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Abstract

We present a language-independent and
unsupervised algorithm for the segmenta-
tion of words into morphs. The algorithm
is based on a new generative probabilis-
tic model, which makes use of relevant
prior information on the length and fre-
quency distributions of morphs in a lan-
guage. Our algorithm is shown to out-
perform two competing algorithms, when
evaluated on data from a language with
agglutinative morphology (Finnish), and
to perform well also on English data.

number of possible different word forms is simply
too high. For example, in Finnish, a single verb
may appear in thousands of different forms (Karls-
son, 1987).

According to linguistic theory, words are built
from smaller units, morphemes. Morphemes are the
smallest meaning-bearing elements of language and
could be used as lexical units instead of entire words.
However, the construction of a comprehensive mor-
phological lexicon or analyzer based on linguistic
theory requires a considerable amount of work by
experts. This is both time-consuming and expen-
sive and hardly applicable to all languages. Further-
more, as language evolves the lexicon must be up-

dated continuously in order to remain up-to-date.

Alternatively, an interesting field of research lies
open: Minimally supervised algorithms can be de-
In order to artificially “understand” or produce nat-signed that automatically discover morphemes or
ural language, a system presumably has to know tiigorpheme-like units from data. There exist a num-
elementary building blocks, i.e., the lexicon, of theper of such algorithms, some of which are entirely
language. Additionally, the system needs to modelnsupervised and others that use some knowledge of
the relations between these lexical units. Many exhe language. In the following, we discuss recent un-
isting NLP (natural language processing) applicasupervised algorithms and refer the reader to (Gold-
tions make use ofvords as such units. For in- smith, 2001) for a comprehensive survey of previous
stance, in statistical language modelling, probabilesearch in the whole field.
ities of word sequences are typically estimated, and Many algorithms proceed by segmenting (i.e.,
bag-of-word models are common in information respjitting) words into smaller components. Often
trieval. the limiting assumption is made that words con-

However, for some languages it is infeasible t@jst of only one stem followed by one (possibly
construct lexicons for NLP applications, if the lexi-empty) suffix (Déjean, 1998; Snover and Brent,
cons contain entire words. In especially agglutinazgo1; Snover et al., 2002). This limitation is reduced
tive languages, such as Finnish and Turkish, thejn (Goldsmith, 2001) by allowing a recursive struc-
T Jure, where stems can have inner structure, so that
they in turn consist of a substem and a suffix. Also

1 Introduction

In agglutinative languages words are formed by the co
catenation of morphemes.



prefixes are possible. However, for languages withortion of morph typésthat occur only once in the
agglutinative morphology this may not be enoughcorpus. These morph types are calledpax legom-
In Finnish, a word can consist of lengthy sequencesna While the former is a rather intuitive measure,
of alternating stems and affixes. the latter may not appear as intuitive. However, the

Some morphology discovery algorithms learn reproportion of hapax legomena may be interpreted as
lationships between words by comparing the orthca measure of the richness of the text. Also note that
graphic or semantic similarity of the words (Schoneince the most common morph length is calculated
and Jurafsky, 2000; Neuvel and Fulop, 2002; Barorior morph types, not tokens, it is not independent of
et al., 2002). Here a small number of componentthe corpus size. A larger corpus usually requires a
per word are assumed, which makes the approacheigher average morph length, a fact that is stated for
difficult to apply as such to agglutinative languagesword lengths in (Baayen, 2001).

We previously presented two segmentation algo- As an evaluation criterion for the performance
rithms suitable for agglutinative languages (Creutnaf our method and two reference methods we use
and Lagus, 2002). The algorithms learn a set ai measure that reflects the ability to recognize
segments, which we cathorphs from a corpus. real morphemes of the language by examining the
Stems and affixes are not distinguished as sepmorphs found by the algorithm.
rate categories by the algorithms, and in that sense
they resemble algorithms for text segmentation and Probabilistic generative model
word discovery, such as (Deligne and Bimbot, 1997;

Brent, 1999: Kit and Wilks, 1999; Yu, 2000). How- Ih this section we derive the new modgl. We fol-
I8w a step-by-step process, during which a morph

ever, we observed that for the corpus size studiq xicon and a corpus are generated. The morphs in

(100 000 words), our two algorithms were somewh . :
; . e lexicon are strings that emerge as a result of a
prone to excessive segmentation of words. ) .
stochastic process. The corpus is formed through

In this paper, we aim at overcoming the problem . .
. . . nother stochastic process that picks morphs from
of excessive segmentation, particularly when sm ) .
e lexicon and places them in a sequence. At two

corpora (up to 200 000 words) are used for trainin soints of the process, prior knowledge is required

We present a new segmentation algorithm, which i )

: . ._in,the form of two real numbers: the most common
language independent and works in an unsuperws%zlor h length and the proportion of hapax legomena
fashion. Since the results obtained suggest that the P g prop P g

. . . morphs.
algorithm performs rather well, it could possibly be .
. . The model can be used for segmentation of words
suitable for languages for which only small amount - .
. . y requiring that the corpus created is exactly the
of written text are available. . .
input data. By selecting the most probable morph

The model is formulated in a probabilistic, . . )
. ... |exicon that can produce the input data, we obtain a
Bayesian framework. It makes use of explicit prior

. o T segmentation of the words in the corpus, since we
information in the form of probability distributions :

for morph length and morph frequency. The moder®" rewrite every word as a sequence of morphs.

is based on the same kind of reasoning as the probf1  gjze of the morph lexicon

bilistic model in (Brent, 1999). While Brent's model ) o

displays a prior probability that exponentially de_We start the generation process by deciding the num-

creases with word length (with one character as tt*\)—_\er of morph§ in the morph IeX|c9n (type cgunt).

most common length), our model uses a probabill S nfuTber '; den_(f)ted by, and its prrc\)_bablllty

ity distribution that more accurately models the real (") follows the uniform distribution. This means

length distribution. Also Brent's frequency distribu—that’ha S”or" no lexicon size is more probable than

tion differs from ours, which we derive from Man- another.

delbrot’s correction of Zipf's law (cf. Section 2.5). 2We use standard terminology: Morpypesare the set of
Our model requires that the values of two paran-gifferent, distinct morphs. By contrast, morpbkensare the

e . . Instances (or occurrences) of morphs in the corpus.
eters be set: (i) our Pr'or be“_ef of thBOSt common 3This is an improper prior, but it is of little practical signi
morph length and (ii) our prior belief of thepro- icance for two reasons: (i) This stage of the generationqe®c



2.2 Morph lengths 24 Morph order in thelexicon

For each morph in the lexicon, we independentlyrhe lexicon consists of a set ef, morphs and it
choose its length in characters according to theakes no difference in which order these morphs
gamma distribution: have emerged. Regardless of their initial order, the
1 morphs can be sorted into a uniquely defined (e.g.,
py;) = Wlma‘le‘%/ﬁ, (1) alphabetical) order. Since there arg! ways to or-
der n, different elements,we multiply the proba-
wherel,,, is the length in characters of théa morph,  Pility accumulated so far by,
anda andg are constantd’(«) is the gamma func-
tion:

T L

[(a) = /OOO 2 lem%dz. ) p(lexicon) = p(n,,) [ | {p(lui)jl;[lp(cj)} “n,! (4)

i=1

The maximum value of the density occurslat = .
(a — 1)B, which corresponds to the most cﬁ?)mmonz'5 Morph frequencies
morph length in the lexicon. Whe#i is set to one, The nextstep is to generate a corpus using the morph
and« to one plus our prior belief of the most com-lexicon obtained in the previous steps. First, we in-
mon morph length, the pdf (probability density func-dependently choose the number of times each morph
tion) is completely defined. occurs in the corpus. We pursue the following line
We have chosen the gamma distribution fopf thought:

morph lengths, because it corresponds rather well to Zipf has studied the relationship between the fre-
the real length distribution observed for word typesiuency of a wordf, and its rankz. He suggests
in Finnish and English corpora that we have studthat the frequency of a word is inversely proportional
ied. The distribution also fits the length distributionto its rank. Mandelbrot has refined Zipf's formula,
of the morpheme labels used as a reference (cf. Seand suggests a more general relationship [see, e.g.,
tion 3). A Poisson distribution can be justified andBaayen, 2001)]:
has been used in order to model the length distri-
bution of word and morphokens[e.g., (Creutz and f=C(z+b)", (5)
Lagus, 2002)], but for morptypeswe have chosen
the gamma distribution, which has a thicker tail. ~whereC, a andb are parameters of a text.

_ Let us derive a probability distribution from Man-
23 Morph strings delbrot's formula. The rank of a word as a func-
For each morph;, we decide the character string ittion of its frequency can be obtained by solving for
consists of: We independently chodgecharacters z from (5):
at random from the alphabet in use. The probabil- s —Cuafa —b. (6)
ity of each charactet; is the maximum likelihood
estimate of the occurrence of this character in the Suppose that one wants to know the number of

corpus? words that have a frequency close faather than
plej) = "le; 7 (3) the rank of the word with frequency. In order to
>k ey, obtain this information, we choose an arbitrary in-

wheren,., is the number of occurrences of the charterval aroundf: [(1/7)f ... ~f[, wherey > 1, and

acterc; in the corpus, and", n., is the total num- compute the rank at the endpoints of the interval.
ber of characters in the corpus. The difference is an estimate of the number of words

only contributes with one probability value, which will feva SStrictly speaking, our probabilistic model is not perfect,

negligible effect on the model as a whole. (ii) A proper prob-since we do not make sure that no morph can appear more than

ability density function would presumably be very flat, wiic once in the lexicon.

would hardly help guiding the search towards an optimal hode  ®The rank of a word is the position of the word in a list,
4Alternatively, the maximum likelihood estimate of the oc-where the words have been sorted according to falling fre-

currence of the character in tlexiconcould be used. qguency.



that fall within the interval, i.e., have a frequency

close tof: > M)!)_l iy N! ),
[T fo!

9)

This can be transformed into an exponential pdf "€ numerator of the multinomial is the factorial of
by (i) binning the frequency axis so that there ard1€ total number of morph tokens], which equals
no overlapping intervals. (This means that the fretN€ Sum of frequencies of every morph type. The de-
quency axis is divided into non-overlapping inter"ominator is the product of the factorial of the fre-
vals [(1/7)f ...~f[, which is equivalent to having 94€ncy of each morph type.

f values that are powers of: fo =" =1,/i = 27 search for the optimal model

72, fa = 44, ... All frequencies f are rounded to , , ,
the closestf.) Next (ii), we normalize the number The search for the optimal model given our input

of words with a frequency close t6 with the to- data corresponds closely to the recursive segmen-

tal number of WOI’dSanf. Furthermore (iii),f tation algorithm presented in (Qreutz and Lagus,
2002). The search takes place in batch mode, but

. . l ¢ - R i

IS written ase Oigf’ and (iv) ¢ must be chosen so ¢oyi4 as well be done incrementally. All words in
that the normalization coefficient equalga, which  he gata are randomly shuffled, and for each word,
yields a proper pdf that integrates to one. Note alsgery split into two parts is tested. The most proba-
the factorlog 7~ Like £, log f is a discrete variable. e gplit location (or no split) is selected and in case
We approximate the integral of the density function,s 5 split, the two parts are recursively split in two.

around each valulg f by multiplying with the dif- A words are iteratively reprocessed until the prob-
ference between two successlee f values, which ability of the model converges.

equalslog ~v?:

1 1 1,1 p(COI’pU$:( H”u f |
g =21y —2y=(ye =y «)Caf a. (7) i=1Jpi

3 Evaluation

p(f e lA/n)f..Af) = W(J’Ee—?logf From the point of view of linguistic theory, it is pos-
Fr sible to come up with different plausible sugges-
— Zealogf, log 2. (8) tions for the correct location of morpheme bound-
a aries. Some of the solutions may be more elegant

Now, if we assume that Zipf's and Madelbrot'sthan other$, but it is difficult to say if the most el-
formulae apply to morphs as well as to words, w&€dant scheme will work best in practice, when real
can use formula (8) for every morph frequenty, ~NLP applications are concerned. _
which is the number of occurrences (or frequency) VVe utilize an evaluation method for segmentation
of the morphy; in the corpus (token count). How- of words presented in (Creutz and Lagus, 2002). In
ever, values fow and~2 must be chosen. We setthis method, segments amet compared to one sin-
~2 to 1.59, which is the lowest value for which no gle “correct” segmentation. The evaluation criterion
empty frequency bins will appedrFor f,, = 1, (8) €an rather be interpreFed from the point of view of
reduces tdog12/a. We set this value equal to our language “understanding”. A morph discovered by
prior belief of the proportion of morph types that ardhe segmentation algorithm is considered to be “un-

to occur only once in the corpus (hapax legomena)derstood”, if there is a low-ambiguity mapping from
the morph to a corresponding morpheme. Alterna-

2.6 Corpus tively, a morph may correspond to a sequence of

The morphs and their frequencies have been set. TR¥YrPhemes, if these morphemes are very likely to
order of the morphs in the corpus remains to be d&ccur together. The idea is that if an entirely new

cided. The probability of one particular order is thevord form is encountered, the system will “under-
inverse of the multinomial: stand” it by decomposing it into morphs that it “un-

e derstands”. A segmentation algorithm that segments
Empty bins can appear for small valuesfgf due tof,,’s

being rounded to the closeﬁti, which is a power ofy%. 8Cf. “hop +ed” vs. “hope +d” (past tense of “to hope”).



words into too small parts will perform poorly due to E{p(morpheme morph)}:

high ambiguity. At the other extreme, an algorithm N

that is reluctant at splitting words will have bad gen- 1 Zpi(morphemq morph), (10)
eralization ability to new word forms. N i=1

Reference morpheme sequences for the words a{@ere V is the number of morph/morpheme map-
obtained using existing software for automatic morpings, andp;(-) is the probability associated with
phological analysis based on the two-level morphoknhe ith mapping. Thus, we measure th®portion
ogy of Koskenniemi (1983). For each word form,of morphemes in the test vocabulary that we can ex-

the analyzer outputs the base form of the word tqyect to recognize correctlyy examining the morph
gether with grammatical tags. By filtering the Out-segments.

put, we get a sequence of morpheme labels that ap- _
pear in the correct order and represent correct mof- EXperiments

pEemesl rzéthler closely. Note, hO\{\I/ever,r:hat thﬁ,m?lWe have conducted experiments involving (i) three
pheme labels are not necessarily orthographicallieent segmentation algorithms, (ii) two corpora

similar to the morphemes they represent. in different languages (Finnish and English), and

The exact procedure for evaluating the segment?ﬁi) data sizes ranging from 2000 words to 200 000

tion of a set of words consists of the following steps; J
(1) Segment the words in the corpus using the au-

tomatic segmentation algorithm. 4.1 Segmentation algorithms

(2) Divide the segmented data into two parts Ofrhe new probabilistic method is compared to two
equal size. Collect all segmented word forms fromayisting segmentation methods: tRecursive MDL
the first part into a training vocabulary and collectyethod presented in (Creutz and Lagus, 2802)
all segmented word forms from the second part intgnq john Goldsmith’s algorithm callddnguistica
a test vocabulary. (Goldsmith, 2001}! Both methods use MDL (Min-

(3) Align the segmentation of the words in thejmym Description Length) (Rissanen, 1989) as a cri-
training vocabulary with the corresponding referygrion for model optimization.
ence morpheme label sequences. Each morph mustrie effect of using prior information on the dis-
be aligned with one or more consecutive morphemgjpytion of morph length and frequency can be as-
labels and each morpheme label must be alignagssed by comparing the probabilistic method to Re-
with at least one morph; e.g., for a hypothetical segs;rsive MDL, since both methods utilize the same

mentation of the English wordinners: search algorithm, but Recursive MDL does not make
Morpheme labeld  win -ER [ PL | GEN | use of explicit prior information.
Morph sequence|| w[inn | er S’ Furthermore, the possible benefit of using the

_ - — two sources of prior information can be compared
(4) Estimate conditional probabilities for thegainst the possible benefit of grouping stems and

morph/morpheme mappings computed over theyffixes into signatures. The latter technique is em-

whole training vocabulary:p(morpheme morph). ployed by Linguistica.

Re-align using the Viterbi algorithm and employ the

Expectation-Maximization algorithm iteratively un-4.2 Data

til convergence of the probabilities. The Finnish data consists of subsets of a news-
(5) The quality of the segmentation is evaluateghaper text corpus from CSE,from which non-

on the test vocabulary. The segmented words in theords (numbers and punctuation marks) have been

test vocabulary are aligned against their reference °In (Creutz and Lagus, 2002) the results are reported less

morpheme label sequences according to the conghuitively as the “alignment distance”, i.e., the negativgprob
tional probabilities learned from the training vocab-of the entire test set: log [ | p;(morpheme morph).

10 gi > . .
larv. Tom re th li f th mentation Online demo at http://www.cis.hut.fi/projects/morpho/.
ulary. To measure the quality o € segmentatio "The software can be downloaded from http://humanities.

we compute the expectation of the proportion ofichicago.edu/faculty/goldsmith/Linguistica2000/.
correct mappings from morphs to morpheme labels, *?http:/iwww.csc.fi/kielipankki/



removed. The reference morpheme labels have be Finnish

filtered out from a morphosyntactic analysis of the 20— Probabilistic
text produced by the Connexor FDG parser. @ -0 Recursive MDL

The English corpus consists of mainly newspape £ °°|| - *- h‘”g“'s“ca i
text (with non-words removed) from the Brown cor- -5'40 © segmentation

. . o r

pus* A morphological analysis of the words has £ O
been performed using the Lingsoft ENGTWOL an-§307
alyzer!® = -

For both languages data sizes of 2000, 500(%20
10000, 50000, 100000, and 200000 have beeg
used. A notable difference between the morpholo¢g, 5
ical structure of the languages lies in the fact the é
whereas there are about 17 000 English word type/

i i 2 5 10 50 100 200
in thg largest data ;et, the corresponding number Corpus size [1000 words] (log. scaled axis)
Finnish word types is 58 000.

Figure 1. Expectation of the percentage of recog-

_ nized morphemes for Finnish data.
In order to select good prior values for the prob-

abilistic method, we have used separate develop-

ment test sets that are independent of the final dadad Results

sets. Morph length and morph frequency distribu- , )
tions have been computed for the reference mog-he expected proportlon_ of morphemes recognlze_d
pheme representations of the development test se Y the thlree ;ezg:cnendti:lon rtnthods fa'[E p:gtteq r:n
The prior values for most common morph length anglgdurgs i ?\n or ';:en S'Zeﬁ OI ?h INNIS q
proportion of hapax legomena have been adjusted 'ﬁpth ng 's b'(i'oipora. h de ssaéc agorltMrSLu'se
order to produce distributions that fit the referencd! 1€ Probabllistic method and Recursive n-
as well as possible. volve randomness and therefore every value shown

We thus assume that we can make a good guessf8 these two methods is the average obtained over

the final morph length and frequency distributionst:antrunt,S W'tgd'ﬁterem Crlandgmhsegds. However, thﬁ
Note, however, that our reference is an approximeI-uc uations due to random benaviour are very sma

tion of amorphemeepresentation. As the segmen2"! d _p_alred t-tests show significant (_jlffe_rences at the
ignificance level of 0.01 for all pair-wise compar-

tation algorithms produce morphs, not morphemeg, .
we can expect to obtain a larger number of morph§°"> Of_ th(.e methods at all corpus sizes. .
due to allomorphy. Note also that we do not op- For Finnish, all methods show a curve that mainly
timize for segmentation performance on the devel'Créases as a function of the corpus size. The prob-
opment test set; we only choose the best fit for th%bthth method is the best with morpheme recogni-
morph length and frequency distributions. tion percentages between 23.5% and 44.2%. Lin-

As for the two other segmentation algorithms, Reguistica performs worst with percentages between
cursive MDL has no parameters to adjust. In Lin16.5% and 29.1%. None of the methods are close

guistica we have usedethod A Suffixes + Find pre- to ideal pe_rfo_rmance, which, however, is lower than
fixes from stemwith other parameters left at their 100%- Th_'s is due to the fact that the test vocabu-
default values. We are unaware whether anothéd"y contains a number of morphemes that are not
configuration could be more advantageous for LinPreéSent in the training vocabulary, and thus are im-

4.3 Parameters

guistica. possible to recognize. The proportion of unrecog-
nizable morphemes is highest for the smallest corpus
Bhtp://www.connexor.fi/ size (32.5%) and decreases to 8.8% for the largest

14 . . L

The Brown corpus is available at the Linguistic Data Con-, :
sortium at http://www.ldc.upenn.edu/. corpus size. _

Bhttp://www.lingsoft.fi/ The evaluation measure used unfortunately scores



English 5 Discussion

(o2}
o

For small data sizes, Recursive MDL has a tendency
to split words into too small segments, whereas Lin-
guistica is much more reluctant at splitting words,
due to its use of signatures. The extent to which the
probabilistic method splits words lies somewhere in
between the two other methods.

Our evaluation measure favours low ambiguity as
long as the ability to generalize to new word forms
does not suffer. This works against all segmentation

[
o
T

N
o
T

N
o
T

—— Probabilistic
Recursive MDL

[EnN
£
©

Expectation(recognized morphemes) [%]
w
o

% Linguistica methods for English at larger data sizes. The En-
o | | | No segmentation glish language has rather simple morphology, which
2 5 10 50 100 200 means that the number of different possible word

Corpus size [1000 words] (log. scaled axis) forms is limited. The larger the training vocabu-

lary, the broader coverage of the test vocabulary, and
Yherefore the no-segmentation approach works sur-
prisingly well. Segmentation always increases am-
biguity, which especially Linguistica suffers from as
a baseline of no segmentation fairly high. The noit discovers more and more signatures and short suf-
segmentation baseline corresponds to a system tfiges as the amount of data increases. For instance,
recognizes the training vocabulary fully, but has n@ final 's’ stripped off its stem can be either a noun
ability to generalize to any other word form. or a verb ending, and a final ’e’ is very ambiguous,
The results for English are different. Linguisticads it belongs to orthography rather than morphology
is the best method for corpus sizes below 50 008nd does not correspond to any morpheme.
words, but its performance degrades from the max- Finnish morphology is more complex and there
imum of 39.6% at 10 000 words to 29.8% for theare endless possibilities to construct new word
largest data set. The probabilistic method is corforms. As can be seen from Figure 1, the proba-
stantly better than Recursive MDL and both methodsilistic method and Recursive MDL perform better
outperform Linguistica beyond 50 000 words. Théhan the no-segmentation baseline for all data sizes.
recognition percentages of the probabilistic method The segmentations could be evaluated using other
vary between 28.2% and 43.6%. However, for cormeasures, but for language modelling purposes,
pus sizes above 10000 words none of the threge believe that the evaluation measure should not
methods outperform the no-segmentation baselinefavour shattering of very common strings, even
Overall, the results for English are closer to ideathough they correspond to more than one morpheme.
performance than was the case for Finnish. Thi§hese strings should rather work as individual vo-
is partly due to the fact that the proportion of un-cabulary items in the model. It has been shown that
seen morphemes that are impossible to recognizeiigreased performance afgram models can be ob-
higher for English (44.5% at 2000 words, 19.0% atained by adding larger units consisting of common
200 000 words). word sequences to the vocabulary; see e.g., (Deligne
As far as the time consumption of the algorithmsand Bimbot, 1995). Nevertheless, in the near fu-
is concerned, the largest Finnish corpus took 20 miridre we wish to explore possibilities of using com-
utes to process for the probabilistic method and R¢lementary and more standard evaluation measures,
cursive MDL, and 40 minutes for Linguistica. Thesuch as precision, recall, and F-measure of the dis-
largest English corpus was processed in less tha&overed morph boundaries.
three minutes by all the algorithms. The tests were Concerning the length and frequency prior dis-
run on a 900 MHz AMD Duron processor with tributions in the probabilistic model, one notes that
256 MB RAM. they are very general and do not make far-reaching

Figure 2: Expectation of the percentage of reco
nized morphemes for English data.



assumptions about the behaviour of natural larv. R. Brent. 1999. An efficient, probabilistically sound

guage. In fact, Zipf's law has been shown to ap- algorithm for segmentation and word discovelfa-

ply to randomly generated artificial texts (Li, 1992). Chine Learning34:71-105.

In our implementation, due to the independence ast. Creutz and K. Lagus. 2002. Unsupervised discovery

sumptions made in the model and due to the searchof morphemes. IProc. ACL Workshop on Morphol.

algorithm used, the choice of a prior value for the @nd Phonological Learningp. 21-30, Philadelphia.

most common morph length is more important tham. Déjean. 1998. Morphemes as necessary concept

the hapax legomena value. If a very bad prior value for structures discovery from untagged corpora. In

for the most common morph length is used perfor- Workshop on Paradigms and Grounding in Nat. Lang.
. Learning pp. 295-299, Adelaide.

mance drops by twelve percentage units, whereas

extreme hapax legomena values only reduces pei- Deligne and F. Bimbot. 1995. Language modeling

formance by two percentage units. But note that the by variable length sequences: Theoretical formulation

two values are dependent: A greater average morphanCI evaluation of multigrams. Froc. ICASSP

length means a greater number of hapax legome®a Deligne and F. Bimbot. 1997. Inference of variable-
and vice versa. length linguistic and acoustic units by multigrams.

There is always room for improvement. Our cur- Speech Communicatip3:223-241.

rent model does not represent contextual dependeh-Goldsmith. 2001. Unsupervised learning of the mor-
cies, such as phonological rules or morphotactic lim- Phology of a natural languageComputational Lin-
itations on morph order. Nor does it identify which guistics 27(2):153-198.

morphs are allomorphs of the same morpheme, e.g.,Karlsson. 1987Finnish Grammar WSOY, 2nd ed.

city” and "citi +es”. In the future, we expect to ad_C. Kit and Y. Wilks. 1999. Unsupervised learning of

dress these problems by using statistical languageyord boundary with description length gain. Rroc.
modelling techniques. We will also study how the CoNLL99 ACL WorkshggBergen.

algorithms scale to considerably larger corpora. K. Koskenniemi. 1983.Two-level morphology: A gen-

eral computational model for word-form recognition
and production Ph.D. thesis, University of Helsinki.

The results we have obt_ained suggest th"’?‘t the P& Li. 1992. Random texts exhibit Zipf's-Law-like word
formance of a segmentation algorithm can indeed be frequency distribution.IEEE Transactions on Infor-

increased by using prior information of general na- mation Theory38(6):1842-1845.

ture, when this information is expressed mathematl neyvel and S. A. Fulop. 2002. Unsupervised learn-
cally as part of a probabilistic model. Furthermore, ing of morphology without morphemes. Rroc. ACL
we have reasons to believe that the morph segmentsWorkshop on Morphol. & Phonol. Leagrpp. 31-40.
obtained can be useful as components of a statistical issanen. 1989Stochastic Complexity in Statistical

language model. Inquiry, vol. 15. World Scientific Series in Computer
Science, Singapore.

6 Conclusions
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