thialog systems it is of major importance to be “con-
procedure in itself does not ensure a smooth trans$ervative” and to spot most of the erroneous words
tion from false rejections to false acceptances but it order to avoid misunderstandings. But this is al-
worked very well in practice. Note that we basicallyways at the cost of inefficient and annoying dialogs
only take out a certain number of elements from thahere the system rejects too many utterances or asks
cross-validation training set. We do still test eventoo many clarification questions. Figure 2 shows
data point since we do not change the ratio withimn improvement on the part of the curve where the
the test sets. FAR is low (i.e. where not many erroneous words

Figures 1 and 2 show the DET curves for TiIMBLare accepted). For a FAR of 20% (i.e. only every
and Ripper as compared to the baseline respectivelifth incorrect word is not detected as such) Ripper

improves the false rejection rate (FRR) by 10% as

4.5 Results compared to the baseline. Figure 2 also shows an
The DET curve for TIMBL is almost identical to the improvement in the equal error rate (the point where
baseline. The curve for Ripper, however, does imFAR and FFR are the same) from 28,5% to 25%.



4.6 Ripper Rule Inspection be achieved by considering other features for pre-

Again, we can investigate the rule sets generated ijjction. For example, we can add the words in the
Ripper to find out which features were particularlyr®cognition hypothesis as a set-valued feature when
useful for classification. In Table 9, we report auSing Ripper. We also want to do a more thor-
breakdown by feature groups for one of the cross?ugh investigation of the rule sets generated by Rip-
validation folds that lead to a FAR of about 20% andP®r 1 find out which features were most important
a FRR of about 30.5% (i.e. one of the data pointir classification. A long-term goal is to combine
that showed the highest improvement over the bas#1€ (coustic) quality prediction with a notion of se-

line). The rule set included 15 different rules. mantic plausibility in an actual dialog system. In
particular, we want to use semantic plausibility to

1. Overall Confidence: 7 rescore/rerank N-best recognition hypotheses.
2. Left word context: 16
3. Word: 21 6 Acknowledgments
4. Right word context: 8 We want to thank NUANCE Inc. for making avail-
5. WER estimate: 2 able their recognition software for research pur-
6. Sentence Length: 3 poses.

Table 9: Features used by Ripper
References
Table 9 shows that featg_res .from all SIX featurgjonan Bos and Tetsushi Oka. 2002. An Inference-based
groups were used for classification. The single most Approach to Dialogue System Design. Rroceedings
often used feature was the individual word confi- of Coling 2002 Taipei.
dence of the target word (used in all rules), followedyjjjjiam W. Cohen. 1996. Learning Trees and Rules with
by the word confidence of the immediately preceed- Set-valued Features. Proceedings of the Thirteenth

ing word (which appeared in 11 rules). glg)tional Conference on Artificial Intel ligence (AAAI-

Walter Daelemans and Véronique Hoste. 2002. Evalu-

; ; _ation of Machine Learning Methods for Natural Lan-
Spotting erroneous utterances and words is a ma guage Processing Tasks. Proceedings of the Third

jor t.ask in spoken dialqg systems.. Depending ON International Conference on Language Resources and
the judgment of recognition quality important deci- Evaluation (LREC 2002pages 755-760, Las Palmas,
sions are made as to how the dialog should proceed.Gran Canaria.
In this paper, we reported on two experiments thajyaiter Daelemans, Jakub Zavrel, Ko van der Sloot,
show how machine learning techniques can be usedand Antal van den Bosch. 2002. TIMBL: Tilburg
to predict the quality of recognition hypotheses. We Memmory Based Learner, version 4.2, Reference
both looked at hypotheses as a whole (in terms of SUide. InILK Technical Report 02-01 Available

. o e from http://il k. kub. nl /downl oads/ pub/
thelr WER) and the individual words within them  pahers/i| k0201. ps. gz.
(in terms of the CER and DET curves). We foundSt fan L P 2002, GODIS

; : - ._Staffan Larsson an ina Ericsson. . GoDi

that by usmg the machine Iearqers TIMBL and Rip-—"" Issue-Based Dialogue Management in a Muli-
per we can improve the results in both tasks as com- pgmain, Multi-Language Dialogue System. In Ron-

pared to predicting recognition quality solely on the nie Smith, editorDemonstration Abstracts, ACL-02

basis of the acoustic confidence scores returned Ry ncow. 1992 Multi-Site Data Collection for a Spo-

the speech recognizer. ken Language Corpus. |8peech and Natural Lan-
Future work aims in two directions. First we guage WorkshapMorgan Kaufmann.

yvant. totryto furthe_r improve the_ rgsul_ts pr(':'s‘(':'m(':'cll—'rank Wessel, Ralf Schliter, Klaus Macherey, and Her-

in this paper by using better optimization methods man Ney. 2001. Confidence Measures for Large Vo-

for the machine learners (e.g. cross-validation op- cabulary Continous Speech RecognititBEE Trans-

timization to avoid over-fitting on the development actions on Speech and Audio Processif(3):288—
data). Further improvement of the results might also

5 Conclusions



