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Abstract 

An investment of effort over the last two 
years has begun to produce a wealth of 
data concerning computational psycholin-
guistic models of syntax acquisition. The 
data is generated by running simulations 
on a recently completed database of word 
order patterns from over 3,000 abstract 
languages. This article presents the design 
of the database which contains sentence 
patterns, grammars and derivations that 
can be used to test acquisition models from 
widely divergent paradigms. The domain 
is generated from grammars that are lin-
guistically motivated by current syntactic 
theory and the sentence patterns have been 
validated as psychologically/developmen-
tally plausible by checking their frequency 
of occurrence in corpora of child-directed 
speech. A small case-study simulation is 
also presented. 

1 Introduction 

The exact process by which a child acquires the 
grammar of his or her native language is one of the 
most beguiling open problems of cognitive 
science. There has been recent interest in computer 
simulation of the acquisition process and the 
interrelationship between such models and linguis-
tic and psycholinguistic theory. The hope is that 
through computational study, certain bounds can 
be established which may be brought to bear on 
pivotal issues in developmental psycholinguistics.   

Simulation research is a significant departure 
from standard learnability models that provide 
results through formal proof (e.g., Bertolo, 2001; 

Gold, 1967; Jain et al., 1999; Niyogi, 1998; Niyogi 
& Berwick, 1996; Pinker, 1979; Wexler & Culi-
cover, 1980, among many others). Although 
research in learnability theory is valuable and 
ongoing, there are several disadvantages to formal 
modeling of language acquisition:  
• Certain proofs may involve impractically many 

steps for large language domains (e.g. those 
involving Markov methods). 

• Certain paradigms are too complex to readily 
lend themselves to deductive study (e.g. con-
nectionist models).1 

• Simulations provide data on intermediate stages 
whereas formal proofs typically prove whether 
a domain is (or more often is not) learnable a 
priori to specific trials. 

• Proofs generally require simplifying assump-
tions which are often distant from natural lan-
guage.  
However, simulation studies are not without 

disadvantages and limitations. Most notable 
perhaps, is that out of practicality, simulations are 
typically carried out on small, severely circum-
scribed domains – usually just large enough to 
allow the researcher to hone in on how a particular 
model (e.g. a connectionist network or a principles 
& parameters learner) handles a few grammatical 
features (e.g. long-distance agreement and/or 
topicalization) often, though not always, in a single 
language. So although there have been many 
successful studies that demonstrate how one 
algorithm or another is able to acquire some aspect 
of grammatical structure, there is little doubt that 
the question of what mechanism children actually 
employ during the acquisition process is still open. 

This paper reports the development of a large, 
multilingual database of sentence patterns, gram-
                                                           
1 Although see Niyogi, 1998 for some insight. 



mars and derivations that may be used to test 
computational models of syntax acquisition from 
widely divergent paradigms. The domain is 
generated from grammars that are linguistically 
motivated by current syntactic theory and the 
sentence patterns have been validated as psycho-
logically/developmentally plausible by checking 
their frequency of occurrence in corpora of child-
directed speech. We report here the structure of the 
domain, its interface and a case-study that demon-
strates how the domain has been used to test the 
feasibility of several different acquisition strate-
gies.  

The domain is currently publicly available on 
the web via http://146.95.2.133 and it is our hope 
that it will prove to be a valuable resource for 
investigators interested in computational models of 
natural language acquisition. 

2 The Language Domain Database 

The focus of the language domain database, 
(hereafter LDD), is to make readily available the 
different word order patterns that children are 
typically exposed to, together with all possible 
syntactic derivations of each pattern. The patterns 
and their derivations are generated from a large 
battery of grammars that incorporate many features 
from the domain of natural language. 

At this point the multilingual language domain 
contains sentence patterns and their derivations 
generated from 3,072 abstract grammars. The 
patterns encode sentences in terms of tokens 
denoting the grammatical roles of words and 
complex phrases, e.g., subject (S), direct object 
(O1), indirect object (O2), main verb (V), auxiliary 
verb (Aux), adverb (Adv), preposition (P), etc. An 
example pattern is S Aux V O1 which corresponds 
to the English sentence: The little girl can make a 
paper airplane. There are also tokens for topic and 
question markers for use when a grammar specifies 
overt topicalization or question marking. 

Declarative sentences, imperative sentences, 
negations and questions are represented within the 
LDD, as is prepositional movement/stranding 
(pied-piping), null subjects, null topics, topicaliza-
tion and several types of movement. 

Although more work needs to be done, a first 
round study of actual child-directed sentences from 
the CHILDES corpus (MacWhinney, 1995) 
indicates that our patterns capture many sentential 

word orders that children typically encounter in the 
period from 1-1/2 to 2-1/2 years; the period 
generally accepted by psycholinguists to be when 
children establish the correct word order of their 
native language. For example, although the LDD is 
currently limited to degree-0 (i.e. no embedding) 
and does not contain DP-internal structure, after 
examining by hand, several thousand sentences 
from corpora in the CHILDES database in five 
languages (English, German, Italian, Japanese and 
Russian), we found that approximately 85% are 
degree-0 and an approximate 10 out of 11 have no 
internal DP structure. 

Adopting the principles and parameters (P&P) 
hypothesis (Chomsky, 1981) as the underlying 
framework, we implemented an application that 
generated patterns and derivations given the 
following points of variation between languages: 

 
1. Affix Hopping  2. Comp Initial/Final 
3. I to C Movement  4. Null Subject 
5. Null Topic  6. Obligatory Topic 
7. Object Final/Initial  8. Pied Piping 
9. Question Inversion   10. Subject Initial/Final 
11. Topic Marking   12. V to I Movement 
13. Obligatory Wh movement 
 

The patterns have fully specified X-bar struc-
ture, and movement is implemented as HPSG local 
dependencies. Pattern production is generated top-
down via rules applied at each subtree level. 
Subtree levels include: CP, C', IP, I', NegP, Neg', 
VP, V' and PP. After the rules are applied, the 
subtrees are fully specified in terms of node 
categories, syntactic feature values and constituent 
order. The subtrees are then combined by a simple 
unification process and syntactic features are 
percolated down. In particular, movement chains 
are represented as traditional “slash” features 
which are passed (locally) from parent to daughter; 
when unification is complete, there is a trace at the 
bottom of each slash-feature path. Other features 
include +/-NULL for non-audible tokens (e.g. 
S[+NULL] represents a null subject pro), +TOPIC 
to represent a topicalized token, +WH to represent 
“who”, “what”, etc. (or “qui”, “que” if one pre-
fers), +/-FIN to mark if a verb is tensed or not and 
the illocutionary (ILLOC) features Q, DEC, IMP 
for questions, declaratives and imperatives respec-
tively.  



Although further detail is beyond the scope of 
this paper, those interested may refer to Fodor et 
al. (2003) which resides on the LDD website. 

It is important to note that the domain is suit-
able for many paradigms beyond the P&P frame-
work. For example the context-free rules (with 
local dependencies) could be easily extracted and 
used to test probabilistic CFG learning in a 
multilingual domain. Likewise the patterns, 
without their derivations, could be used as input to 
statistical/connectionist models which eschew 
traditional (generative) structure altogether and 
search for regularity in the left-to-right strings of 
tokens that makeup the learner's input stream. Or, 
the patterns could help bootstrap the creation of a 
domain that might be used to test particular types 
of lexical learning by using the patterns as tem-
plates where tokens may be instantiated with actual 
words from a lexicon of interest to the investigator. 
The point is that although a particular grammar 
formalism was used to generate the patterns, the 
patterns are valid independently of the formalism 
that was in play during generation.2  

To be sure, similar domains have been con-
structed. The relationship between the LDD and 
other artificial domains is summarized in Table 1.   

In designing the LDD, we chose to include 
syntactic phenomena which: 

i) occur in a relatively high proportion of the 
known natural languages; 

                                                           
2 If this is the case, one might ask: Why bother with a 
grammar formalism at all; why not use actual child-directed 
speech as input instead of artificially generated patterns? 
Although this approach has proved workable for several types 
of non-generative acquisition models, a generative (or hybrid) 
learner is faced with the task of selecting the rules or 
parameter values that generate the linguistic environment 
being encountered by the learner. In order to simulate this, 
there must be some grammatical structure incorporated into 
the experimental design that serves as the target the learner 
must acquire. Constructing a viable grammar and a parser with 
coverage over a multilingual domain of real child-directed 
speech is a daunting proposition. Even building a parser to 
parse a single language of child-directed speech turns out to be 
extremely difficult. See, for example, Sagae, Lavie, & 
MacWhinney (2001), which discusses an impressive number 
of practical difficulties encountered while attempting to build 
a parser that could cope with the EVE corpus; one the cleanest 
transcriptions in the CHILDES database. By abstracting away 
from actual child-directed speech, we were able to build a 
pattern generator and include the pattern derivations in the 
database for retrieval during simulation runs, effectively 
sidestepping the need to build an online multilingual parser.  

ii) are frequently exemplified in speech di-
rected to 2-year-olds; 

iii) pose potential learning problems (e.g. cross-
language ambiguity) for which theoretical 
solutions are needed; 

iv) have been a focus of linguistic and/or psy-
cholinguistic research; 

v) have a syntactic analysis that is broadly 
agreed on. 

As a result the following have been included:  
• By criteria (i) and (ii): negation, non-

declarative sentences (questions, impera-
tives).  

• By criterion (iv): null subject parameter 
(Hyams 1986 and since).  

• By criterion (iv): affix-hopping (though not 
widespread in natural languages). 

• By criterion (v): no scrambling yet. 
There are several phenomena that the LDD 

does not yet include: 
• No verb subcategorization. 
• No interface with LF (cf. Briscoe 2000; 

Villavicencio 2000).  
• No discourse contexts to license sentence 

fragments (e.g., DP or PP fragments). 
• No XP-internal structure yet (except PP = P 

+ O3, with piping or stranding).  
• No Linear Correspondence Axiom (Kayne 

1994). 
• No feature checking as implementation of 

movement parameters (Chomsky 1995).  
 

Table 1: A history of abstract domains for word-
order acquisition modeling. 

 

# 
parame
ters 

# 
lan-
guages 

Tree 
struc-
ture? 

Language 
properties 

Gibson & 
Wexler 
(1994) 

3 8 Not fully 
specified Word order, V2 

Bertolo et. 
al (1997b) 7 64 

distinct Yes G&W + V-raising to 
Agr, T; deg-2 

Kohl (1999) 
based on 
Bertolo 

12 2,304 Partial 
Bertolo et al. 
(1997b) + 
scrambling 

Sakas & 
Nishimoto 
(2002) 

4 16 Yes G&W + null 
subject/topic 

LDD 13 3,072 Yes 
S&N + wh-movt + 
imperatives +aux 
inversion,  etc. 



The LDD on the web: The two primary purposes 
of the web-interface are to allow the user to 
interactively peruse the patterns and the derivations 
that the LDD contains and to download raw data 
for the user to work with locally. 

Users are asked to register before using the 
LDD online. The user ID is typically an email 
address, although no validity checking is carried 
out. The benefit of entering a valid email address is 
simply to have the ability to recover a forgotten 
password, otherwise a user can have full access 
anonymously.  

The interface has three primary areas: Gram-
mar Selection, Sentence Selection and Data 
Download. First a user has to specify, on the 
Grammar Selection page, which settings of the 13 
parameters are of interest and save those settings as 
an available grammar. A user may specify multiple 
grammars. Then in the sentence selection page a 
user may peruse sentences and their derivations. 
On this page a user may annotate the patterns and 
derivations however he or she wishes. All grammar 
settings and annotations are saved and available 
the next time the user logs on. Finally on the Data 
Download page, users may download data so that 
they can use the patterns and derivations offline.  

The derivations are stored as bracketed strings 
representing tree structure. These are practically 
indecipherable by human users. E.g.: 
 
(CP[ILLOC Q][+FIN][+WH] "Adv[+TOPIC]" (Cbar[ILLOC 
Q] [+FIN][+WH][SLASH Adv](C[ILLOC Q][+FIN] "KA" ) 
(IP[ILLOC Q][+FIN][+WH][SLASH Adv]"S" (Ibar[ILLOC 
Q][+FIN][+WH][SLASH Adv](I[ILLOC 
Q][+FIN]"Aux[+FIN]")(NegP[+WH] [SLASH 
Adv](NegBar[+WH][SLASH Adv](Neg "NOT") 
(VP[+WH][SLASH Adv](Vbar[+WH][SLASH 
Adv](V"Verb")"O1" "O2" (PP[+WH] "P" "O3[+WH]" 
)"Adv[+NULL][SLASH Adv]")))))))) 

 
To be readable, the derivations are displayed 

graphically as tree structures. Towards this end we 
have utilized a set of publicly available LaTex 
macros: QTree (Siskind & Dimitriadis, [online]). A 
server-side script parses the bracketed structures 
into the proper QTree/LaTex format from which a 
pdf file is generated and subsequently sent to the 
user's client application.  

Even with the graphical display, a simple sen-
tence-by-sentence presentation is untenable given 
the large amount of linguistic data contained in the 
database. The Sentence Selection area allows users 
to access the data filtered by sentence type and/or 

by grammar features (e.g. all sentences that have 
obligatory-wh movement and contain a preposi-
tional phrase), as well as by the user’s defined 
grammar(s) (all sentences that are "Italian-like").  

On the Data Download page, users may filter 
sentences as on the Sentence Selection page and 
download sentences in a tab-delimited format. The 
entire LDD may also be downloaded – approxi-
mately 17 MB compressed, 600 MB as a raw ascii 
file. 

3 A Case Study: Evaluating the efficiency 
of parameter-setting acquisition models. 

We have recently run experiments of seven 
parameter-setting (P&P) models of acquisition on 
the domain. What follows is a brief discussion of 
the algorithms and the results of the experiments. 
We note in particular where results stemming from 
work with the LDD lead to conclusions that differ 
from those previously reported. We stress that this 
is not intended as a comprehensive study of 
parameter-setting algorithms or acquisition 
algorithms in general. There is a large number of 
models that are omitted; some of which are targets 
of current investigation. Rather, we present the 
study as an example of how the LDD could be 
effectively utilized.  

In the discussion that follows we will use the 
terms “pattern”, “sentence” and “input” inter-
changeably to mean a left-to-right string of tokens 
drawn from the LDD without its derivation. 

3.1 A Measure of Feasibility 

As a simple example of a learning strategy and 
of our simulation approach, consider a domain of 4 
binary parameters and a memoryless learner 3 
which blindly guesses how all 4 parameters should 
be set upon encountering an input sentence. Since 
there are 4 parameters, there are 16 possible 
combinations of parameter settings. i.e., 16 
different grammars. Assuming that each of the 16 
grammars is equally likely to be guessed, the 
learner will consume, on average, 16 sentences 
before achieving the target grammar. This is one 
measure of a model’s efficiency or feasibility. 

                                                           
3 By “memoryless” we mean that the learner processes inputs 
one at a time without keeping a history of encountered inputs 
or past learning events. 



However, when modeling natural language 
acquisition, since practically all human learners 
attain the target grammar, the average number of 
expected inputs is a less informative statistic than 
the expected number of inputs required for, say, 
99% of all simulation trials to succeed. For our 
blind-guess learner, this number is 72.4 We will 
use this 99-percentile feasibility measure for most 
discussion that follows, but also include the 
average number of inputs for completeness. 

3.2 The Simulations  

In all experiments: 
• The learners are memoryless. 
• The language input sample presented to the 

learner consists of only grammatical sentences 
generated by the target grammar. 

• For each learner, 1000 trials were run for each 
of the 3,072 target languages in the LDD.  

• At any point during the acquisition process, 
each sentence of the target grammar is equally 
likely to be presented to the learner. 

Subset Avoidance and Other Local Maxima: 
Depending on the algorithm, it may be the case 
that a learner will never be motivated to change its 
current hypothesis (Gcurr), and hence be unable to 
ultimately achieve the target grammar (Gtarg). For 
example, most error-driven learners will be trapped 
if Gcurr generates a language that is a superset of 
the language generated by Gtarg. There is a wealth 
of learnability literature that addresses local 
maxima and their ramifications.5 However, since 
our study’s focus is on feasibility (rather than on 
whether a domain is learnable given a particular 
algorithm), we posit a built-in avoidance mecha-
nism, such as the subset principle and/or default 
values that preclude local maxima; hence, we set 
aside trials where a local maximum ensues. 

                                                           
4 The average and 99-percentile figures (16 and 72) in this 
section are easily derived from the fact that input consumption 
follows a hypergeometric distribution. 
5 Discussion of the problem of subset relationships among 
languages starts with Gold’s (1967) seminal paper and is 
discussed in Berwick (1985) and Wexler & Manzini (1987). 
Detailed accounts of the types of local maxima that the learner 
might encounter in a domain similar to the one we employ are 
given in Frank & Kapur (1996), Gibson & Wexler (1994), and 
Niyogi & Berwick (1996). 

3.3 The Learners' strategies 

In all cases the learner is error-driven: if Gcurr can 
parse the current input pattern, retain it.6 

The following refers to what the learner does 
when Gcurr fails on the current input. 

 
• Error-driven, blind-guess (EDBG): adopt any 

grammar from the domain chosen at random – 
not psychologically plausible, it serves as our 
baseline. 

• TLA (Gibson & Wexler, 1994): change any one 
parameter value of those that make up Gcurr. 
Call this new grammar Gnew. If Gnew can parse 
the current input, adopt it. Otherwise, retain 
Gcurr. 

• Non-Greedy TLA (Niyogi & Berwick, 1996): 
change any one parameter value of those that 
make up Gcurr. Adopt it. (I.e. there is no testing 
of the new grammar against the current input). 

• Non-SVC TLA (Niyogi & Berwick, 1996): try 
any grammar in the domain. Adopt it only in the 
event that it can parse the current input. 

• Guessing STL (Fodor, 1998a): Perform a 
structural parse of the current input. If a choice 
point is encountered, chose an alternative based 
on one of the following and then set parameter 
values based on the final parse tree: 
• STL Random Choice (RC) – randomly pick a 

parsing alternative. 
• Minimal Chain (MC) – pick the choice that 

obeys the Minimal Chain Principle (De Vin-
cenzi, 1991), i.e., avoid positing movement 
transformations if possible. 

• Local Attachment/Late Closure (LAC) –pick 
the choice that attaches the new word to the 
current constituent (Frazier, 1978). 
 

The EDBG learner is our first learner of inter-
est. It is easy to show that the average and 99% 
scores increase exponentially in the number of 
parameters and syntactic research has proposed 
more than 100 (e.g. Cinque, 1999). Clearly, human 
learners do not employ a strategy that performs as 
poorly as this. Results will serve as a baseline to 
compare against other models. 
                                                           
6 We intend for a “can-parse/can’t-parse outcome” to be 
equivalent to the result from a language membership test. If 
the current input sentence is one of the set of sentences 
generated by Gcurr, can-parse is engendered; if not, can’t-
parse. 



 
 99% Average 

EDBG 16,663 3,589 

Table 2: EDBG, # of sentences consumed 
 
The TLA: The TLA incorporates two search 

heuristics: the Single Value Constraint (SVC) and 
Greediness. In the event that Gcurr cannot parse the 
current input sentence s, the TLA attempts a 
second parse with a randomly chosen new gram-
mar, Gnew, that differs from Gcurr by exactly one 
parameter value (SVC). If Gnew can parse s, Gnew 
becomes the new Gcurr otherwise Gnew is rejected as 
a hypothesis (Greediness). Following Berwick and 
Niyogi (1996), we also ran simulations on two 
variants of the TLA – one with the Greediness 
heuristic but without the SVC (TLA minus SVC, 
TLA–SVC) and one with the SVC but without 
Greediness (TLA minus Greediness, TLA–Greed). 
The TLA has become a seminal model and has 
been extensively studied (cf. Bertolo, 2001 and 
references therein; Berwick & Niyogi, 1996; Frank 
& Kapur, 1996; Sakas, 2000; among others).  The 
results from the TLA variants operating in the 
LDD are presented in Table 3. 

 
 99% Average 

TLA-SVC 67,896 11,273 
TLA-Greed 19,181 4,110 
TLA 16,990 961 

Table 3: TLA variants, # of sentences consumed 
 
Particularly interesting is that contrary to results 

reported by Niyogi & Berwick (1996) and Sakas & 
Nishimoto (2002), the SVC and Greediness 
constraints do help the learner achieve the target in 
the LDD. The previous research was based on 
simulations run on much smaller 9 and 16 lan-
guage domains (see Table 1). It would seem that 
the local hill-climbing search strategies employed 
by the TLA do improve learning efficiency in the 
LDD. However, even at best, the TLA performs 
less well than the blind guess learner. We conjec-
ture that this fact probably rules out the TLA as a 
viable model of human language acquisition. 

The STL: Fodor’s Structural Triggers Learner 
(STL) makes greater use of the parser than the 
TLA. A key feature of the model is that parameter 
values are not simply the standardly presumed 0 or 

1, but rather bits of tree structure or treelets. Thus, 
a grammar, in the STL sense, is a collection of 
treelets rather than a collection of 1's and 0's. The 
STL is error-driven. If Gcurr cannot license s, new 
treelets will be utilized to achieve a successful 
parse.7 Treelets are applied in the same way as any 
“normal” grammar rule, so no unusual parsing 
activity is necessary. The STL hypothesizes 
grammars by adding parameter value treelets to 
Gcurr when they contribute to a successful parse. 

The basic algorithm for all STL variants is: 
1. If Gcurr can parse the current input sentence, 

retain the treelets that make up Gcurr. 
2. Otherwise, parse the sentence making use of 

any or all parametric treelets available and 
adopt those treelets that contribute to a suc-
cessful parse. We call this parametric de-
coding. 

Because the STL can decode inputs into their 
parametric signatures, it stands apart from other 
acquisition models in that it can detect when an 
input sentence is parametrically ambiguous. 
During a parse of s, if more than one treelet could 
be used by the parser (i.e., a choice point is 
encountered), then s is parametrically ambiguous. 
The TLA variants do not have this capacity 
because they rely only on a can-parse/can’t-parse 
outcome and do not have access to the on-line 
operations of the parser. Originally, the ability to 
detect ambiguity was employed in two variations 
of the STL: the strong STL (SSTL) and the weak 
STL. 

The SSTL executes a full parallel parse of each 
input sentence and adopts only those treelets 
(parameter values) that are present in all the 
generated parse trees. This would seem to make 
the SSTL an extremely powerful, albeit psycho-
logically implausible, learner.8 However, this is not 
necessarily the case. The SSTL needs some 
unambiguity to be present in the structures derived 
from the sentences of the target language. For 
example, there may not be a single input generated 
by Gtarg that when parsed yields an unambiguous 
treelet for a particular parameter. 

                                                           
7 In addition to the treelets, UG principles are also available 
for parsing, as they are in the other models discussed above.  
8 It is important to note that Fodor (1998a) does not put forth 
the strong STL as a psychologically plausible model. Rather, it 
is intended to demonstrate the potential effectiveness of 
parametric decoding.  



Unlike the SSTL, the weak STL executes a 
psychologically plausible left-to-right serial 
(deterministic) parse. One variant of the weak 
STL, the waiting STL (WSTL), deals with ambigu-
ous inputs abiding by the heuristic: Don’t learn 
from sentences that contain a choice point. These 
sentences are simply discarded for the purposes of 
learning. This is not to imply that children do not 
parse ambiguous sentences they hear, but only that 
they set no parameters if the current evidence is 
ambiguous. 

As with the TLA, these STL variants have been 
studied from a mathematical perspective (Bertolo 
et al., 1997a; Sakas, 2000). Mathematical analyses 
point to the fact that the strong and weak STL are 
extremely efficient learners in conducive domains 
with some unambiguous inputs but may become 
paralyzed in domains with high degrees of ambigu-
ity. These mathematical analyses among other 
considerations spurred a new class of weak STL 
variants which we informally call the guessing STL 
family. 

The basic idea behind the guessing STL models 
is that there is some information available even in 
sentences that are ambiguous, and some strategy 
that can exploit that information. We incorporate 
three different heuristics into the original STL 
paradigm, the RC, MC and LAC heuristics 
described above. 

Although the MC and LAC heuristics are not 
stochastic, we regard them as “guessing” heuristics 
because, unlike the WSTL, a learner cannot be 
certain that the parametric treelets obtained from a 
parse guided by MC and LAC are correct for the 
target. These heuristics are based on well-
established human parsing strategies. Interestingly, 
the difference in performance between the three 
variants is slight. Although we have just begun to 
look at this data in detail, one reason may be that 
the typical types of problems these parsing 
strategies address are not included in the LDD (e.g. 
relative clause attachment ambiguity). Still, the 
STL variants perform the most efficiently of the 
strategies presented in this small study (approxi-
mately a 100-fold improvement over the TLA). 
Certainly this is due to the STL's ability to perform 
parametric decoding. See Fodor (1998b) and Sakas 
& Fodor (2001) for detailed discussion about the 
power of decoding when applied to the acquisition 
process. 

 

Guessing 
STL 99% Average 

RC 1,486 166 
MC 1,412 160 
LAC 1,923 197 

Table 4: guessing STL family, # of sen-
tences consumed 

4 Conclusion and future work 

The thrust of our current research is directed at 
collecting data for a comprehensive, comparative 
study of psycho-computational models of syntax 
acquisition. To support this endeavor, we have 
developed the Language Domain Database – a 
publicly available test-bed for studying acquisition 
models from diverse paradigms. 

Mathematical analysis has shown that learners 
are extremely sensitive to various distributions in 
the input stream (Niyogi & Berwick, 1996; Sakas, 
2000, 2003). Approaches that thrive in one domain 
may dramatically flounder in others. So, whether a 
particular computational model is successful as a 
model of natural language acquisition is ultimately 
an empirical issue and depends on the exact 
conditions under which the model performs well 
and the extent to which those favorable conditions 
are in line with the facts of human language. The 
LDD is a useful tool that can be used within such 
an empirical research program.  

Future work: Though the LDD has been vali-
dated against CHILDES data in certain respects, 
we intend to extend this work by adding distribu-
tions to the LDD that correspond to actual distribu-
tions of child-directed speech. For example, what 
percentage of utterances, in child-directed Japa-
nese, contain pro-drop? object-drop? How often in 
English does the pattern: S[+WH] aux Verb O1 
occur and at what periods of a child's develop-
ment? We believe that these distributions will shed 
some light on many of the complex subtleties 
involved in ambiguity disambiguation and the role 
of nondeterminism and statistics in the language 
acquisition process. This is proving to be a 
formidable, yet surmountable task; one that we are 
just beginning to tackle. 
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