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Abstract 

Recent work in Question Answering has 
focused on web-based systems that 
extract answers using simple lexico-
syntactic patterns.  We present an 
alternative strategy in which patterns are 
used to extract highly precise relational 
information offline, creating a data 
repository that is used to efficiently 
answer questions.  We evaluate our 
strategy on a challenging subset of 
questions, i.e. “Who is …” questions, 
against a state of the art web-based 
Question Answering system.  Results 
indicate that the extracted relations 
answer 25% more questions correctly and 
do so three orders of magnitude faster 
than the state of the art system. 

1 Introduction 

Many of the recent advances in Question 
Answering have followed from the insight that 
systems can benefit by exploiting the redundancy 
of information in large corpora.  Brill et al. (2001) 
describe using the vast amount of data available on 
the World Wide Web to achieve impressive 
performance with relatively simple techniques.  
While the Web is a powerful resource, its 
usefulness in Question Answering is not without 
limits.   

The Web, while nearly infinite in content, is 
not a complete repository of useful information.  
Most newspaper texts, for example, do not remain 

accessible on the Web for more than a few weeks.  
Further, while Information Retrieval techniques are 
relatively successful at managing the vast quantity 
of text available on the Web, the exactness 
required of Question Answering systems makes 
them too slow and impractical for ordinary users. 

In order to combat these inadequacies, we 
propose a strategy in which information is 
extracted automatically from electronic texts 
offline, and stored for quick and easy access.  We 
borrow techniques from Text Mining in order to 
extract semantic relations (e.g., concept-instance 
relations) between lexical items.  We enhance 
these techniques by increasing the yield and 
precision of the relations that we extract.   

Our strategy is to collect a large sample of 
newspaper text (15GB) and use multiple part of 
speech patterns to extract the semantic relations.  
We then filter out the noise from these extracted 
relations using a machine-learned classifier.  This 
process generates a high precision repository of 
information that can be accessed quickly and 
easily. 

We test the feasibility of this strategy on one 
semantic relation and a challenging subset of 
questions, i.e., “Who is …” questions, in which 
either a concept is presented and an instance is 
requested (e.g., “Who is the mayor of Boston?”), 
or an instance is presented and a concept is 
requested (e.g., “Who is Jennifer Capriati?”).  By 
choosing this subset of questions we are able to 
focus only on answers given by concept-instance 
relationships.  While this paper examines only this 
type of relation, the techniques we propose are 
easily extensible to other question types. 

Evaluations are conducted using a set of “Who 
is …” questions collected over the period of a few 



months from the commercial question-based 
search engine www.askJeeves.com.  We extract 
approximately 2,000,000 concept-instance 
relations from newspaper text using syntactic 
patterns and machine-learned filters (e.g., 
“president Bill Clinton” and “Bill Clinton, 
president of the USA,”).  We then compare 
answers based on these relations to answers given 
by TextMap (Hermjakob et al., 2002), a state of the 
art web-based question answering system.  Finally, 
we discuss the results of this evaluation and the 
implications and limitations of our strategy. 
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3.2 

Related Work 

A great deal of work has examined the problem of 
extracting semantic relations from unstructured 
text.  Hearst (1992) examined extracting hyponym 
data by taking advantage of lexical patterns in text.  
Using patterns involving the phrase “such as”, she 
reports finding only 46 relations in 20M of New 
York Times text.  Berland and Charniak (1999) 
extract “part-of” relations between lexical items in 
text, achieving only 55% accuracy with their 
method.  Finally, Mann (2002) describes a method 
for extracting instances from text that takes 
advantage of part of speech patterns involving 
proper nouns.  Mann reports extracting 200,000 
concept-instance pairs from 1GB of Associated 
Press text, only 60% of which were found to be 
legitimate descriptions.   

These studies indicate two distinct problems 
associated with using patterns to extract semantic 
information from text.  First, the patterns yield 
only a small amount of the information that may be 
present in a text (the Recall problem).  Second, 
only a small fraction of the information that the 
patterns yield is reliable (the Precision problem).   

Relation Extraction 

Our approach follows closely from Mann (2002).  
However, we extend this work by directly 
addressing the two problems stated above.  In 
order to address the Recall problem, we extend the 
list of patterns used for extraction to take 
advantage of appositions.  Further, following 
Banko and Brill (2001), we increase our yield by 
increasing the amount of data used by an order of 
magnitude over previously published work.  
Finally, in order to address the Precision problem, 

we use machine learning techniques to filter the 
output of the part of speech patterns, thus purifying 
the extracted instances. 

Data Collection and Preprocessing 

Approximately 15GB of newspaper text was 
collected from: the TREC 9 corpus (~3.5GB), the 
TREC 2002 corpus (~3.5GB), Yahoo! News 
(.5GB), the AP newswire (~2GB), the Los Angeles 
Times (~.5GB), the New York Times (~2GB), 
Reuters (~.8GB), the Wall Street Journal 
(~1.2GB), and various online news websites 
(~.7GB).  The text was cleaned of HTML (when 
necessary), word and sentence segmented, and part 
of speech tagged using Brill’s tagger (Brill, 1994). 

Extraction Patterns 

Part of speech patterns were generated to take 
advantage of two syntactic constructions that often 
indicate concept-instance relationships: common 
noun/proper noun constructions (CN/PN) and 
appositions (APOS).  Mann (2002) notes that 
concept-instance relationships are often expressed 
by a syntactic pattern in which a proper noun 
follows immediately after a common noun.  Such 
patterns (e.g. “president George Bush”) are very 
productive and occur 40 times more often than 
patterns employed by Hearst (1992).  Table 1 
shows the regular expression used to extract such 
patterns along with examples of extracted patterns. 
 
${NNP}*${VBG}*${JJ}*${NN}+${NNP}+ 
trainer/NN Victor/NNP Valle/NNP  
ABC/NN spokesman/NN Tom/NNP Mackin/NNP 
official/NN Radio/NNP Vilnius/NNP  
German/NNP expert/NN Rriedhart/NNP 
Dumez/NN Investment/NNP 
Table 1.  The regular expression used to extract CN/PN 
patterns (common noun followed by proper noun).  
Examples of extracted text are presented below.  Text in 
bold indicates that the example is judged illegitimate.  

 
${NNP}+\s*,\/,\s*${DT}*${JJ}*${NN}+(?:of\/IN)* 
          \s*${NNP}*${NN}*${IN}*${DT}*${NNP}* 
          ${NN}*${IN}*${NN}*${NNP}*,\/,  
Stevens/NNP  ,/, president/NN of/IN the/DT firm/NN  ,/, 
Elliott/NNP Hirst/NNP  ,/, md/NN of/IN Oldham/NNP Signs/NNP  ,/, 
George/NNP McPeck/NNP,/, an/DT engineer/NN from/IN Peru/NN,/, 
Marc/NNP Jonson/NNP,/, police/NN chief/NN of/IN Chamblee/NN ,/, 
David/NNP Werner/NNP ,/, a/DT real/JJ estate/NN investor/NN ,/, 
Table 2.  The regular expression used to extract APOS 
patterns (syntactic appositions).  Examples of extracted 
text are presented below.  Text in bold indicates that the 
example is judged illegitimate.  



In addition to the CN/PN pattern of Mann 
(2002), we extracted syntactic appositions (APOS).  
This pattern detects phrases such as “Bill Gates, 
chairman of Microsoft,”.  Table 2 shows the 
regular expression used to extract appositions and 
examples of extracted patterns.  These regular 
expressions are not meant to be exhaustive of all 
possible varieties of patterns construed as CN/PN 
or APOS.  They are “quick and dirty” 
implementations meant to extract a large 
proportion of the patterns in a text, acknowledging 
that some bad examples may leak through. 

3.3 Filtering 

The concept-instance pairs extracted using the 
above patterns are very noisy.  In samples of 
approximately 5000 pairs, 79% of the APOS 
extracted relations were legitimate, and only 45% 
of the CN/PN extracted relations were legitimate.  
This noise is primarily due to overgeneralization of 
the patterns (e.g., “Berlin Wall, the end of the Cold 
War,”) and to errors in the part of speech tagger 
(e.g., “Winnebago/CN Industries/PN”).  Further, 
some extracted relations were considered either 
incomplete (e.g., “political commentator Mr. 
Bruce”) or too general (e.g., “meeting site Bourbon 
Street”) to be useful.  For the purposes of learning 
a filter, these patterns were treated as illegitimate. 

In order to filter out these noisy concept-
instance pairs, 5000 outputs from each pattern 
were hand tagged as either legitimate or 
illegitimate, and used to train a binary classifier.  
The annotated examples were split into a training 
set (4000 examples), a validation set (500 
examples); and a held out test set (500 examples).  
The WEKA machine learning package (Witten and 
Frank, 1999) was used to test the performance of 
various learning and meta-learning algorithms, 
including Naïve Bayes, Decision Tree, Decision 
List, Support Vector Machines, Boosting, and 
Bagging.   

Table 4 shows the list of features used to 
describe each concept-instance pair for training the 
CN/PN filter.  Features are split between those that 
deal with the entire pattern, only the concept, only 
the instance, and the pattern’s overall orthography.  
The most powerful of these features examines an 
Ontology in order to exploit semantic information 
about the concept’s head.  This semantic 
information is found by examining the super-
concept relations of the concept head in the 

110,000 node Omega Ontology (Hovy et al., in 
prep.).   

 
 
Feature 
Type  

Pattern  
Features 

Binary ${JJ}+${NN}+${NNP}+ 
Binary ${NNP}+${JJ}+${NN}+${NNP}+ 
Binary ${NNP}+${NN}+${NNP}+ 
Binary ${NNP}+${VBG}+${JJ}+${NN}+${NNP}+ 
Binary ${NNP}+${VBG}+${NN}+${NNP}+ 
Binary ${NN}+${NNP}+ 
Binary ${VBG}+${JJ}+${NN}+${NNP}+ 
Binary ${VBG}+${NN}+${NNP}+ 
  Concept Features 
Binary Concept head ends in "er" 
Binary Concept head ends in "or" 
Binary Concept head ends in "ess" 
Binary Concept head ends in "ist" 
Binary Concept head ends in "man" 
Binary Concept head ends in "person" 
Binary Concept head ends in "ant" 
Binary Concept head ends in "ial" 
Binary Concept head ends in "ate" 
Binary Concept head ends in "ary" 
Binary Concept head ends in "iot" 
Binary Concept head ends in "ing" 
Binary Concept head is-a occupation 
Binary Concept head is-a person 
Binary Concept head is-a organization 
Binary Concept head is-a company 
Binary Concept includes digits 
Binary Concept has non-word 
Binary Concept head in general list 
Integer Frequency of concept head in CN/PN 
Integer Frequency of concept head in APOS 
  Instance Features 
Integer Number of lexical items in instance 
Binary Instance contains honorific 
Binary Instance contains common name 
Binary Instance ends in honorific 
Binary Instance ends in common name 
Binary Instance ends in determiner 
  Case Features 
Integer Instance: # of lexical items all Caps 
Integer Instance: # of lexical items start w/ Caps 
Binary Instance: All lexical items start w/ Caps 
Binary Instance: All lexical items all Caps 
Integer Concept: # of lexical items all Caps 
Integer Concept: # of lexical items start w/ Caps 
Binary Concept: All lexical items start w/ Caps 
Binary Concept: All lexical items all Caps 
Integer Total # of lexical items all Caps 
Integer Total # of lexical items start w/ Caps 
Table 4.  Features used to train CN/PN pattern filter.  
Pattern features address aspects of the entire pattern, 
Concept features look only at the concept, Instance 
features examine elements of the instance, and Case 
features deal only with the orthography of the lexical 
items. 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1.  Performance of machine learning algorithms 
on a validation set of 500 examples extracted using the 
CN/PN pattern.  Algorithms are compared to a baseline 
in which only concepts that inherit from “Human” or 
“Occupation” in Omega pass through the filter.   
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Extraction Results 

Machine Learning Results 

Figure 1 shows the performance of different 
machine learning algorithms, trained on 4000 
extracted CN/PN concept-instance pairs, and tested 
on a validation set of 500.  Naïve Bayes, Support 
Vector Machine, Decision List and Decision Tree 
algorithms were all evaluated and the Decision 
Tree algorithm (which scored highest of all the 
algorithms) was further tested with Boosting and 
Bagging meta-learning techniques.  The algorithms 
are compared to a baseline filter that accepts 
concept-instance pairs if and only if the concept 
head is a descendent of either the concept 
“Human” or the concept “Occupation” in Omega.  
It is clear from the figure that the Decision Tree 
algorithm plus Bagging gives the highest precision 
and overall F-score.  All subsequent experiments 
are run using this technique.1 

Since high precision is the most important 
criterion for the filter, we also examine the 
performance of the classifier as it is applied with a 
threshold.  Thus, a probability cutoff is set such 
that only positive classifications that exceed this 
cutoff are actually classified as legitimate.  Figure 

2 shows a plot of the precision/recall tradeoff as 
this threshold is changed.  As the threshold is 
raised, precision increases while recall decreases.  
Based on this graph we choose to set the threshold 
at 0.9.  

Learning Algorithm Performance
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1 Precision and Recall here refer only to the output of the 
extraction patterns.  Thus, 100% recall indicates that all 
legitimate concept-instance pairs that were extracted using the 
patterns, were classified as legitimate by the filter.  It does not 
indicate that all concept-instance information in the text was 
extracted.  Precision is to be understood similarly. 

Applying the Decision Tree algorithm with 
Bagging, using the pre-determined threshold, to the 
held out test set of 500 examples extracted with the 
CN/PN pattern yields a precision of .95 and a 
recall of .718.  Under these same conditions, but 
applied to a held out test set of 500 examples 
extracted with the APOS pattern, the filter has a 
precision of .95 and a recall of .92.   
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Figure 2.  Plot of precision and recall on a 500 example 
validation set as a threshold cutoff for positive 
classification is changed.  As the threshold is increased, 
precision increases while recall decreases.  At the 0.9 
threshold value, precision/recall on the validation set is 
0.98/0.7, on a held out test set it is 0.95/0.72.   

Final Extraction Results 

The CN/PN and APOS filters were used to extract 
concept-instance pairs from unstructured text.  The 
approximately 15GB of newspaper text (described 
above) was passed through the regular expression 
patterns and filtered through their appropriate 
learned classifier.  The output of this process is 
approximately 2,000,000 concept-instance pairs.  
Approximately 930,000 of these are unique pairs, 
comprised of nearly 500,000 unique instances 2 , 
paired with over 450,000 unique concepts3 (e.g., 

 
2 Uniqueness of instances is judged here solely on the basis of 
surface orthography.  Thus, “Bill Clinton” and “William 
Clinton” are considered two distinct instances.  The effects of 
collapsing such cases will be considered in future work. 
3 As with instances, concept uniqueness is judged solely on the 
basis of orthography.  Thus, “Steven Spielberg” and “J. Edgar 
Hoover” are both considered instances of the single concept 

Threshold=0.90

Threshold=0.80



“sultry screen actress”), which can be categorized 
based on nearly 100,000 unique complex concept 
heads (e.g., “screen actress”) and about 14,000 
unique simple concept heads (e.g., “actress”).  
Table 3 shows examples of this output. 

A sample of 100 concept-instance pairs was 
randomly selected from the 2,000,000 extracted 
pairs and hand annotated.  93% of these were 
judged legitimate concept-instance pairs. 

 
Concept head Concept Instance 
Producer Executive producer Av Westin 
Newspaper Military newspaper Red Star 
Expert Menopause expert Morris Notwlovitz 
Flutist Flutist James Galway 
Table 3.  Example of concept-instance repository.  
Table shows extracted relations indexed by concept 
head, complete concept, and instance. 
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Question Answering Evaluation 

A large number of questions were collected over 
the period of a few months from 
www.askJeeves.com.  100 questions of the form 
“Who is x” were randomly selected from this set.  
The questions queried concept-instance relations 
through both instance centered queries (e.g., “Who 
is Jennifer Capriati?”) and concept centered 
queries (e.g., “Who is the mayor of Boston?”).  
Answers to these questions were then 
automatically generated both by look-up in the 
2,000,000 extracted concept-instance pairs and by 
TextMap, a state of the art web-based Question 
Answering system which ranked among the top 10 
systems in the TREC 11 Question Answering track 
(Hermjakob et al., 2002). 

Although both systems supply multiple 
possible answers for a question, evaluations were 
conducted on only one answer.4  For TextMap, this 
answer is just the output with highest confidence, 
i.e., the system’s first answer.  For the extracted 
instances, the answer was that concept-instance 
pair that appeared most frequently in the list of 
extracted examples.  If all pairs appear with equal 
frequency, a selection is made at random. 

Answers for both systems are then classified 
by hand into three categories based upon their 

 
“director.”  See Fleischman and Hovy (2002) for techniques 
useful in disambiguating such instances. 
4 Integration of multiple answers is an open research question 
and is not addressed in this work. 

information content. 5  Answers that unequivocally 
identify an instance’s celebrity (e.g., “Jennifer 
Capriati is a tennis star”) are marked correct.  
Answers that provide some, but insufficient, 
evidence to identify the instance’s celebrity (e.g., 
“Jennifer Capriati is a defending champion”) are 
marked partially correct.  Answers that provide no 
information to identify the instance’s celebrity 
(e.g., “Jennifer Capriati is a daughter”) are marked 
incorrect.6  Table 5 shows example answers and 
judgments for both systems. 
 

State of the Art  Extraction  
Answer Mark Answer Mark 

Who is Nadia 
Comaneci? 

U.S. 
citizen 

P Romanian 
Gymnast 

C 

Who is Lilian 
Thuram? 

News 
page 

I French 
defender 

P 

Who is the mayor 
of Wash., D.C.? 

Anthony 
Williams 

C no answer 
found 

I 

Table 5.  Example answers and judgments of a state of 
the art system and look-up method using extracted 
concept-instance pairs on questions collected online.  
Ratings were judged as either correct (C), partially 
correct (P), or incorrect (I). 
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Question Answering Results 

Results of this comparison are presented in Figure 
3.  The simple look-up of extracted concept-
instance pairs generated 8% more partially correct 
answers and 25% more entirely correct answers 
than TextMap.  Also, 21% of the questions that 
TextMap answered incorrectly, were answered 
partially correctly using the extracted pairs; and 
36% of the questions that TextMap answered 
incorrectly, were answered entirely correctly using 
the extracted pairs.  This suggests that over half of 
the questions that TextMap got wrong could have 
benefited from information in the concept-instance 
pairs.  Finally, while the look-up of extracted pairs 
took approximately ten seconds for all 100 
questions, TextMap took approximately 9 hours.  

 
5  Evaluation of such “definition questions” is an active 
research challenge and the subject of a recent TREC pilot 
study.  While the criteria presented here are not ideal, they are 
consistent, and sufficient for a system comparison. 
6  While TextMap is guaranteed to return some answer for 
every question posed, there is no guarantee that an answer will 
be found amongst the extracted concept-instance pairs.  When 
such a case arises, the look-up method’s answer is counted as 
incorrect. 



This difference represents a time speed up of three 
orders of magnitude. 

There are a number of reasons why the state of 
the art system performed poorly compared to the 
simple extraction method.  First, as mentioned 
above, the lack of newspaper text on the web 
means that TextMap did not have access to the 
same information-rich resources that the extraction 
method exploited.  Further, the simplicity of the 
extraction method makes it more resilient to the 
noise (such as parser error) that is introduced by 
the many modules employed by TextMap.  And 
finally, because it is designed to answer any type 
of question, not just “Who is…“ questions, 
TextMap is not as precise as the extraction 
technique.  This is due to both its lack of tailor 
made patterns for specific question types, as well 
as, its inability to filter those patterns with high 
precision. 
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Figure 3.  Evaluation results for the state of the art 
system and look-up method using extracted concept-
instance pairs on 100 “Who is …” questions collected 
online.  Results are grouped by category: partially 
correct, entirely correct, and entirely incorrect. 

Discussion and Future Work 

The information repository approach to Question 
Answering offers possibilities of increased speed 
and accuracy for current systems.  By collecting 
information offline, on text not readily available to 
search engines, and storing it to be accessible 
quickly and easily, Question Answering systems 
will be able to operate more efficiently and more 
effectively.   

In order to achieve real-time, accurate 
Question Answering, repositories of data much 
larger than that described here must be generated.  

We imagine huge data warehouses where each 
repository contains relations, such as birthplace-of, 
location-of, creator-of, etc.  These repositories 
would be automatically filled by a system that 
continuously watches various online news sources, 
scouring them for useful information.   

Such a system would have a large library of 
extraction patterns for many different types of 
relations.  These patterns could be manually 
generated, such as the ones described here, or 
learned from text, as described in Ravichandran 
and Hovy (2002).  Each pattern would have a 
machine-learned filter in order to insure high 
precision output relations.  These relations would 
then be stored in repositories that could be quickly 
and easily searched to answer user queries. 7   

In this way, we envision a system similar to 
(Lin et al., 2002).  However, instead of relying on 
costly structured databases and pain stakingly 
generated wrappers, repositories are automatically 
filled with information from many different 
patterns.  Access to these repositories does not 
require wrapper generation, because all 
information is stored in easily accessible natural 
language text.  The key here is the use of learned 
filters which insure that the information in the 
repository is clean and reliable. 

Performance on a Question 
Answering Task
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Such a system is not meant to be complete by 
itself, however.  Many aspects of Question 
Answering remain to be addressed.  For example, 
question classification is necessary in order to 
determine which repositories (i.e., which relations) 
are associated with which questions.   

Further, many question types require post 
processing.  Even for “Who is …” questions 
multiple answers need to be integrated before final 
output is presented.  An interesting corollary to 
using this offline strategy is that each extracted 
instance has with it a frequency distribution of 
associated concepts (e.g., for “Bill Clinton”: 105 
“US president”; 52 “candidate”; 4 “nominee”).  
This distribution can be used in conjunction with 
time/stamp information to formulate mini 
biographies as answers to “Who is …” questions. 

We believe that generating and maintaining 
information repositories will advance many aspects 
of Natural Language Processing.  Their uses in 

 
7 An important addition to this system would be the inclusion 
of time/date stamp and data source information.  For, while 
“George Bush” is “president” today, he will not be forever. 



data driven Question Answering are clear.  In 
addition, concept-instance pairs could be useful in 
disambiguating references in text, which is a 
challenge in Machine Translation and Text 
Summarization.   

In order to facilitate further research, we have 
made the extracted pairs described here publicly 
available at www.isi.edu/~fleisch/instances.txt.gz.  
In order to maximize the utility of these pairs, we 
are integrating them into an Ontology, where they 
can be more efficiently stored, cross-correlated, 
and shared.   
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