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Abstract

Context is used in many NLP systems as
an indicator of a term’s syntactic and se-
mantic function. The accuracy of the sys-
tem is dependent on the quality and quan-
tity of contextual information available to
describe each term. However, the quan-
tity variable is no longer fixed by lim-
ited corpus resources. Given fixed train-
ing time and computational resources, it
makes sense for systems to invest time
in extracting high quality contextual in-
formation from a fixed corpus. However,
with an effectively limitless quantity of
text available, extraction rate and repre-
sentation size need to be considered. We
use thesaurus extraction with a range of
context extracting tools to demonstrate the
interaction between context quantity, time
and size on a corpus of 300 million words.

1 Introduction

Context plays an important role in many natural lan-
guage tasks. For example, the accuracy of part of
speech taggers or word sense disambiguation sys-
tems depends on the quality and quantity of con-
textual information these systems can extract from
the training data. When predicting the sense of a
word, for instance, the immediately preceding word
is likely to be more important than the tenth previ-
ous word; similar observations can be made about
POS taggers or chunkers. A crucial part of train-
ing these systems lies in extracting from the data
high-quality contextual information, in the sense of

defining contexts that are both accurate and corre-
lated with the information (the POS tags, the word
senses, the chunks) the system is trying to extract.

The quality of contextual information is often de-
termined by the size of the training corpus: with
less data available, extracting context information
for any given phenomenon becomes less reliable.
However, corpus size is no longer a limiting fac-
tor: whereas up to now people have typically worked
with corpora of around one million words, it has be-
come feasible to build much larger document collec-
tions; for example, Banko and Brill (2001) report on
experiments with a one billion word corpus.

When using a much larger corpus and scaling the
context space, there are, however, other trade-offs to
take into consideration: the size of the corpus may
make it unfeasible to train some systems because of
efficiency issues or hardware costs; it may also result
in an unmanageable expansion of the extracted con-
text information, reducing the performance of the
systems that have to make use of this information.

This paper reports on experiments that try to es-
tablish some of the trade-offs between corpus size,
processing time, hardware costs and the perfor-
mance of the resulting systems. We report on ex-
periments with a large corpus (around 300 mil-
lion words). We trained a thesaurus extraction sys-
tem with a range of context-extracting front-ends to
demonstrate the interaction between context quality,
extraction time and representation size.

2 Automatic Thesaurus Extraction

Thesauri have traditionally been used in informa-
tion retrieval tasks to expand words in queries with
synonymous terms (e.g. Ruge, (1997)). More re-



cently, semantic resources have also been used in
collocation discovery (Pearce, 2001), smoothing and
model estimation (Brown et al., 1992; Clark and
Weir, 2001) and text classification (Baker and Mc-
Callum, 1998). Unfortunately, thesauri are very ex-
pensive and time-consuming to produce manually,
and tend to suffer from problems of bias, inconsis-
tency, and lack of coverage. In addition, thesaurus
compilers cannot keep up with constantly evolving
language use and cannot afford to build new thesauri
for the many subdomains that information extraction
and retrieval systems are being developed for. There
is a clear need for methods to extract thesauri auto-
matically or tools that assist in the manual creation
and updating of these semantic resources.

Most existing work on thesaurus extraction and
word clustering is based on the general observation
that related terms will appear in similar contexts.
The differences tend to lie in the way “context” is
defined and in the way similarity is calculated. Most
systems extract co-occurrence and syntactic infor-
mation from the words surrounding the target term,
which is then converted into a vector-space repre-
sentation of the contexts that each target term ap-
pears in (Brown et al., 1992; Pereira et al., 1993;
Ruge, 1997; Lin, 1998b). Other systems take the
whole document as the context and consider term
co-occurrence at the document level (Crouch, 1988;
Sanderson and Croft, 1999). Once these contexts
have been defined, these systems then use clustering
or nearest neighbour methods to find similar terms.

Finally, some systems extract synonyms directly
without extracting and comparing contextual rep-
resentations for each term. Instead, these systems
recognise terms within certain linguistic patterns
(e.g. X, Y and other Zs) which associate synonyms
and hyponyms (Hearst, 1992; Caraballo, 1999).

Thesaurus extraction is a good task to use to ex-
periment with scaling context spaces. The vector-
space model with nearest neighbour searching is
simple, so we needn’t worry about interactions be-
tween the contexts we select and a learning algo-
rithm (such as independence of the features). But
also, thesaurus extraction is a task where success
has been limited when using small corpora (Grefen-
stette, 1994); corpora of the order of 300 million
words have already been shown to be more success-
ful at this task (Lin, 1998b).

3 Experiments

Vector-space thesaurus extraction can be separated
into two independent processes. The first step ex-
tracts the contexts from raw text and compiles them
into a vector-space statistical description of the con-
texts each potential thesaurus term appears in.

We define a context relation as a tuple (w,r,w”)
where w is a thesaurus term, occurring in relation
type r, with another word w’ in the sentence. The
type can be grammatical or the position of w’ in a
context window: the relation (dog, direct-obj,
walk) indicates that the term dog, was the direct ob-
ject of the verb walk. Often we treat the tuple (r, w”)
as a single unit and refer to it as an attribute of w.
The context extraction systems used for these exper-
iments are described in the following section.

The second step in thesaurus extraction performs
clustering or nearest-neighbour analysis to deter-
mine which terms are similar based on their context
vectors. Our second component is similar to Grefen-
stette’s SEXTANT system, which performs nearest-
neighbour calculations for each pair of potential the-
saurus terms. For nearest-neighbour measurements
we must define a function to judge the similarity be-
tween two context vectors (e.g. the cosine measure)
and a function to combine the raw instance frequen-
cies for each context relation into weighted vector
components.

SEXTANT uses a generalisation of the Jaccard
measure to measure similarity. The Jaccard measure
is the cardinality ratio of the intersection and union
of attribute sets (atts(w,,) is the attribute set for w;,):

| atts(wy,) N atts(wy,)|
| atts(w,,) U atts(wy,)|

€]

The generalised Jaccard measure allows each rela-
tion to have a significance weight (based on word,
attribute and relation frequencies) associated with it:

Zaeatts(wm)Uatts(wn) min(Wgt(Wm’ a)’ Wgt(wn’ a))

Zaeatts(w,,,)Uatts(wn) maX(Wgt(Wma a)’ Wgt(wn’ a))
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Grefenstette originally used the weighting function:
log,(f(w;,a;) + 1)
log,(n(a;) + 1)
where f(w;,a;) is the frequency of the relation and

n(a;) is the number of different words a; appears in
relations with.

3)

wgt(w;,a;) =



Name ‘ Context Description
W(L{R;) | one word to left or right
W(Ly) one word to the left

W(L;2) | one or two words to the left
W(Li_3) | one to three words to the left

Table 1: Window extractors

However, we have found that using the t-test be-
tween the joint and independent distributions of a
word and its attribute:

p(wi,a;) — p(wip(a;)
\VpPwip(a))

gives superior performance (Curran and Moens,
2002) and is therefore used for our experiments.

“)

wgt(w;, a;) =

4 Context Extractors

We have experimented with a number of different
systems for extracting the contexts for each word.
These systems show a wide range in complexity
of method and implementation, and hence develop-
ment effort and execution time.

The simplest method we implemented extracts the
occurrence counts of words within a particular win-
dow surrounding the thesaurus term. These window
extractors are very easy to implement and run very
quickly. The window geometries used in this experi-
ment are listed in Table 1. Extractors marked with an
asterisk, for example W(L;R*), do not distinguish
(within the relation type) between different positions
of the word w’ in the window.

At a greater level of complexity we have two shal-
low NLP systems which provide extra syntactic in-
formation in the extracted contexts. The first sys-
tem is based on the syntactic relation extractor from
SEXTANT with a different POS tagger and chunker.
The SEXTANT-based extractor we developed uses a
very simple Naive Bayes POS tagger and chunker.
This is very simple to implement and is extremely
fast since it optimises the tag selection locally at the
current word rather than performing beam or Viterbi
search over the entire sentence. After the raw text
has been POS tagged and chunked, the SEXTANT re-
lation extraction algorithm is run over the text. This
consists of five passes over each sentence that asso-
ciate each noun with the modifiers and verbs from
the syntactic contexts that it appears in.

Corpus ‘ Sentences Words
British National Corpus 6.2M 114M
Reuters Corpus Vol 1 8.7™M 193M

Table 2: Training Corpora Statistics

The second shallow parsing extractor we used was
the CASS parser (Abney, 1996), which uses cas-
caded finite state transducers to produce a limited
depth parse of POS tagged text. We used the out-
put of the Naive Bayes POS tagger output as input
to the CASS. The context relations used were ex-
tracted directly by the tuples program (using e8
demo grammar) included in the CASS distribution.
The FST parsing algorithm is very efficient and so
CASSs also ran very quickly. The times reported be-
low include the Naive Bayes POS tagging time.

The final, most sophisticated extractor used was
the MINTPAR parser (Lin, 1998a), which is a broad-
coverage principle-based parser. The context rela-
tions used were extracted directly from the full parse
tree. Although fast for a full parser, MINIPAR was
no match for the simpler extractors.

For this experiment we needed a large quantity of
text which we could group into a range of corpus
sizes. We combined the BNC and Reuters corpus to
produce a 300 million word corpus. The respective
sizes of each are shown in Table 2. The sentences
were randomly shuffled together to produce a sin-
gle homogeneous corpus. This corpus was split into
two 150M word corpora over which the main experi-
mental results are averaged. We then created smaller
corpora of size % down to 6—14th of each 150M corpus.
The next section describes the method of evaluating
each thesaurus created by the combination of a given
context extraction system and corpus size.

5 [Evaluation

For the purposes of evaluation, we selected 70 single
word noun terms for thesaurus extraction. To avoid
sample bias, the words were randomly selected from
Wordnet such that they covered a range of values for
the following word properties:

occurrence frequency based on frequency counts
from the Penn Treebank, BNC and Reuters;

number of senses based on the number of Wordnet
synsets and Macquarie Thesaurus entries;



generality/specificity based on depth of the term in
the Wordnet hierarchy;

abstractness/concreteness based on even distribu-
tion across all Wordnet subtrees.

Table 3 shows some of the selected terms with fre-
quency and synonym set data. For each term we
extracted a thesaurus entry with 200 potential syn-
onyms and their weighted Jaccard scores.

The most difficult aspect of thesaurus extraction
is evaluating the quality of the result. The sim-
plest method of evaluation is direct comparison of
the extracted thesaurus with a manually created gold
standard (Grefenstette, 1994). However on smaller
corpora direct matching alone is often too coarse-
grained and thesaurus coverage is a problem.

Our experiments use a combination of three the-
sauri available in electronic form: The Macquarie
Thesaurus (Bernard, 1990), Roget’s Thesaurus (Ro-
get, 1911), and the Moby Thesaurus (Ward, 1996).
Each thesaurus is structured differently: Roget’s and
Macquarie are topic ordered and the Moby thesaurus
is head term ordered. Roget’s is quite dated and has
low coverage, and contains a deep hierarchy (depth
up to seven) with terms grouped in 8696 small syn-
onym sets at the leaves of the hierarchy. The Mac-
quarie consists of 812 large topics (often in antonym
related pairs), each of which is separated into 21174
small synonym sets. Roget’s and the Macquarie
provide sense distinctions by placing terms in mul-
tiple synonym sets. The Moby thesaurus consists
of 30259 head terms and large synonym lists which
conflate all the head term senses. The extracted the-
saurus does not distinguish between different head
senses. Therefore, we convert the Roget’s and Mac-
quarie thesaurus into head term ordered format by
combining each small sense set that the head term
appears in.

We create a gold standard thesaurus containing
the union of the synonym lists from each thesaurus,
giving a total of 23207 synonyms for the 70 terms.
With these gold standard resources in place, it is
possible to use precision and recall measures to cal-
culate the performance of the thesaurus extraction
systems. To help overcome the problems of coarse-
grained direct comparisons we use three different
types of measure to evaluate thesaurus quality:

1. Direct Match (DIRECT)

2. Precision of the n top ranked synonyms (P(n))

3. Inverse Rank (INVR)

A match is an extracted synonym that appears in
the corresponding gold standard synonym list. The
direct match score is the number of such matches for
each term. Precision of the top n is the percentage
of matches in the top n extracted synonyms. In these
experiments, we calculate this forn = 1, 5, and 10.
The inverse rank score is the sum of the inverse rank
of each match. For example, if matching synonyms
appear in the extracted synonym list at ranks 3, 5
and 28, then the inverse rank score is % + % + 2—18 =
0.569. The maximum inverse rank score is 5.878 for
a synonym list of 200 terms. Inverse rank is a good
measure of subtle differences in ranked results. Each
measure is averaged over the extracted synonym lists
for all 70 thesaurus terms.

6 Results

Since MINIPAR performs morphological analysis on
the context relations we have added an existing mor-
phological analyser (Minnen et al., 2000) to the
other extractors. Table 4 shows the improvement
gained by morphological analysis of the attributes
and relations for the SEXTANT 150M corpus.

The improvement in results is quite significant, as
is the reduction in the representation space and num-
ber of unique context relations. The reduction in the
number of terms is a result of coalescing the plu-
ral nouns with their corresponding singular nouns,
which also reduces data sparseness problems. The
remainder of the results use morphological analysis
of both the words and attributes.

Table 5 summarises the average results of ap-
plying all of the extraction systems to the two
150M word corpora. The first thing to note is
the time spent extracting contextual information:
MINIPAR takes significantly longer to run than the
other extractors. Secondly, SEXTANT and MINI-
PAR have quite similar results overall, but MINIPAR
is slightly better across most measures. However,
SEXTANT runs about 28 times faster than MINI-
PAR. Also, MINIPAR extracts many more terms
and relations with a much larger representation than
SEXTANT. This is partly because MINIPAR ex-
tracts more types of relations from the parse tree



Word [PTB Rank PTB # BNC # Reuters # Macquaric # WordNet # Min/Max WordNet subtree roots
company 38 4076 52779 456580 8 9 3/6 entity, group, state
interest 138 919 37454 146043 12 12 3/8 abs., act, group, poss., state
problem 418 622 56361 63333 4 3 3/7 abs., psych., state

change 681 406 35641 55081 8 10 2/12  abs, act, entity, event, phenom.
house 896 223 47801 45651 10 12 3/6 act, entity, group

idea 1227 134 32754 13527 10 5 3/7 entity, psych.
opinion 1947 78 9122 16320 4 6 4/8 abs., act, psych.

radio 2278 59 9046 20913 2 3 6/8 entity

star 5130 29 8301 6586 11 7 4/8 abs., entity

knowledge 5197 19 14580 2813 3 1 1/1 psych.
pants 13264 5 429 282 3 2 6/9 entity
tightness 30817 1 119 2020 5 3 4/5 abs., state

Table 3: Examples of the 70 thesaurus evaluation terms with distribution information

Morph. Analysis | Space  Unique Terms DIRECT P(1) P(5) P(10) INVR
None 345Mb  14.70M 298k 20.33 325% 369% 33.6% 1.37
Attributes 302Mb  13.17M 298k 20.65 320% 376% 325% 1.36
Both 274Mb  12.08M 269k 23.74 645% 470% 39.0% 1.86

Table 4: Effect of morphological analysis on SEXTANT thesaurus quality

than SEXTANT, and partly because it extracts ex-
tra multi-word terms. Amongst the simpler meth-
ods, W(L{R;) and W(L;2) give reasonable results.
The larger windows with low correlation between
the thesaurus term and context, extract a massive
context representation but the results are about 10%
worse than the syntactic extractors.

Overall the precision and recall are relatively
poor. Poor recall is partly due to the gold stan-
dard containing some plurals and multi-word terms
which account for about 25% of the synonyms.
These have been retained because the MINTPAR and
CASS systems are capable of identifying (at least
some) multi-word terms.

Given a fixed time period (of more than the four
days MINIPAR takes) and a fixed 150M corpus we
would probably still choose to use MINIPAR unless
the representation was too big for our learning algo-
rithm, since the thesaurus quality is slightly better.

Table 6 shows what happens to thesaurus quality
as we decrease the size of the corpus to 6—14th of its
original size (2.3M words) for SEXTANT. Halving
the corpus results in a significant reduction for most
of the measures. All five evaluation measures show
the same log-linear dependence on the size of the
corpus. Figure 1 shows the same trend for Inverse
Rank evaluation of the MINIPAR thesaurus with a
log-linear fitting the data points.

We can use the same curve fitting to estimate the-

Inverse Rank measure
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Figure 1: MINIPAR INVR scores versus corpus size

saurus quality on larger corpora for three of the best
extractors: SEXTANT, MINTIPAR and W(LR;). Fig-
ure 2 does this with the direct match evaluation. The
estimate indicates that MINIPAR will continue to be
the best performer on direct matching. We then plot
the direct match scores for the 300M word corpus
to see how accurate our predictions are. The SEX-
TANT system performs almost exactly as predicted
and the other two slightly under-perform their pre-
dicted scores, thus the fitting is accurate enough to
make reasonable predictions.

Figure 2 is a graph for making engineering deci-
sions in conjunction with the data in Table 5. For
instance, if we fix the total time and computational



System | Space Relations Unique Terms DIRECT P(1) P(5) P(10) INVR Time
MINIPAR | 399Mb 142.27M  16.62M 914k 24.55 615% 465% 405% 1.85 4438.9m
SEXTANT | 274Mb 53.07M  12.08M 269k 23.75 645% 470% 390% 1.85 159.0m

CASS 186Mb 50.63M 9.09M 204k 20.20 485% 385% 325% 151 173.7m

W(L,) 117Mb  105.62M 7.04M 406k 20.60 51.5% 400% 325% 1.56 6.8m

W(L;2) 336Mb  206.02M  18.04M 440k 21.30 585% 445% 365% 1.71 7.2m
W(Lp*x) | 258Mb  206.02M  15.34M 440k 20.75 50% 415% 355% 1.64 6.8m
W(L,_3) | 570Mb  301.10M 30.62M 444k 20.50 60.0% 435% 37.0% 1.69 8.2m
W(L;_3%) | 388Mb  301.10M 22.86M 444k 19.85 485% 395% 335% 1.53 8.2m
W(LR,) | 262Mb  211.24M 14.07M 435k 22.40 62.0% 445% 37.0% 1.76 7.2m
W(LiR*) | 21IMb  211.24M  12.56M 435k 20.90 545% 425% 345% 1.64 7.2m

Table 5: Average thesaurus quality results for different extraction systems
Corpus | Space  Relations  Unique Terms DIRECT P(1) P(5) P(10) INVR
150.0M | 274Mb 53.07M  12.08M  268.94k 23.75 645% 47.0% 39.0% 1.85
75.0M | 166Mb 26.54M 7.38M  181.73k 22.60 580% 435% 36.0% 1.73
37.5M 98Mb 13.27M 436M  120.48k 21.75 540% 41.0% 345% 1.62
18.8M 56Mb 6.63M 2.54M 82.33k 20.45 470% 365% 31.0% 1.46
9.4M 32Mb 3.32M 1.44M 55.55k 18.50 400% 325% 27.5% 1.29
4. 18Mb 1.66M 0.82M 37.95k 16.65 340% 295% 23.5% 1.13
2.3M 10Mb 0.83M 0.46M 25.97k 14.60 275% 250% 195% 093

Table 6: Average SEXTANT thesaurus quality results for different corpus sizes

Number of Direct Matches
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x-x W(LR)
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Figure 2: Direct matches versus corpus size

resources at an arbitrary point, e.g. the point where
MINIPAR can process 75M words, we get a best
direct match score of 23.5. However, we can get
the same resultant accuracy by using SEXTANT on
a corpus of 116M words or W(L{R;) on a corpus
of 240M words. From Figure 5, extracting contexts
from corpora of these sizes would take MINIPAR 37
hours, SEXTANT 2 hours and W(L{R) 12 minutes.
Interpolation on Figure 3 predicts that the extraction
would result in 10M unique relations from MINI-
PAR and SEXTANT and 19M from W(L;R;). Fig-
ure 4 indicates that extraction would result in 550k
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Figure 3: Representation size versus corpus size

MINIPAR terms, 200k SEXTANT terms and 600k
W(L{R;) terms.

Given these values and the fact that the time com-
plexity of most thesaurus extraction algorithms is at
least linear in the number of unique relations and
squared in the number of thesaurus terms, it seems
SEXTANT may represent the best solution.

With these size issues in mind, we finally consider
some methods to limit the size of the context rep-
resentation. Table 7 shows the results of perform-
ing various kinds of filtering on the representation
size. The FIXED and LEXICON filters run over the



System | Space  Relations Unique Terms DIRECT P(1) P(5) P(10) INVR
SEXTANT 300M 431Mb 80.33M  20.41M 445k 2530 61.0% 470% 39.0% 1.87
SEXTANT 150M 274Mb 53.07M  12.08M 269k 2375 645% 470% 39.0% 1.85
SEXTANT FIXED 244Mb 61.17M  10.74M 265k 2435 650% 465% 385%  1.86
SEXTANT LEXICON | 410Mb 78.6OM  18.09M 264k 2525 620% 470% 40.0% 1.87
SEXTANT >1 149Mb 67.97TM 6.63M 171k 2420 66.0% 450% 38.0% 1.85
SEXTANT >2 88Mb 62.5TM 3.93M 109k 2320 66.0% 46.0% 36.0% 1.82
Table 7: Thesaurus quality with relation filtering
T — ‘ ‘ ] extremely large corpora. We have demonstrated the
s / ] behaviour of a simple learning algorithm on much
g o e VR 7 more complicated contextual information on very
ERES . large corpora.
E 1 . .
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0 50 100 150 200
Number of words (millions)

250 300 350

Figure 4: Thesaurus terms versus corpus size

full 300M word corpus, but have size limits based
on the 150M word corpus. The FIXED filter does not
allow any object/attribute pairs to be added that were
not extracted from the 150M word corpus. The LEX-
ICON filter does not allow any objects to be added
that were not extracted from the 150M word cor-
pus. The > 1 and > 2 filters prune relations with a
frequency of less than or equal to one or two. The
FIXED and LEXICON filters show that counting over
larger corpora does produce marginally better re-
sults. The > 1 and > 2 filters show that the many
relations that occur infrequently do not contribute
significantly to the vector comparisons and hence
don’t impact on the final results, even though they
dramatically increase the representation size.

7 Conclusion

It is a phenomenon common to many NLP tasks that
the quality or accuracy of a system increases log-
linearly with the size of the corpus. Banko and Brill,
(2001) also found this trend for the task of confu-
sion set disambiguation on corpora of up to one bil-
lion words. They demonstrated behaviour of differ-
ent learning algorithms with very simple contexts on

menting and optimising the NLP tools used for con-
text extraction is of crucial importance since the in-
creased corpus sizes make execution speed an im-
portant evaluation factor when deciding between
different learning algorithms for different tasks and
corpora. These results also motivate further re-
search into improving the asymptotic complexity of
the learning algorithms used in NLP systems. In
the new paradigm, it could well be that far simpler
but scalable learning algorithms significantly out-
perform existing systems.

Finally, the mass availability of online text re-
sources should be taken on board. It is important
that language engineers and computational linguists
continue to try and find new unsupervised or (as
Banko and Brill suggest) semi-supervised methods
for tasks which currently rely on annotated data. It
is also important to consider how information ex-
tracted by systems such as thesaurus extraction sys-
tems can be incorporated into tasks which use pre-
dominantly supervised techniques, e.g. in the form
of class information for smoothing.

We would like to extend this analysis to at least
one billion words for at least the most successful
methods and try other tools and parsers for extract-
ing the contextual information. However, to do this
we must look at methods of compressing the vector-
space model and approximating the full pair-wise
comparison of thesaurus terms. We would also like



to investigate how this thesaurus information can be
used to improve the accuracy or generality of other
NLP tasks.
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