
Offline Strategies for Online Question Answering:
Answering Questions Before They Are Asked

Michael Fleischman, Eduard Hovy,

Abdessamad Echihabi
USC Information Sciences Institute

4676 Admiralty Way
Marina del Rey, CA 90292-6695

{fleisch, hovy, echihabi} @ISI.edu

Abstract

Recent work in Question Answering has
focused on web-based systems that
extract answers using simple lexico-
syntactic patterns. We present an
alternative strategy in which patterns are
used to extract highly precise relational
information offline, creating a data
repository that is used to efficiently
answer questions. We evaluate our
strategy on a challenging subset of
questions, i.e. “Who is …” questions,
against a state of the art web-based
Question Answering system. Results
indicate that the extracted relations
answer 25% more questions correctly and
do so three orders of magnitude faster
than the state of the art system.

1 Introduction

Many of the recent advances in Question
Answering have followed from the insight that
systems can benefit by exploiting the redundancy
of information in large corpora. Brill et al. (2001)
describe using the vast amount of data available on
the World Wide Web to achieve impressive
performance with relatively simple techniques.
While the Web is a powerful resource, its
usefulness in Question Answering is not without
limits.

The Web, while nearly infinite in content, is
not a complete repository of useful information.
Most newspaper texts, for example, do not remain

accessible on the Web for more than a few weeks.
Further, while Information Retrieval techniques are
relatively successful at managing the vast quantity
of text available on the Web, the exactness
required of Question Answering systems makes
them too slow and impractical for ordinary users.

In order to combat these inadequacies, we
propose a strategy in which information is
extracted automatically from electronic texts
offline, and stored for quick and easy access. We
borrow techniques from Text Mining in order to
extract semantic relations (e.g., concept-instance
relations) between lexical items. We enhance
these techniques by increasing the yield and
precision of the relations that we extract.

Our strategy is to collect a large sample of
newspaper text (15GB) and use multiple part of
speech patterns to extract the semantic relations.
We then filter out the noise from these extracted
relations using a machine-learned classifier. This
process generates a high precision repository of
information that can be accessed quickly and
easily.

We test the feasibility of this strategy on one
semantic relation and a challenging subset of
questions, i.e., “Who is …” questions, in which
either a concept is presented and an instance is
requested (e.g., “Who is the mayor of Boston?”),
or an instance is presented and a concept is
requested (e.g., “Who is Jennifer Capriati?”). By
choosing this subset of questions we are able to
focus only on answers given by concept-instance
relationships. While this paper examines only this
type of relation, the techniques we propose are
easily extensible to other question types.

Evaluations are conducted using a set of “Who
is …” questions collected over the period of a few

months from the commercial question-based
search engine www.askJeeves.com. We extract
approximately 2,000,000 concept-instance
relations from newspaper text using syntactic
patterns and machine-learned filters (e.g.,
“president Bill Clinton” and “Bill Clinton,
president of the USA,”). We then compare
answers based on these relations to answers given
by TextMap (Hermjakob et al., 2002), a state of the
art web-based question answering system. Finally,
we discuss the results of this evaluation and the
implications and limitations of our strategy.

3.1

2

3

3.2

Related Work

A great deal of work has examined the problem of
extracting semantic relations from unstructured
text. Hearst (1992) examined extracting hyponym
data by taking advantage of lexical patterns in text.
Using patterns involving the phrase “such as”, she
reports finding only 46 relations in 20M of New
York Times text. Berland and Charniak (1999)
extract “part-of” relations between lexical items in
text, achieving only 55% accuracy with their
method. Finally, Mann (2002) describes a method
for extracting instances from text that takes
advantage of part of speech patterns involving
proper nouns. Mann reports extracting 200,000
concept-instance pairs from 1GB of Associated
Press text, only 60% of which were found to be
legitimate descriptions.

These studies indicate two distinct problems
associated with using patterns to extract semantic
information from text. First, the patterns yield
only a small amount of the information that may be
present in a text (the Recall problem). Second,
only a small fraction of the information that the
patterns yield is reliable (the Precision problem).

Relation Extraction

Our approach follows closely from Mann (2002).
However, we extend this work by directly
addressing the two problems stated above. In
order to address the Recall problem, we extend the
list of patterns used for extraction to take
advantage of appositions. Further, following
Banko and Brill (2001), we increase our yield by
increasing the amount of data used by an order of
magnitude over previously published work.
Finally, in order to address the Precision problem,

we use machine learning techniques to filter the
output of the part of speech patterns, thus purifying
the extracted instances.

Data Collection and Preprocessing

Approximately 15GB of newspaper text was
collected from: the TREC 9 corpus (~3.5GB), the
TREC 2002 corpus (~3.5GB), Yahoo! News
(.5GB), the AP newswire (~2GB), the Los Angeles
Times (~.5GB), the New York Times (~2GB),
Reuters (~.8GB), the Wall Street Journal
(~1.2GB), and various online news websites
(~.7GB). The text was cleaned of HTML (when
necessary), word and sentence segmented, and part
of speech tagged using Brill’s tagger (Brill, 1994).

Extraction Patterns

Part of speech patterns were generated to take
advantage of two syntactic constructions that often
indicate concept-instance relationships: common
noun/proper noun constructions (CN/PN) and
appositions (APOS). Mann (2002) notes that
concept-instance relationships are often expressed
by a syntactic pattern in which a proper noun
follows immediately after a common noun. Such
patterns (e.g. “president George Bush”) are very
productive and occur 40 times more often than
patterns employed by Hearst (1992). Table 1
shows the regular expression used to extract such
patterns along with examples of extracted patterns.

${NNP}*${VBG}*${JJ}*${NN}+${NNP}+
trainer/NN Victor/NNP Valle/NNP
ABC/NN spokesman/NN Tom/NNP Mackin/NNP
official/NN Radio/NNP Vilnius/NNP
German/NNP expert/NN Rriedhart/NNP
Dumez/NN Investment/NNP
Table 1. The regular expression used to extract CN/PN
patterns (common noun followed by proper noun).
Examples of extracted text are presented below. Text in
bold indicates that the example is judged illegitimate.

${NNP}+\s*,\/,\s*${DT}*${JJ}*${NN}+(?:of\/IN)*
 \s*${NNP}*${NN}*${IN}*${DT}*${NNP}*
 ${NN}*${IN}*${NN}*${NNP}*,\/,
Stevens/NNP ,/, president/NN of/IN the/DT firm/NN ,/,
Elliott/NNP Hirst/NNP ,/, md/NN of/IN Oldham/NNP Signs/NNP ,/,
George/NNP McPeck/NNP,/, an/DT engineer/NN from/IN Peru/NN,/,
Marc/NNP Jonson/NNP,/, police/NN chief/NN of/IN Chamblee/NN ,/,
David/NNP Werner/NNP ,/, a/DT real/JJ estate/NN investor/NN ,/,
Table 2. The regular expression used to extract APOS
patterns (syntactic appositions). Examples of extracted
text are presented below. Text in bold indicates that the
example is judged illegitimate.

In addition to the CN/PN pattern of Mann
(2002), we extracted syntactic appositions (APOS).
This pattern detects phrases such as “Bill Gates,
chairman of Microsoft,”. Table 2 shows the
regular expression used to extract appositions and
examples of extracted patterns. These regular
expressions are not meant to be exhaustive of all
possible varieties of patterns construed as CN/PN
or APOS. They are “quick and dirty”
implementations meant to extract a large
proportion of the patterns in a text, acknowledging
that some bad examples may leak through.

3.3 Filtering

The concept-instance pairs extracted using the
above patterns are very noisy. In samples of
approximately 5000 pairs, 79% of the APOS
extracted relations were legitimate, and only 45%
of the CN/PN extracted relations were legitimate.
This noise is primarily due to overgeneralization of
the patterns (e.g., “Berlin Wall, the end of the Cold
War,”) and to errors in the part of speech tagger
(e.g., “Winnebago/CN Industries/PN”). Further,
some extracted relations were considered either
incomplete (e.g., “political commentator Mr.
Bruce”) or too general (e.g., “meeting site Bourbon
Street”) to be useful. For the purposes of learning
a filter, these patterns were treated as illegitimate.

In order to filter out these noisy concept-
instance pairs, 5000 outputs from each pattern
were hand tagged as either legitimate or
illegitimate, and used to train a binary classifier.
The annotated examples were split into a training
set (4000 examples), a validation set (500
examples); and a held out test set (500 examples).
The WEKA machine learning package (Witten and
Frank, 1999) was used to test the performance of
various learning and meta-learning algorithms,
including Naïve Bayes, Decision Tree, Decision
List, Support Vector Machines, Boosting, and
Bagging.

Table 4 shows the list of features used to
describe each concept-instance pair for training the
CN/PN filter. Features are split between those that
deal with the entire pattern, only the concept, only
the instance, and the pattern’s overall orthography.
The most powerful of these features examines an
Ontology in order to exploit semantic information
about the concept’s head. This semantic
information is found by examining the super-
concept relations of the concept head in the

110,000 node Omega Ontology (Hovy et al., in
prep.).

Feature
Type

Pattern
Features

Binary ${JJ}+${NN}+${NNP}+
Binary ${NNP}+${JJ}+${NN}+${NNP}+
Binary ${NNP}+${NN}+${NNP}+
Binary ${NNP}+${VBG}+${JJ}+${NN}+${NNP}+
Binary ${NNP}+${VBG}+${NN}+${NNP}+
Binary ${NN}+${NNP}+
Binary ${VBG}+${JJ}+${NN}+${NNP}+
Binary ${VBG}+${NN}+${NNP}+
 Concept Features
Binary Concept head ends in "er"
Binary Concept head ends in "or"
Binary Concept head ends in "ess"
Binary Concept head ends in "ist"
Binary Concept head ends in "man"
Binary Concept head ends in "person"
Binary Concept head ends in "ant"
Binary Concept head ends in "ial"
Binary Concept head ends in "ate"
Binary Concept head ends in "ary"
Binary Concept head ends in "iot"
Binary Concept head ends in "ing"
Binary Concept head is-a occupation
Binary Concept head is-a person
Binary Concept head is-a organization
Binary Concept head is-a company
Binary Concept includes digits
Binary Concept has non-word
Binary Concept head in general list
Integer Frequency of concept head in CN/PN
Integer Frequency of concept head in APOS
 Instance Features
Integer Number of lexical items in instance
Binary Instance contains honorific
Binary Instance contains common name
Binary Instance ends in honorific
Binary Instance ends in common name
Binary Instance ends in determiner
 Case Features
Integer Instance: # of lexical items all Caps
Integer Instance: # of lexical items start w/ Caps
Binary Instance: All lexical items start w/ Caps
Binary Instance: All lexical items all Caps
Integer Concept: # of lexical items all Caps
Integer Concept: # of lexical items start w/ Caps
Binary Concept: All lexical items start w/ Caps
Binary Concept: All lexical items all Caps
Integer Total # of lexical items all Caps
Integer Total # of lexical items start w/ Caps
Table 4. Features used to train CN/PN pattern filter.
Pattern features address aspects of the entire pattern,
Concept features look only at the concept, Instance
features examine elements of the instance, and Case
features deal only with the orthography of the lexical
items.

Figure 1. Performance of machine learning algorithms
on a validation set of 500 examples extracted using the
CN/PN pattern. Algorithms are compared to a baseline
in which only concepts that inherit from “Human” or
“Occupation” in Omega pass through the filter.

4

4.1

Extraction Results

Machine Learning Results

Figure 1 shows the performance of different
machine learning algorithms, trained on 4000
extracted CN/PN concept-instance pairs, and tested
on a validation set of 500. Naïve Bayes, Support
Vector Machine, Decision List and Decision Tree
algorithms were all evaluated and the Decision
Tree algorithm (which scored highest of all the
algorithms) was further tested with Boosting and
Bagging meta-learning techniques. The algorithms
are compared to a baseline filter that accepts
concept-instance pairs if and only if the concept
head is a descendent of either the concept
“Human” or the concept “Occupation” in Omega.
It is clear from the figure that the Decision Tree
algorithm plus Bagging gives the highest precision
and overall F-score. All subsequent experiments
are run using this technique.1

Since high precision is the most important
criterion for the filter, we also examine the
performance of the classifier as it is applied with a
threshold. Thus, a probability cutoff is set such
that only positive classifications that exceed this
cutoff are actually classified as legitimate. Figure

2 shows a plot of the precision/recall tradeoff as
this threshold is changed. As the threshold is
raised, precision increases while recall decreases.
Based on this graph we choose to set the threshold
at 0.9.

Learning Algorithm Performance

0.5

0.6

0.7

0.8

0.9

1

Baseline Naïve Bayes SVM Decision
List

Decision
Tree

DT +
Boosting

DT +
Bagging

Recall Precision F-Score

4.2

1 Precision and Recall here refer only to the output of the
extraction patterns. Thus, 100% recall indicates that all
legitimate concept-instance pairs that were extracted using the
patterns, were classified as legitimate by the filter. It does not
indicate that all concept-instance information in the text was
extracted. Precision is to be understood similarly.

Applying the Decision Tree algorithm with
Bagging, using the pre-determined threshold, to the
held out test set of 500 examples extracted with the
CN/PN pattern yields a precision of .95 and a
recall of .718. Under these same conditions, but
applied to a held out test set of 500 examples
extracted with the APOS pattern, the filter has a
precision of .95 and a recall of .92.

Precision vs. Recall
as a Function of Threshold

0.955

96

0.965
97

0.975

98

0.985
99

0.995

0.4 0.5 0.6 0.7 0.8 0.9
Recall

P
re

ci
si

o
n

 0.

 0.

 0.

 0.

Figure 2. Plot of precision and recall on a 500 example
validation set as a threshold cutoff for positive
classification is changed. As the threshold is increased,
precision increases while recall decreases. At the 0.9
threshold value, precision/recall on the validation set is
0.98/0.7, on a held out test set it is 0.95/0.72.

Final Extraction Results

The CN/PN and APOS filters were used to extract
concept-instance pairs from unstructured text. The
approximately 15GB of newspaper text (described
above) was passed through the regular expression
patterns and filtered through their appropriate
learned classifier. The output of this process is
approximately 2,000,000 concept-instance pairs.
Approximately 930,000 of these are unique pairs,
comprised of nearly 500,000 unique instances 2 ,
paired with over 450,000 unique concepts3 (e.g.,

2 Uniqueness of instances is judged here solely on the basis of
surface orthography. Thus, “Bill Clinton” and “William
Clinton” are considered two distinct instances. The effects of
collapsing such cases will be considered in future work.
3 As with instances, concept uniqueness is judged solely on the
basis of orthography. Thus, “Steven Spielberg” and “J. Edgar
Hoover” are both considered instances of the single concept

Threshold=0.90

Threshold=0.80

“sultry screen actress”), which can be categorized
based on nearly 100,000 unique complex concept
heads (e.g., “screen actress”) and about 14,000
unique simple concept heads (e.g., “actress”).
Table 3 shows examples of this output.

A sample of 100 concept-instance pairs was
randomly selected from the 2,000,000 extracted
pairs and hand annotated. 93% of these were
judged legitimate concept-instance pairs.

Concept head Concept Instance
Producer Executive producer Av Westin
Newspaper Military newspaper Red Star
Expert Menopause expert Morris Notwlovitz
Flutist Flutist James Galway
Table 3. Example of concept-instance repository.
Table shows extracted relations indexed by concept
head, complete concept, and instance.

5

Question Answering Evaluation

A large number of questions were collected over
the period of a few months from
www.askJeeves.com. 100 questions of the form
“Who is x” were randomly selected from this set.
The questions queried concept-instance relations
through both instance centered queries (e.g., “Who
is Jennifer Capriati?”) and concept centered
queries (e.g., “Who is the mayor of Boston?”).
Answers to these questions were then
automatically generated both by look-up in the
2,000,000 extracted concept-instance pairs and by
TextMap, a state of the art web-based Question
Answering system which ranked among the top 10
systems in the TREC 11 Question Answering track
(Hermjakob et al., 2002).

Although both systems supply multiple
possible answers for a question, evaluations were
conducted on only one answer.4 For TextMap, this
answer is just the output with highest confidence,
i.e., the system’s first answer. For the extracted
instances, the answer was that concept-instance
pair that appeared most frequently in the list of
extracted examples. If all pairs appear with equal
frequency, a selection is made at random.

Answers for both systems are then classified
by hand into three categories based upon their

“director.” See Fleischman and Hovy (2002) for techniques
useful in disambiguating such instances.
4 Integration of multiple answers is an open research question
and is not addressed in this work.

information content. 5 Answers that unequivocally
identify an instance’s celebrity (e.g., “Jennifer
Capriati is a tennis star”) are marked correct.
Answers that provide some, but insufficient,
evidence to identify the instance’s celebrity (e.g.,
“Jennifer Capriati is a defending champion”) are
marked partially correct. Answers that provide no
information to identify the instance’s celebrity
(e.g., “Jennifer Capriati is a daughter”) are marked
incorrect.6 Table 5 shows example answers and
judgments for both systems.

State of the Art Extraction
Answer Mark Answer Mark

Who is Nadia
Comaneci?

U.S.
citizen

P Romanian
Gymnast

C

Who is Lilian
Thuram?

News
page

I French
defender

P

Who is the mayor
of Wash., D.C.?

Anthony
Williams

C no answer
found

I

Table 5. Example answers and judgments of a state of
the art system and look-up method using extracted
concept-instance pairs on questions collected online.
Ratings were judged as either correct (C), partially
correct (P), or incorrect (I).

6

Question Answering Results

Results of this comparison are presented in Figure
3. The simple look-up of extracted concept-
instance pairs generated 8% more partially correct
answers and 25% more entirely correct answers
than TextMap. Also, 21% of the questions that
TextMap answered incorrectly, were answered
partially correctly using the extracted pairs; and
36% of the questions that TextMap answered
incorrectly, were answered entirely correctly using
the extracted pairs. This suggests that over half of
the questions that TextMap got wrong could have
benefited from information in the concept-instance
pairs. Finally, while the look-up of extracted pairs
took approximately ten seconds for all 100
questions, TextMap took approximately 9 hours.

5 Evaluation of such “definition questions” is an active
research challenge and the subject of a recent TREC pilot
study. While the criteria presented here are not ideal, they are
consistent, and sufficient for a system comparison.
6 While TextMap is guaranteed to return some answer for
every question posed, there is no guarantee that an answer will
be found amongst the extracted concept-instance pairs. When
such a case arises, the look-up method’s answer is counted as
incorrect.

This difference represents a time speed up of three
orders of magnitude.

There are a number of reasons why the state of
the art system performed poorly compared to the
simple extraction method. First, as mentioned
above, the lack of newspaper text on the web
means that TextMap did not have access to the
same information-rich resources that the extraction
method exploited. Further, the simplicity of the
extraction method makes it more resilient to the
noise (such as parser error) that is introduced by
the many modules employed by TextMap. And
finally, because it is designed to answer any type
of question, not just “Who is…“ questions,
TextMap is not as precise as the extraction
technique. This is due to both its lack of tailor
made patterns for specific question types, as well
as, its inability to filter those patterns with high
precision.

7

Figure 3. Evaluation results for the state of the art
system and look-up method using extracted concept-
instance pairs on 100 “Who is …” questions collected
online. Results are grouped by category: partially
correct, entirely correct, and entirely incorrect.

Discussion and Future Work

The information repository approach to Question
Answering offers possibilities of increased speed
and accuracy for current systems. By collecting
information offline, on text not readily available to
search engines, and storing it to be accessible
quickly and easily, Question Answering systems
will be able to operate more efficiently and more
effectively.

In order to achieve real-time, accurate
Question Answering, repositories of data much
larger than that described here must be generated.

We imagine huge data warehouses where each
repository contains relations, such as birthplace-of,
location-of, creator-of, etc. These repositories
would be automatically filled by a system that
continuously watches various online news sources,
scouring them for useful information.

Such a system would have a large library of
extraction patterns for many different types of
relations. These patterns could be manually
generated, such as the ones described here, or
learned from text, as described in Ravichandran
and Hovy (2002). Each pattern would have a
machine-learned filter in order to insure high
precision output relations. These relations would
then be stored in repositories that could be quickly
and easily searched to answer user queries. 7

In this way, we envision a system similar to
(Lin et al., 2002). However, instead of relying on
costly structured databases and pain stakingly
generated wrappers, repositories are automatically
filled with information from many different
patterns. Access to these repositories does not
require wrapper generation, because all
information is stored in easily accessible natural
language text. The key here is the use of learned
filters which insure that the information in the
repository is clean and reliable.

Performance on a Question
Answering Task

10
15
20
25
30
35
40
45
50

Partial Correct Incorrect

%
 C

or
re

ct

State of the Art System Extraction System

Such a system is not meant to be complete by
itself, however. Many aspects of Question
Answering remain to be addressed. For example,
question classification is necessary in order to
determine which repositories (i.e., which relations)
are associated with which questions.

Further, many question types require post
processing. Even for “Who is …” questions
multiple answers need to be integrated before final
output is presented. An interesting corollary to
using this offline strategy is that each extracted
instance has with it a frequency distribution of
associated concepts (e.g., for “Bill Clinton”: 105
“US president”; 52 “candidate”; 4 “nominee”).
This distribution can be used in conjunction with
time/stamp information to formulate mini
biographies as answers to “Who is …” questions.

We believe that generating and maintaining
information repositories will advance many aspects
of Natural Language Processing. Their uses in

7 An important addition to this system would be the inclusion
of time/date stamp and data source information. For, while
“George Bush” is “president” today, he will not be forever.

data driven Question Answering are clear. In
addition, concept-instance pairs could be useful in
disambiguating references in text, which is a
challenge in Machine Translation and Text
Summarization.

In order to facilitate further research, we have
made the extracted pairs described here publicly
available at www.isi.edu/~fleisch/instances.txt.gz.
In order to maximize the utility of these pairs, we
are integrating them into an Ontology, where they
can be more efficiently stored, cross-correlated,
and shared.

Acknowledgments

The authors would like to thank Miruna Ticrea for

her valuable help with training the classifier. We
would also like to thank Andrew Philpot for his work
on integrating instances into the Omega Ontology,
and Daniel Marcu whose comments and ideas were
invaluable.

References

Michelle Banko, Eric Brill. 2001. Scaling to Very Very

Large Corpora for Natural Language Disambiguation.
Proceedings of the Association for Computational
Linguistics, Toulouse, France.

Matthew Berland and Eugene Charniak. 1999. Finding

Parts in Very Large Corpora. Proceedings of the 37th
Annual Meeting of the Association for Computational
Linguistics. College Park, Maryland.

Eric Brill. 1994. Some advances in rule based part of speech

tagging. Proc. of AAAI. Seattle, Washington.

Eric Brill, Jimmy Lin, Michele Banko, Susan Dumais,

and Andrew Ng. 2001. Data-Intensive Question
Answering. Proceedings of the 2001 Text REtrieval
Conference (TREC 2001), Gaithersburg, MD.

Michael Fleischman and Eduard Hovy. 2002. Fine

Grained Classification of Named Entities. 19th
International Conference on Computational
Linguistics (COLING). Taipei, Taiwan.

Ulf Hermjakob, Abdessamad Echihabi, and Daniel

Marcu. 2002. Natural Language Based
Reformulation Resource and Web Exploitation for
Question Answering. In Proceedings of the TREC-
2002 Conference, NIST. Gaithersburg, MD.

Marti Hearst. 1992. Automatic Acquisition of
Hyponyms from Large Text Corpora. Proceedings of
the Fourteenth International Conference on
Computational Linguistics, Nantes, France.

Jimmy Lin, Aaron Fernandes, Boris Katz, Gregory

Marton, and Stefanie Tellex. 2002. Extracting
Answers from the Web Using Data Annotation and
Data Mining Techniques. Proceedings of the 2002
Text REtrieval Conference (TREC 2002)
Gaithersburg, MD.

Gideon S. Mann. 2002. Fine-Grained Proper Noun

Ontologies for Question Answering. SemaNet'02:
Building and Using Semantic Networks, Taipei,
Taiwan.

Deepak Ravichandran and Eduard Hovy. 2002.

Learning surface text patterns for a Question
Answering system. Proceedings of the 40th ACL
conference. Philadelphia, PA.

I. Witten and E. Frank. 1999. Data Mining: Practical

Machine Learning Tools and Techniques with JAVA
implementations. Morgan Kaufmann, San Francisco,
CA.

	Introduction
	Related Work
	Relation Extraction
	Data Collection and Preprocessing
	Extraction Patterns
	Filtering

	Extraction Results
	Machine Learning Results
	Final Extraction Results

	Question Answering Evaluation
	Question Answering Results
	Discussion and Future Work

