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Abstract

We demonstrate that an unlexicalized¢FG can
parse much more accurately than previously shown,
by making use of simple, linguistically motivated
state splits, which break down false independence
assumptions latent in a vanilla treebank grammar.
Indeed, its performance of 86.36% (LP/LR)Hs
better than that of earliexicalizedPcFG models,
and surprisingly close to the current state-of-the-
art. This result has potential uses beyond establish-
ing a strong lower bound on the maximum possi-
ble accuracy of unlexicalized models: an unlexical-
ized PCFGis much more compact, easier to repli-
cate, and easier to interpret than more complex lex-
ical models, and the parsing algorithms are simpler,
more widely understood, of lower asymptotic com-
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mance of arunlexicalizedPCcFGover the Penn tree-
bank could be improved enormously simply by an-
notating each node by its parent category. The Penn
treebank coveringCFGis a poor tool for parsing be-
cause the context-freedom assumptions it embodies
are far too strong, and weakening them in this way
makes the model much better. More recently, Gildea
(2001) discusses how taking thédexical probabil-
ities out of a good current lexicalizeelcFG parser
hurts performance hardly at all: by at most 0.5% for
test text from the same domain as the training data,
and not at all for test text from a different domain.
But it is precisely these bilexical dependencies that
backed the intuition that lexicalizett FGs should be

plexity, and easier to optimize. very successful, for example in Hindle and Rooth’s

demonstration fronepattachment. We take this as a
In the early 1990s, as probabilistic methods sweptflection of the fundamental sparseness of the lex-
NLP, parsing work revived the investigation of prob-ical dependency information available in the Penn
abilistic context-free grammars¢rFcs) (Booth and Treebank. As a speech person would say, one mil-
Thomson, 1973; Baker, 1979). However, early relion words of training data just isn’t enough. Even
sults on the utility ofPCFGs for parse disambigua- for topics central to the treebank&all Street Jour-
tion and language modeling were somewhat disapal text, such as stocks, many very plausible depen-
pointing. A conviction arose thaéxicalizedpCFGs  dencies occur only once, for examocks stabi-
(where head words annotate phrasal nodes) weieed while many others occur not at all, for exam-
the key tool for high performancecFc parsing. ple stocks skyrocketed
This approach was congruent with the great successThe best-performing lexicalizedcFcs have in-
of word n-gram models in speech recognition, anareasingly made use afubcategorizatioh of the
drew strength from a broader interest in lexicalize IThere are minor differences. but all the current best-known
. . i i , bu u -know
grammar_s’ as well as demonStratlons_ that Ie)flca_l _d?e'xicalized PCFGs employ bothmonolexicalstatistics, which
pendencies were a key tool for resolving ambiguiti€gescribe the phrasal categories of arguments and adjuatts t
such agpattachments (Ford et al., 1982; Hindle andhppear around a head lexical item, dniigxical statistics, or de-
in terrﬁs of érse disambiauation and'even lanquads 2 dependent a phrase headed by a certain other word.
. P . 9 . . guag 2This observation motivates various class- or similarity-
modeling was achieved by various IeXICaIIZBdFG_ based approaches to combating sparseness, and this remains
models (Magerman, 1995; Charniak, 1997; Collinggromising avenue of work, but success in this area has proven

1999; Charniak, 2000; Charniak, 2001)_ somewhat elusive, and, at any rate, current lexicalzedcs

. o simply use exact word matches if available, and intetpola
However, several results have brought into que%ith syntactic category-based estimates when they are not.

tion how large a role lexicalization plays in such  3y;this paper we use the tesabcategorizatioin the origi-
parsers. Johnson (1998) showed that the perfafal general sense of Chomsky (1965), for where a syntadtic ca



categories appearing in the Penn treebank. Charnieknstants. An unlexicalizedCFG parser is much
(2000) shows the value his parser gains from parergimpler to build and optimize, including both stan-
annotation of nodes, suggesting that this informadard code optimization techniques and the investiga-
tion is at least partly complementary to informatiortion of methods for search space pruning (Caraballo
derivable from lexicalization, and Collins (1999)and Charniak, 1998; Charniak et al., 1998).
uses a range of linguistically motivated and care- It is not our goal to argue against the use of lex-
fully hand-engineered subcategorizations to breakalized probabilities in high-performance probabi-
down wrong context-freedom assumptions of théstic parsing. It has been comprehensively demon-
naive Penn treebank coverimgFG such as differ- strated that lexical dependencies are useful in re-
entiating “basenps” from noun phrases with phrasal solving major classes of sentence ambiguities, and a
modifiers, and distinguishing sentences with emptgarser should make use of such information where
subjects from those where there is an overt subjepbssible. We focus here on using unlexicalized,
NP. While he gives incomplete experimental resultstructural context because we feel that this infor-
as to their efficacy, we can assume that these featun@stion has been underexploited and underappreci-
were incorporated because of beneficial effects aated. We see this investigation as only one part of
parsing that were complementary to lexicalization. the foundation for state-of-the-art parsing which em-
In this paper, we show that the parsing perforploySbOth lexical and structural conditioning.
mance that can be achieved by an unlexicalized .
pCFGis far higher than has previously been demonl ~ EXperimental Setup

strated, and is, indeed, much higher than community, tacjlitate comparison with previous work, we
wisdom has thought possible. We describe severghined our models on sections 2—21 of thgJ sec-

simple, linguistically motivated annotations whichjon of the Penn treebank. We used the first 20 files
do much to close the gap between a vanilzrG (393 sentences) of section 22 as a development set
and state-of-the-art Ie_xmgllzed models. Spemﬂcall;t,devse)u_ This set is small enough that there is no-
we construct anunlexicalizedPCFG which outper-  icaanle variance in individual results, but it allowed
forms thelexicalized pCres of Magerman (1995) (4nid search for good features via continually repars-
and Collins (1996) (though not more recent model§ng the devset in a partially manual hill-climb. All of
such as Charniak (1997) or Collins (1999)). section 23 was used as a test set for the final model.
One benefit of this result is a much-strengtheneftor each model, input trees were annotated or trans-
lower bound on the capacity of an unlexicalizedormed in some way, as in Johnson (1998). Given
PCFG To the extent that no such strong baseline hagset of transformed trees, we viewed the local trees
been provided, the community has tended to greatlys grammar rewrite rules in the standard way, and
overestimate the beneficial effect of lexicalization inysed (unsmoothed) maximum-likelihood estimates
probabilistic parsing, rather than looking criticallyfor rule probabilites To parse the grammar, we
at where lexicalized probabilities are bateededo  ysed a simple array-based Java implementation of
make the right decision aralailablein the training g generalizeccKy parser, which, for our final best
data. Secondly, this result affirms the value of linmodel, was able to exhaustively parse all sentences
guistic analysis for feature discovery. The result hajs section 23 in &8 of memory, taking approxi-

other uses and advantages: an unlexicalZesGis mately 3 sec for average length senterfces.
easier to interpret, reason about, and improve than——

the more complex lexicalized models. The grammar_°The tagging probabilities were smoothed to accommodate
unknown words. The quantity(tagjword) was estimated

repr.esentatlon is much more compac_t, n_o longer '&3 follows: words were split into one of several categories
quiring large structures that store lexicalized probawordclass based on capitalization, suffix, digit, and other
bilities. The parsing algorithms have lower asympcharacter features. For each of these categories, we teok th

totic Complexityl and have much smaller grammarmaximum-likelihood estimate d?(tag|jwordclasg. This dis-
tribution was used as a prior against which observed tagging

if any, were taken, givingP(taglword) = [c(tag, word) +
egory is divided into several subcategories, for examplaldi « P(taglwordclas9]/[c(word)+«]. This was then inverted to
ing verb phrases into finite and non-finite verb phrasesgerathgive P(word|tag). The quality of this tagging model impacts
than in the modern restricted usage where the term refeys ordill numbers; for example the raw treebank grammar’s devset F
to the syntactic argument frames of predicators. is 72.62 with it and 72.09 without it.

40(n3) vs. O(n®) for a naive implementation, or v@(n%) 6The parser is available for download as open source at:
if using the clever approach of Eisner and Satta (1999). http://np.stanford.edu/downloads/lex-parser.shtml



VP

| Horizontal Markov Order
<VP:[VBZ]...PP> Vertical Order h=0 h=1 h<2 h=2 h=c

o v=1 Noannotation 71.27 725 7346 7296 72.62
<VP:[VBZ]...NP> PP (854) (3119)  (3863)  (6207) (9657)
—— v<2 Sel Parents | 7475 77.42 77.77 77.50 76.91
<VP:[VBZ]> NP (2285)  (6564)  (7619) (11398)  (14247)
| v=2 AllParents 7468 7742 7781 77.50 76.81

VBZ (2984)  (7312)  (8367) (12132)  (14666)

=t
Figure 1: Thev=1, h=1 markovization of/P — VBZ NP PP. v=3 Sel GParents 34%53? (17283'7%3 (173%'207? (17;2;?53 (270?'2“‘)1
v=3 AllGParents | 76.74 79.18 79.74 79.07 78.712

(7797) (15740) (16994) (22886)  (22002)

2 \Vertical and Horizontal Markovization _ o :
Figure 2: Markovizations: fand grammar size.

The traditional starting point for unlexicalized pars-

ing is the rawn-ary treebank grammar read from ;4 a1yays matters). It is a historical accident that
training trees (after removing functional tags an

. . o . the default notion of a treebamcFGgrammar takes
null elements). This basic grammar is imperfect in

. v = 1 (only the current node matters vertically) and
two well-known ways. First, the category symbolsn — oo (rule right hand sides do not decompose at

are too coarse to adequately render the expansmgm_ On this view, it is unsurprising that increasing

mdepende_nt of the conte_xts. For example, SUbJezC)tand decreasing have historically helped.
NP expansions are very different from objeat ex- As an example, consider the case wf= 1
pansions: a subjeatr is 8.7 times more likely than h— 1 If we sta’rt with the ruleve — VB; NP’

an objectNP to expand as just a pronoun. Havmgpp PR it will be broken into several stages, each a

?ﬁ_paratg ts_ymlsolz for Sutbje%t ang Objﬂgst al!ows binary or unary rule, which conceptually represent
IS variation 1o be captured and used 10 IMprovg yo o4 oytward generation of the right hand size, as

patrse slcorlntg. thte way of tcaptuntngt;_ this kind o hown in figure 1. The bottom layer will be a unary
external context 1S 1o usgarent annotationas pre- o, he pead declaring the goalp: [vBz]) —

sented in Johnson (1998). For examples with s vBz. The square brackets indicate that th&z is

pare”?fh(”ke S“bjtethl)( W”'b.be tmarﬁf'gfs; while 16 head, while the angle brackess indicates that
NPS with VP paren S_(' € objec S) wi &P VP. the symbol(x) is an intermediate symbol (equiv-
The second basic deficiency is that many rulgengy an active or incomplete state). The next

types have been seen only once (and therefore hauee \, will generate the first rightward sibling of
their probabilities overestimated), and many ruleg,s head child:(vp: [VBZ]...NP) — (VP: [VBZ])
which occur in test sentences will never have bee, Next thePl—i’iS g'enerat'e.d.(vp: [vBZ]. ."PP) N

seen in training (and therefore have their probabiIiZVP: [vBz]...NP) PP. We would then branch off left

ties underestimated — see Collins (1999) for analysjjings if there were any/.Finally, we have another
sis). Note that in parsing with the unsplit grammarunary to finish theve. Note that while it is con-

not having seen a rule doesn’t mean one gets a paige,iant 1o think of this as a head-outward process,

failure, but rather a possibly very weird parse (Chafgaqe are justcrarewrites, and so the actual scores

niak, 1996). One successful method of combatingy,-hed to each rule will correspond to a downward
sparsity is tanarkovizehe rules (Collins, 1999). In generation order.

particular, we follow that work in markovizing out Figure 2 presents a grid of horizontal and verti-
. i "€al markovizations of the grammar. The raw tree-
lexicalized, because this seems the best way to CaPank grammar corresponds to= 1, h = oo (the

ture the traditional linguistic insight that phrases arﬁpper right corner), while the parent annotation in

organized around a head (Radford, 1988). (Johnson, 1998) correspondsute= 2, h = oo, and
Both parent annotation (adding context) &S he second-order model in Collins (1999), is broadly
markovization (removing it) can be seen as two iny smoothed version of = 2.h = 2. In addi-
stances of the same idea. In parsing, every node Ng§, 1o exactnth-order models, we tried variable-
a vertical history, including the node itself, parent
grandparent, and so on. A reasonable assumption is’In our system, the last few right children carry over as pre-

: ceding context for the left children, distinct from commaag
that only the past vertical ancestors matter to thetice. We found this wrapped horizon to be beneficial, and it

current expansion. Similarly, only the previobis 5o unifies the infinite order model with the unmarkovized ra
horizontal ancestors matter (we assume that the headks.




ROOT

Cumulative Indiv. N
S"ROOT

Annotation Size| K AF || AF e
Baseline( <2,h<2) | 7619| 77.77| — - s s :
UNARY-INTERNAL 8065| 78.32| 0.55 | 0.55 NN VBD NPVP , s'VP .
UNARY-DT 8066 | 78.48| 0.71 | 0.17 Revenuewss QP | ves

UNARY-RB 8069 | 78.86| 1.09 | 0.43 T —

TAG-PA 8520| 80.62| 2.85 | 2.52 pepep e e
SPLIT-IN 8541 1| 81.19| 3.42 2.12 $ 4449 million including NP'NP CONJP NP°NP
SPLIT-AUX 9034 | 81.66| 3.89 | 0.57 S R ms N op
SPLIT-CC 9190 | 81.69| 3.92 | 0.12 I o T
SPLIT—% 9255 8181 404 015 net interest downsllghtlyfrom? C‘D C‘D
TMP-NP 9594 | 82.25| 4.48 | 1.07 $ 450.7 million
GAPPED-S 9741 82.28| 451 | 0.17 Figure 4: An error which can be resolved with tb®&ARY-
POSSNP 9820 83.06| 5.29 || 0.28 INTERNAL annotation (incorrect baseline parse shown).
SPLIT-VP 10499| 85.72| 7.95 | 1.36

BASE-NP 11660| 86.04| 8.27 | 0.73

DOMINATES-V 14097 86.91| 9.14 || 1.42 grammar. Although it does not necessarily jump out
RIGHT-REC-NP 15276| 87.04| 9.27 | 1.94

of the grid at first glance, this point represents the

. . _ best compromise between a compact grammar and
Figure 3: Size and devset performance of the cumulatively an

notated models, starting with the markovized baseline. ThgserI markov histories.

right two columns show the change i ffom the baseline for

each annotation introduced, both cumulatively and forsich 3 External vs. Internal Annotation
gle annotation applied to the baseline in isolation.

The two major previous annotation strategies, par-

ent annotation and head lexicalization, can be seen
history models similar in intent to those describeds instances of external and internal annotation, re-
in Ron et al. (1994). For variable horizontal his-spectively. Parent annotation lets us indicate an
tories, we did not split intermediate states below l{mportant feature of the external environment of a
occurrences of a symbol. For example, if the symbaiode which influences the internal expansion of that
(vP: [vBZ]...PP PR were too rare, we would col- node. On the other hand, lexicalization is a (radi-
lapse it to(vP: [vBZ]...PP). For vertical histories, cal) method of marking a distinctive aspect of the
we used a cutoff which included both frequency andtherwise hidden internal contents of a node which
mutual information between the history and the exinfluence the external distribution. Both kinds of an-
pansions (this was not appropriate for the horizontalotation can be useful. To identify split states, we
case becausel is unreliable at such low counts).  add suffixes of the formx to mark internal content

Figure 2 shows parsing accuracies as well as thfeatures, andx to mark external features.
number of symbols in each markovization. These To illustrate the difference, consider unary pro-
symbol counts include all the intermediate stateguctions. In the raw grammar, there are many unar-
which represent partially completed constituentdes, and once any major category is constructed over
The general trend is that, in the absence of further span, most others become constructible as well us-
annotation, more vertical annotation is better — eveifg unary chains (see Klein and Manning (2001) for
exhaustive grandparent annotation. This is not trugiscussion). Such chains are rare in real treebank
for horizontal markovization, where the variabletrees: unary rewrites only appear in very specific
order second-order model was superior. The besbntexts, for example complements of verbs where
entry,v = 3, h < 2, has an Fof 79.74, already the s has an empty, controlled subject. Figure 4
a substantial improvement over the baseline. shows an erroneous output of the parser, using the
In the remaining sections, we discuss other arbaseline markovized grammar. Intuitively, there are

notations which increasingly split the symbol spaceseveral reasons this parse should be ruled out, but
Since we expressly do not smooth the grammar, none is that the lowes slot, which is intended pri-
all splits are guaranteed to be beneficial, and not atharily for s complements of communication verbs,
sets of useful splits are guaranteed to co-exist welk not a unary rewrite position (such complements
In particular, whilev = 3, h < 2 markovization is usually have subjects). It would therefore be natural
good on its own, it has a large number of states artd annotate the trees so as to confine unary produc-
does not tolerate further splitting well. Thereforetions to the contexts in which they are actually ap-
we base all further exploration on the< 2, h < 2  propriate. We tried two annotations. FirstNARY-



INTERNAL marks (with a ) any nonterminal node VRS VRS

which has only one child. In isolation, this resulted w0 v TOVP VPP
in an absolute gain of 0.55% (see figure 3). The Ve Peup o veve  SEARVP
same sentence, parsed using only the baseline and | — - S nstR SSear
UNARY-INTERNAL, is parsed correctly, because the LTS | T
. . . . A i NN NNS i NP°S VP'S
VP rewrite in the incorrect parse ends with giivp- ' | | ' | |
U with very low probabilityB advertising works NN'NP  VBZ'VP
) | |
Alternately, UNARY-EXTERNAL, marked nodes advertising works
which had no siblings withy. It was similar to @) (b)

_ i i 0
UNARY “\_ITERNAL in solo be_neflt (O'O]_'A) worse), Figure 5: An error resolved with theag-pPA annotation (of the
but provided far less marginal benefit on top Ofy tag): (a) the incorrect baseline parse and (b) the comrst
other later features (none at all on top wfiARY-  PA parse.SPLIT-IN also resolves this error.
INTERNAL for our top models), and was discarded.

:i)onnev;:?cgtredusé?ﬁle r\:\é rxésefxﬁgga;tliﬂzryrgtrg?ggbmewhat regularly occurs in a non-canonical posi-
y ’ ’ P |tion, its distribution is usually distinct. For example,

nal level, where internal annotation was meaningt-he most common adverbs directly undervp are

less. One distributionally salient tag conflation in ;
the Penn treebank is the identification of demonstr 8IS0 (1599) andnow (544). UndervP, they aren't

tives that, thosg and regular determinershg, 3. 3779) andhot (922). Undemp, only (215) andust

Splitting DT tags based on whether they were onl iﬁ)z/)’toagg gg(ygn'TAG_PA brought f up substan-
children UNARY-DT) captured this distinction. The ' ) '

same external unary annotation was even more € In addition to the adverb case, the Penn tag set
. ary . éonflates various grammatical distinctions that are
fective when applied to adverbgNARY-RB), dis-

tinguishing, for exampleas wellfrom alsg). Be- commonly made i_n traditional and generative gram-
yond thesé cases, unary tag marking Wa§ detrimemar’ and frqm which a parser could hope to get use-
tal. The R after L’JNARY_INTERNAL UNARY-DT Pul m_formatlc_)n. Fo_r example, sut_)ordlnatlng con-
anaUNARY—RB was 78.86% ' ’  junctions (/vhl_le, as, |1)_, complementizerdlgat, for),

' ' and prepositionsof, in, from) all get the tagiN.
Many of these distinctions are captured G-
PA (subordinating conjunctions occur underand
The idea that part-of-speech tags are not fine-graingdepositions underp), but are not (both subor-
enough to abstract away from specific-word bedinating conjunctions and complementizers appear
haviour is a cornerstone of lexicalization. Theunder SBAR). Also, there are exclusively noun-
UNARY-DT annotation, for example, showed that thenodifying prepositions df), predominantly verb-
determiners which occur alone are usefully distinmodifying ones @s), and so on. The annotation
guished from those which occur with other nomi-SPLIT-IN does a linguistically motivated 6-way split
nal material. This marks theT nodes with a single of theIN tag, and brought the total to 81.19%.
bit about their immediate external context: whether Figure 5 shows an example error in the baseline
there are sisters. Given the success of parent annehich is equally well fixed by eithemAG-PA or
tation for nonterminals, it makes sense to parent asPLIT-IN. In this case, the more common nominal
notate tags, as wellrAG-PA). In fact, as figure 3 use ofworksis preferred unless thel tag is anno-
shows, exhaustively marking all preterminals wittated to allowf to prefers complements.
their parent category was the most effective single We also got value from three other annotations
annotation we tried. Why should this be useful®hich subcategorized tags for specific lexemes.
Most tags have a canonical category. For exampl&jrst we split off auxiliary verbs with thespLIT-
NNS tags occur undexpP nodes (only 234 of 70855 Aux annotation, which appendsE to all forms
do not, mostly mistakes). However, when a tagf be and HAVE to all forms ofhave!® More mi-

R norly, sSPLIT-cC marked conjunction tags to indicate
Note that when we show such trees, we generally only
show one annotation on top of the baseline at a time. More- 10Thjs is an extended uniform version of the partial auxil-
over, we do not explicitly show the binarization implicit By iary annotation of Charniak (1997), wherein all auxiliarire
horizontal markovization. marked asaux and a & is added to gerund auxiliaries and
9These two are not equivalent even given infinite data. gerundvps.

4 Tag Splitting



whether or not they were the stringBHut or &, Vs vP's

each of which have distinctly different distributions T@W\ TQW\
from other conjunctions. Finally, we gave the per-« v&  wve POVe NVP NPTMPVE
cent sign (%) its own tag, in line with the dollar sign ~ wear vewe - Peve: sppcar NPNP PP 33 NN'TMP
(%) already having its own. Together these three an- CD NNSIN - NPPP B NNS I KPP st g
notations brought the;Ro 81.81%. tree tmes on NP 22, NN thee timesan NP

CNN last night CNN
5 Whatis an Unlexicalized Grammar? (a) (b)

Around this point, we must address exactly what weigure 6: An error resolved with themp-NP annotation: (a)
mean by arunlexicalizedpcrG To the extent that the incorrect baseline parse and (b) the correat-NpP parse.
we go about subcategorizirgps categories, many

of them might come to represent a single word. Ongyely means that the subcategories that we break off
might thus feel that the approach of this paper is st themselves be very frequent in the language.
walk down a slippery slope, and that we are merely, guch a framework, if we try to annotate cate-
arguing degrees. However, we believe that there isyries with any detailed lexical information, many
fur)dgmental_qualltatlve distinction, grounded in '_'n‘sentences either entirely fail to parse, or have only
guistic practice, between what we see as permitted remely weird parses. The resulting battle against
in an unlexicalized>CFG as against what one finds gpasity means that we can only afford to make a few
and hopes to exploit in lexicalizerlcFes. The di- gigtinctions which have major distributional impact.
vision rests on the traditional distinction betweengyen with the individual-lexeme annotations in this
function words(or closed-class words) ar@ntent  gaction, the grammar still has only 9255 states com-
words (or open class or lexical words). It is Sta”'pared to the 7619 of the baseline model.
dard practice in linguistics, dating back decades,
to annotate phrasal nodes with important functiong  Annotations Already in the Treebank
word distinctions, for example to have @P{for] _ _ _ _
or aPHto], whereas content words are not part of\t this point, one might wonder as to the wisdom
grammatical structure, and one would not have sp&f stripping off all treebank functional tags, only
cial rules or constraints for anp[stock$, for exam- {0 heuristically add other such markings back in to
ple. We follow this approach in our model: varioustheé grammar. By and large, the treebank out-of-the
closed classes are subcategorized to better represB@¢kage tags, such as-Loc or ADVP-TMP, have
important distinctions, and important features compegative utility. Recall that the raw treebank gram-
monly expressed by function words are annotatedar, with no annotation or markowzatlo_n, had an F
onto phrasal nodes (such as whetherrais finite, Of 72.62% on our development set. With the func-
or a participle, or an infinitive clause). However, ndional annotation left in, this drops to 71.49%. The
use is made of lexical class words, to provide eithd? = 2.v =< 1 markovization baseline of 77.77%
monolexical or bilexical probabilities: dropped even further, all the way to 72.87%, when
At any rate, we have kept ourselves honest by ef)€se annotations were included. _
timating our models exclusively by maximum like- Nonetheless, some distinctions present in the raw
linood estimation over our subcategorized grami€ebank trees were valuable. For examplenan
mar, without any form of interpolation or shrink- With ans parent could be either a temporat or a
age to unsubcategorized categories (although we ggPject. For the annotatiormp-NP, we retained the

markovize rules, as explained above). This effec@figinal -TMP tags onNPs, and, furthermore, propa-
gated the tag down to the tag of the head ofnire
it should be noted that we started with four tags in the PenThis is illustrated in figure 6, which also shows an

treebank tagset that rewrite as a single waedl: (therg), wp$ example of its utility, clarifying thaCNN last night

(whose, # (the pound sign), ando), and some others such . . e
aswpr, POS and some of the punctuation tags, which rewritdS not a plausible compound and facilitating the oth-

as barely more. To the extent that we subcategorize tage, the€rwise unusual high attachment of the smaiier
will be more such cases, but many of them already exist irotherpmp-NP brought the cumulative /o 82.25%. Note

tag sets. For instanc_e, many tag sets, such as the Brown at'i‘fat this technique of pushing the functional tags
CLAWS (c5) tagsets give a separate sets of tags to each form

the verbal auxiliariebe, do, andhave most of which rewrite as down to preterminals might be useful more gener-
only a single word (and any corresponding contractions). ally; for example, locativeers expand roughly the



Root oo 8 Distance

S"ROOT S"ROOT
s v T s weever Error analysis at this point suggested that many re-
Didrver weve b o ver e 1o maining errors were attachment level and conjunc-
T Y tion scope. While these kinds of errors are undoubt-

I - edly profitable targets for lexical preference, most

panic NN panic buying . A
buting attachment mistakes were overly high attachments,
(a) (b) indicating that the overall right-branching tendency
of English was not being captured. Indeed, this ten-
Figure 7: An error resolved with thepLIT-vP annotation: (8) dency is a difficult trend to capture in RCFG be-
the incorrect baseline parse and (b) the corsgatiT-vP parse. cause often the high and low attachments involve the

very same rules. Even if not, attachment height is

same way as all otherrs (usually asn NP), but Not modeled by &@CFG unless it is somehow ex-
they do tend to have different prepositions belaw  Plicitly encoded into category labels. More com-
A second kind of information in the original Plex parsing models have indirectly overcome this
trees is the presence of empty elements. Followingy modeling distance (rather than height).
Collins (1999), the annotatiosAPPED-S marks s Linear distance is difficult to encode inFRCFG
nodes which have an empty subject (i.e., raising and marking nodes with the size of their yields mas-
control constructions). This brought B 82.28%.  sively multiplies the state spa¢. Therefore, we
wish to find indirect indicators that distinguish high
7 Head Annotation attachments from low ones. In the case of s

. ) following a NP, with the question of whether the
The notion that the head word of a constituent Calacondrp is a second modifier of the leftmosie

affect its behavior is a useful one. However, oftere)r should attach lower. inside the fisp the im-
the head tag is as good (g better) an indicator of NOWq ot distinction is usually that the lower site is a
a constituent will behave. We found several head (o recursive basep. Collins (1999) captures this
annotations to be particularly effective. First, posyqtion by introducing the notion of a base, in

sessiveNPs have a very different distribution than,, pi-p anynp which dominates only preterminals is

otherNps —in particularNP — NP rules are only 4 ed with a 8. Further, if anne-8 does not have

used in the treebank when the leftmost child is pos; hon-basaup parent, it is given one with a unary

sessive (as opposed to other imaginable uses like fof, 4 ction. This was helpful, but substantially less
New York lawyerswhich is left flat). To address this, gfactive than marking basers withoutintroducing

POSSNP marked allopossessivleps. This brought he nary, whose presence actually erased a useful
the total f to 83.06%. Second, theP symbol iS  jnternal indicator — baseiPs are more frequent in

very overloaded in the Penn treebank, most sever bject position than object position, for example. In

in that there is no distinction between finite and in‘lsolation, the Collins method actually hurt the base-

finitival vps. An example of the damage this conyine (apsolute cost to fof 0.37%), while skipping
flation can do is given in figure 7, where one needg,q nary insertion added an absolute 0.73% to the
to capture the fact that present-tense verbs do nLsejine, and brought the cumulativets 86.04%.

generally take bare infinitiveP complements. To In the case of attachment of B to an NP ei-
allow the finite/non-finite distinction, and other verbther above or inside a relative clause, the high

ty_ﬁ)ﬁ t(rj]ls_tlr;]ctlogf,spurvp annl‘l’ff‘t_fd falk/P r;odes_ is distinct from the low one in that the already mod-
wi €ir néad tag, merging allfinite 1orms 10 a SiN5ge one contains a verb (and the low one may be
gle tagvBF. In particular, this also accomplished

Charniak's geruncke marking. This was extremely a basenp as well). This is a partial explanation of
>3 e the utility of verbal distance in Collins (1999). To
useful, bringing the cumulative;fo 85.72%, 2.66% y ( )
absolute Improvement (more than its solo improve- 13the inability to encode distance naturally in a naherG
ment over the baseline). is somewhat ironic. In the heart of argFGparser, the funda-
- mental table entry or chart item is a label over a span, for ex-
12This is part of the explanation of why (Charniak, 2000)ample annp from position O to position 5. The concrete use of
finds that early generation of head tags as in (Collins, 1999 grammar rule is to take two adjacent span-marked labels and
is so beneficial. The rest of the benefit is presumably in theombine them (for exampler[0,5] andvP[5,12] into S[0,12]).
availability of the tags for smoothing purposes. Yet, only the labels are used to score the combination.



Magerman (1995) 84.9 84.6 1.26 56.6

Collins (1996) | 86.3 85.8 114 999 This paper is based on work supported in part by the
this paper 869 857 86.3 309|110 60.3 : ) ;

Charniak (1997) | 87.4 875 100 62.1 National Science Foundation under Grant No. IIS-
Collins (1999) 88.7 88.6 0.90 67.1 0085896, and in part by an IBM Faculty Partnership

Award to the second author.

Length< 100 LP LR FR Exact| CB 0CB
this paper 86.3 85.1 85.7 28.8| 131 57.2
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