Proceedi ngs of the 40th Annual
Li ngui stics (ACL),

Conput at i onal

Meeting of the Association for
Phi | adel phia, July 2002, pp. 96-103.

Generating Minimal Definite Descriptions

Claire Gardent
CNRS,LORIA, Nancy
gardent@oria.fr

Abstract

The incrementalalgorithm introducedin
(DaleandReiter 1995)for producingdis-
tinguishing descriptionsdoesnot always
generatea minimal description. In this
papey | shav that when generalisedto
setsof individualsanddisjunctive proper
ties, this approachmight generataunnec-
essarilylong and ambiguousand/orepis-
temically redundantdescriptions. | then
presen@nalternatve, constraint-basedl-
gorithmandshaw thatit builds onexisting
relatedalgorithmsin that (i) it produces
minimal descriptiondor setsof individu-
alsusingpositive, negative anddisjunctive
properties(ii) it straightforvardly gener
alisesto n-aryrelationsand(iii) it is inte-
gratedwith surfacerealisation.

1 Intr oduction

In Englishandin mary otherlanguagesa possible
function of definite descriptionds to identify a set
of referent$: by utteringan expressiorof the form
The N, thespealer givessuficientinformationto the
hearersothats/hecanidentify the setof the objects
thespealer is referringto.

Fromthe generatiorperspectie, this meanghat,
startingfrom the setof objectsto be describedand
from the propertiesknown to hold of theseobjects
by both the speakr and the hearer a definite de-
scriptionmustbe constructedvhich allows the user

1Theotherwell-known functionof adefiniteis to informthe
hearerof somespecificattributesthe referentof the NP has.

to unambiguouslyidentify the objectsbeingtalked
about.

While the task of constructingsingular definite
descriptionson the basisof positive propertieshas
receved muchattentionin the generatioriterature
(Dale and Haddock,1991; Dale and Reitef 1995;
Horacek,1997; Krahmeret al., 2001), for a long
time,amoregeneraktatemenof thetaskathandre-
mainedoutstanding.Recentlyhowever, several pa-
persmadea stepin that direction. (van Deemter
2001)shavedhow to extendthe basicDaleandRe-
iter Algorithm (Dale and Reiter 1995)to generate
plural definite descriptionsusing not just conjunc-
tions of positive propertiesbut also negative and
disjunctive properties;(Stone,1998) integratesthe
D&R algorithminto the surfacerealisationprocess
and (Stone,2000) extendsit to dealwith collective
anddistributive plural NPs.

Notably in all threecasesthe incrementaktruc-
ture of the D&R’s algorithmis presered: the al-
gorithm incrementsa set of propertiestill this set
uniquelyidentifiesthe target seti.e., the setof ob-
jectsto bedescribedAs (Garegy andJohnson1979)
shaws, such an incrementalalgorithm while be-
ing polynomial (andthis, togethemwith certainpsy-
cholinguisticobsenrations,was one of the primary
motivationfor privileging this incrementaktratey)
is not guaranteedo find the minimal solution i.e.,
the descriptionwhich uniquelyidentifiesthe target
setusingthe smallestnumberof atomicproperties.

In this paper | arguethatthis characteristiof the
incrementalalgorithm while reasonablyinnocuous
whengeneratingingulardefinitedescriptionsising
only conjunctionsof positive properties,rendersit



cognitively inappropriatavhengeneralisedo setsof
individuals and disjunctive properties.| presentan
alternatve approactwhich alwaysproducehemin-
imal descriptiontherebyavoiding the shortcomings
of the incrementalalgorithm. | concludeby com-
paringthe proposedpproactwith relatedproposals
andgiving pointersfor furtherresearch.

2 Theincrementalapproach

Dale and Reiters incrementalalgorithm (cf. Fig-
ure 1) iteratesthroughthe propertiesof the target
entity (the entity to be described)selectinga prop-
erty, addingit to thedescriptiorbeingbuilt andcom-
putingthedistractor seti.e.,thesetof elementdor
which the conjunctionof propertiesselectedso far
holds. The algorithm succeedgandreturnsthe se-
lectedproperties)whenthe distractorsetis the sin-
gletonsetcontainingthe target entity. It fails if all
propertief thetamgetentity have beenselectedand
thedistractorsetcontainamorethanthetamgetentity
(i.e. thereis no distinguishingdescriptionfor the
target).

This basicalgorithm can be refinedby ordering
propertiesaccordingto somefixed preferencesand
therebyselectindfirst e.g.,somebaseevel catgory
in ataxonomy seconda sizeattribute third, acolour
attribute etc.

Z: thedomain;

P., thesetof propertief e;
To generatéheUID D., do:

1. Initialise: C :=Z, D, :=0.

2. Checksuccess:
If C = {e}return D,
elseif P. = { then fail
elsegoto step3.

3. Choosepropertyp; € P. whichpicksoutthesmallesset
C; =Cn{z|pi(z)}.

4. Update:D, := D, U{p;},C :=C}, P.:= P. — {p; }. goto
step2.

Figurel: TheD&R incrementaklgorithm.

(van Deemtey 2001) generaliseshe D&R algo-
rithm first, to pluraldefinitedescription@ndsecond,
to disjunctive andnegative propertiesasindicatedin
Figure2. Thatis, the algorithm startswith a dis-
tractor set C which initially is equalto the setof

individualspresenin the contet. It thenincremen-
tally selectsapropertyP thatis true of thetametset

(S C [[P])) but not of all elementsin the distrac-

tor set(C ¢ [[P]]). Eachselectedpropertyis thus

usedto simultaneouslyncrementhedescriptiorbe-

ing built andto eliminatesomedistractors.Success
occurswhenthe distractorsetequalsthe tamget set.

Theresultis a distinguishingdescription(bp, a de-

scriptionthatis true only of the taiget set)whichis

the conjunctionof propertiesselectedo reachthat

state.

Z: thedomain;
S C Z, thesetto bedescribed,;
Ps, the propertiestrue of the setS (P4 = 0, Pt with P

thesetof propertieghataretrueof z);
To generatéhedistinguishingdescriptionDs, do:
1. Initialise: C :=Z, Ds :=0.

2. Checksuccess:
If C = Sreturn Dg
elseif Ps = @ then fail
elsegoto step3.

3. Choosepropertyp; € Ps s.t.S C [[p;]] andC € [[p:]]

4. Update:Ds := Ds U {pi}, c=Cn [U)z]], Ps:= Ps —
{p:}. goto step2.

Figure2: ExtendingD&R Algorithm to setsof indi-
viduals.

Phasel: Performthe extendedD&R algorithmusingall liter-
alsi.e., propertiesn P, ,_; if thisis successfuthenstop,
otherwisegoto phase?.

Phase2: PerformtheextendedD&R algorithmusingall prop-
ertiesof theform P v P’ with P, P' € Py,_; if thisis
successfuthenstop,otherwisego to phases.

Figure3: ExtendingD&R Algorithm to disjunctive
properties

To generalisethis algorithm to disjunctive and
negative properties,van Deemteradds one more
level of incrementality an incrementalityover the
length of the propertiesbeing used(cf. Figure 3).
First, literals are usedi.e., atomic propertiesand
their negation. If this fails, disjunctive propertiesof
lengthtwo (i.e. with two literals) areused;thenof
lengththreeetc.



3 Problems

We now shaw thatthis generalisedlgorithmmight
generate(i) epistemically redundantdescriptions
and (ii) unnecessarilyong andambiguousdescrip-
tions.

Epistemically redundant descriptions. Suppose
thecontet is asillustratedin Figure4 andthetarget
setis {z1, z2}.

| pdt | secr| treasurer| board-member member
Z1 ° °
i) [ ]
xrs3 L4
T4
Ts
Te

Figure4: Epistemicallyredundantescriptions
“The presidentand the secretarywho are board
membersandnottreasurers”

To build a distinguishingdescriptionfor the tar
get set {z1,z2}, the incrementalalgorithm will
first look for a property P in the set of literals
suchthat (i) {z1,z2} is in the extensionof P and
(i) P is not true of all elementsin the distractor
set C' (which at this stageis the whole universe
i.e., {r1,z2,x3,24,25,26}). TwWo literals satisfy
thesecriteria: the propertyof beinga boardmem-
ber and that of not being the treasurér Suppose
the incrementalalgorithm first selectsthe board-
member propertytherebyreducingthe distractorset
to {z1,z2,x3,z4,25}. Then—treasurer is selected
which restrictsthe distractorsetto {z1, x2, x4, z5}.
Thereis no otherliteral which could be usedto fur-
therreducethe distractorsethencepropertiesof the
form P v P’ areused. At this stage,the algo-
rithm might selectthe property pdt vV secr whose
intersectionwith the distractorsetyields the tamget
set{z1,z2}. Thus,the descriptionproducedis in
this case:board-member A—treasurer A(pdtV secr)
which canbe phrasedasthe president and the sec-
retary who are board members and not treasurers —
whereaghe minimal DD the president and the sec-
retary would bea muchbetteroutput.

2Note that selectingpropertiesin order of specificity will
nothelpin this caseasneitherpresident nor treasurer meetthe
selectioncriterion (their extensiondoesnot include the target
set).

Oneproblemthusis that, althoughperfectlywell
formed minimal bbs might be available, the incre-
mental algorithm may produce“epistemically re-
dundantdescriptions”i.e. descriptionswhich in-
cludeinformationalreadyentailed(throughwhatwe
know) by someinformationpresentelsavherein the
description.

Unnecessarilylong and ambiguous descriptions.
Anotheraspectof the sameproblemis that the al-
gorithm may yield unnecessarilyong and ambigu-
ousdescriptions.Hereis an example. Supposehe
contet is asgivenin Figure5 andthe tamget setis

{z5, 6,9, T10}-

W|D|C|B|S|M|Pi|]Po|H]|J
I [
i) [ ]
Ir3 L] L]
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T10 d hd
11

W = white; D = dog; C = cow; B = big; S= small;
M = medium-sizedPi = pitbul; Po= poodle;H = Holstein;J =
Jersg

Figure5: Unnecessarilyong descriptions.

The mostnaturaland probably shortestdescrip-
tion in this caseis a descriptioninvolving adisjunc-
tion with four disjunctsnamelyPi vV PoVv VH V J
which canbe verbalisedasthe Pitbul, the Pooddle,
the Holstein and the Jersey.

This is not however, the descriptionthat will be
returnedby the incrementalalgorithm. Recallthat
at eachstep in the loop going over the proper
ties of various(disjunctve) lengths,the incremen-
tal algorithmaddsto the descriptionbeingbuilt ary
propertythatis true of the tamget setand suchthat
the currentdistractorsetis not includedin the set
of objectshaving that property Thusin the first
loop over propertiesof length one, the algorithm
will selectthe property W, addit to the descrip-
tion and updatethe distractorsetto C N [[W]] =
{.’121,.’[,‘2,:173,.’L'4,.’13'5,.’L'6,.'I,'7,.’L'8,1179,.’1210}. Since the
new distractor set is not equal to the tamget set
and sinceno other propertyof length one satisfies



the selectioncriteria, the algorithm proceedswith
propertiesof lengthtwo. Figure 6 lists the prop-
erties P of length two meetingthe selectioncri-
teria at that stage({zs, z¢, 9,210} € [[P]] and
{1, %9, %3, T4, x5, T6, T7, %8, T9, T10} L [[P]]-

HV =S {xl,.TZ,~'L'3,.T4,.T5,$6,.T8,.T9,.’L'10}
JV =M {z1,72,23,25,T6, T7, T8, T9, T10}
BV -D {xlax3ax4ax5ax67$7a$83$95$10}
DvC {$27$37$47$57$65$7a$83-7;95x10}
BvC  {z3,74,%5,%6,T7, T8, T9, T10}

Figure6: Propertiesof length2 meetingthe selec-
tion criterion

The incrementalalgorithm selectsary of these
propertiesto incrementthe current bb.  Sup-
poseit selectsB vV C. The pD is then up-
datedto W A (B Vv C) and the distractorset to
{3, x4, x5, T6, T7, T8, Tg, T10}. EXceptfor D v C
and =D Vv B which would not eliminateary dis-
tractor eachof the other propertyin the table can
be usedto further reducethe distractorset. Thus
the algorithm will eventually build the description
W A(BVC)A(HV-S)A(JV-M) therebyre-
ducingthedistractorsetto {zs, =5, z¢, s, 9, T10 }-

At this point successstill hasnot beenreached
(the distractorset is not equal to the tamet set).
It will eventually be reached(at the latest when
incrementingthe descriptionwith the disjunction
PiVv PoV VH V J). However, alreadyatthis stage
of processingit is clearthat the resultingdescrip-
tion will beawkwardto phrase A directtranslation
from the descriptionbuilt sofar (W A (B Vv C) A
(HV-S)A(JV~-M))wouldyield e.g.,

(1) Thewhite thingsthatarebig or a cow, a Hol-
steinor not small,anda Jersg or not medium
size

Another problemthen, is that when generalised
to disjunctive andnegative propertiestheincremen-
tal stratgyy might yield descriptionghatareunnec-
essarilyambiguougbecausef the high numberof
logical connectiesthey contain)andin the extreme
casesincomprehensible.

4 An alternative basedon setconstraints

Onepossiblesolutionto the problemsraisedby the
incrementalalgorithmis to generateonly minimal

descriptionsi.e. descriptionsvhichusethesmallest
numberof literalsto uniquelyidentify thetametset.
By definition,thesewill never beredundantorwill
they beunnecessariljong andambiguous.

As (Dale and Reiter 1995) shaws, the problem
of finding minimal distinguishingdescriptionscan
be formulatedas a setcover problemandis there-
fore known to be NP hard. However, given an effi-
cientimplementatiorthis might not be a hindrance
in practice. The alternatve algorithm| proposeis
thereforebasedon the use of constraintprogram-
ming (CP), a paradigmaimedat efficiently solving
NP hardcombinatoricproblemssuchasscheduling
and optimization. Insteadof following a generate-
and-test stratgy which mightresultin anintractable
searchspace, CP minimisesthe searchspaceby
following a propagate-and-distribute stratgy where
propagationdraws inferenceson the basisof effi-
cient, deterministicinferencerules and distribution
performsa casedistinctionfor a variablevalue.

The basic version. Considerthe definition of a
distinguishingdescriptiongivenin (DaleandReiter
1995).

Let r be the intendedreferent,and C be
thedistractorset;then,asetL of attribute-
valuepairswill represena distinguishing
descriptionf thefollowing two conditions
hold:

C1: Every attribute-\alue pair in L ap-
pliesto r: thatis, every elementof
L specifiesan attribute value that r
possesses.

: For every memberc of C, thereis at
leastoneelement of L thatdoesnot
applyto c: thatis, thereisan L in L
thatspecifiesaanattribute-valuethatc
doesnot possessli is saidto rule out
C.

The constraints (cf. Figure 7) usedin the pro-
posedalgorithmdirectly mirror this definition.

A descriptionfor the target set S is represented
by a pair of setvariablesconstrainedo be a subset
of the setof positive(i.e.,propertiesthat aretrue of
all elementsin S) and of negative (i.e., properties
thataretrue of noneof theelementsn S) properties



Z: theuniverse;
P thesetof propertiese has;
P, =P\ P/ : thesetof propertiess doesnothave;

P = ﬂSP;: the setof propertiegrue of all ele-
TE
mentsof S;

Ps =P\ zgg Pt thesetof propertiesfalseof all

elementof S;
Dg = (P;,Pbi) is abasicdistinguishing descrip-
tion for Siff:

+ +
1. Py CPg,
2. Py CPg and

3. Ve e Cs,|(Pd \ PH)U(Pg NPF)| >0
Figure7: A constraint-basedpproach

of S respectiely. Thethird constraintensureghat
theconjunctionof propertieghusbuilt eliminatesall
distractord.e. eachelemenbf theuniversewhichis
notin S. More specifically it statesthat for each
distractorc thereis atleastoneproperty P suchthat
either P is true of (all elementsn) S but notof ¢ or
P isfalseof (all elementdn) S andtrueof c.

The constraintghusspecifywhatit is to beabb
for a given tamget set. Additionally, a distrib ution
strategy needsto be madeprecisewhich specifies
how to searchfor solutionsi.e., for assignmentesf
valuesto variablessuchthat all constraintsare si-
multaneouslyerified. To ensurethat solutionsare
searchedor in increasingrderof size, wedistribute
(i.e. make casedistinctions)over the cardinality of
the outputdescription|Pg U Pg | startingwith the
lowest possiblevalue. Thatis, first the algorithm
will try to find a description(Py, P ) with cardi-
nality one,thenwith cardinalitytwo etc. The algo-
rithm stopsassoonasit findsasolution.In thisway,
thedescriptioroutputby thealgorithmis guaranteed
to alwaysbethe shortespossibledescription.

Extending the algorithm with disjunctive prop-
erties. To take into accountdisjunctive properties,
the constraintaisedcanbe modifiedasindicatedin
Figure8.

Thatis, thealgorithmlooksfor atupleof setssuch
thattheirunionS; U ... U S, isthetamgetsetS and
suchthatfor eachsetS; in thattuplethereis abasic

Dgs = Dg, V...V Dg,, isadistinguishingdescrip-
tion for a setof individuals S iff:

c1<M<IS]
e S=5U...USy

o for1 < i < M, Dg, is abasicdistinguishing
descriptionfor S;

Figure8: With disjunctive properties

DD Dg,. Theresultingdescriptionis the disjunctive
descriptionDg, V ...V Dg,, whereeachDyg;, is a
conjunctve description.

As beforesolutionsaresearchedor in increasing
orderof size(i.e.,numberof literalsoccurringin the
description)by distributing over the cardinality of
theresultingdescription.

5 Discussionand comparisonwith related
work

Integration with surface realisation As (Stone
andWebber 1998)clearlyshavs, thetwo-stepstrat-
egy which consistdn first computinga bD andsec-
ond,generating definiteNP realisingthatbp, does
not do languaggustice. This is becauseasthe fol-
lowing examplefrom (Stoneand Webbey 1998)il-
lustrates the information usedto uniquely identify
someobjectneednot be localisedto a definite de-
scription.

(2) Remove therabbitfrom the hat.

In a contet wherethereare several rabbitsand
several hatsbut only onerabbitin a hat (and only
one hat containinga rabbit), the sentencen (2) is
sufiicient to identify therabbitthatis in the hat. In
thiscasehus,it is thepresuppositioof theverb“re-
move” which ensureghis: sincex remove y from z
presupposethaty wasin z beforetheaction,wecan
infer from (2) thatthe rabbittalked aboutis indeed
therabbitthatis in thehat.

The solution proposedin (Stone and Webber
1998)andimplementedn thespuD (Sentencélan-
ning Using Descriptions)generatoris to integrate
surfacerealisationand DD computation.As a prop-
erty trueof thetametsetis selectedthecorrespond-
ing lexical entryis integratedin the phrasestructure



tree being built to satisfythe given communicatie
goals. Generatiorendswhen the resultingtree (i)

satisfiesall communicatre goalsand (ii) is syntac-
tically complete. In particular the goal of describ-
ing somediscourseold entity using a definite de-
scriptionis satisfiedas soonas the given informa-
tion (i.e. informationsharedoy speakr andhearer)
associatedby the grammarwith the tree sufiicesto

uniquelyidentify this object.

Similarly, the constraint-basedalgorithm for
generating bD presented here has been inte-
gratedwith surfacerealisationwithin the generator
INDIGEN (http://ww. coli. uni-sh. de/
cl / proj ects/indigen. ht nl)asfollows.

As in sPUD, the generationprocesss driven by
the communicatie goalsand in particular by in-
forming and describinggoals. In practice,these
goals contrikute to updating a “goal semantics”
which the generatorseeksto realiseby building a
phrassstructurereethat(i) realiseghatgoalseman-
tics, (ii) is syntacticallycompleteand (iii) is prag-
maticallyappropriate.

Specifically if anentity mustbe describedvhich
is discourseold, a DD will be computedor thaten-
tity andaddedto the currentgoal semanticghereby
driving furthergeneration.

Like spuD, this modifiedversionof the spuD al-
gorithmcanaccountfor thefactthata bb neednot
bewholy realisedwithin the correspondindNP — as
aDD is addedo thegoalsemanticsit guidesthelex-
ical lookupprocesgonly itemsin thelexiconwhose
semanticssubsumegpart of the goal semanticsare
selectedput thereis norestrictionon how thegiven
semantidnformationis realised.

Unlike spub however, the INDIGEN generator
doesnotfollow anincrementalgreedysearchstrat-
egy mirroring the incrementalD&R algorithm (at
eachstepin thegeneratiorprocessspub compares
all possiblecontinuationsandonly pursueghe best
one; Thereis no backtracking). It follows a chart
basedstratgy instead(Striegnitz, 2001) producing
all possibleparaphrasesThe dravbackis of course
a lossin efficieng. The adwantageson the other
handaretwofold.

First, INDIGEN only generateslefinite descrip-
tionsthatrealizeminimal bb. Thusunlike sPUD, it
will not runinto the problemsmentionedn section
2 oncegeneralisedo negative anddisjunctive prop-

erties.

Second|f thereis no DD for a given entity, this
will beimmediatelynoticedin the presenfapproach
thusallowing for a non definite NP or a quantifier
to be constructednstead.In contrast,spub will, if
unconstraineckeepaddingmaterialto thetreeuntil
all propertieof theobjectto bedescribedave been
realised.Onceall propertieshave beenrealisedand
sincethereis no backtrackinggeneratiorwill fail.

N-ary relations. Thesetvariablesusedn ourcon-
straintssolver arevariablesrangingover setsof in-
tegers. This, in effect, meanshat prior to applying
constraintsthe algorithmwill performanencoding
of the objectsbeing constrained- individuals and
properties- into (pairwisedistinct) integers. It fol-
lows that the algorithm easily generaliseto n-ary
relations.Justlike the propositionred(e; ) usingthe
unary-relation‘red” canbe encodedby an integer,
so canthe propositionon(es , e2) usingthe binary-
relation “on” be encodedby two integers (one for
on(_, e2) andonefor on(ey, ).

Thus the presentalgorithm improves on (van
Deemter 2001) which is restrictedto unary rela-
tions. It alsodiffers from (Krahmeret al., 2001),
who usegraphsandgraphalgorithmsfor computing
DDs — while graphsprovidesatransparenéncoding
of unaryandbinaryrelationsthey losemuchof their
intuitive appealwhenappliedto relationsof higher
arity.

It is also worth noting that the infinite regress
problemobsened(DaleandHaddock,1991)to hold
for the D&R algorithm (and similarly for its van
Deemters generalisation\when extendedto deal
with binary relations,doesnot hold in the present
approach.

In the D&R algorithm, the problem stemsfrom
the factthat DD are generatedecursvely: if when
generatinga DD for someentity e1, a relationr is
selectedwhich relatese; to e.g., es, the D&R al-
gorithmwill recursiely go onto producea bD for
es. Without additionalrestriction,thealgorithmcan
thusloop forever, first describinge; in termsof es,
theneqy in termsof ey, thene; in termsof e, etc.

The solution adoptedby (Dale and Haddock,
1991)is to stipulatethat factsfrom the knowledge
basecanonly beusedoncewithin agivencall to the
algorithm.



In contrastthesolutionfollows, in the presentl-
gorithm (asin spuD), from its integrationwith sur
facerealisation.Supposdor instancethattheinitial
goalis to describethe discourseold entity e;. The
initially emptygoal semanticswill be updatedwith
its DD say {bowl(b), on(b,t)}.

NP

D Np |

the
Goal Semantics = {bowl(b), on(b, t)}

This informationis thenusedto selectappropri-
atelexical entriesi.e., thenounentryfor “bowl” and
the prepositionentry for “on”. The resultingtree
(with leaves“the bowl on”) is syntacticallyincom-
plete hencegeneratiorcontinuesattemptingto pro-
vide a descriptionfor ¢. If ¢ is discourseold, the
lexical entryfor the will be selectecanda bb com-
putedsay {table(t),on(b,t)}. This thenis added
to the currentgoal semanticsyielding the goal se-
mantics{table(t), bowl(b),on(b,t)} whichis com-
paredwith the semantic®of thetreebuilt sofari..e.,
{bowl(b),on(b,t)}.

Goal Semantics = {bowl(b), on(b,t), table(t)}
Tree Semantics = {bowl(b), on(b, t)}
Sincegoalandtreesemanticsaredifferent,gener
ationcontinueselectingthelexical entryfor “table”
andintegratingit in thetreebeingbuilt.

Goal Semantics = {bowl(b), on(b, t), table(t)}
Tree Semantics = {bowl(b), on(b, t), table(t)}

At this stage, the semanticsof that tree is
{table(t), bowl(b),on(b,t)} which is equivalentto
the goal semantics. Since furthermorethe tree is
syntactically and pragmaticallycomplete, genera-
tion stopsyielding the NP the bowl on the table.

In sum, infinite regressis avoided by using the
computeddDs to control the additionof new mate-
rial to thetreebeinghbuilt.

Minimality and overspecified descriptions. It
hasoftenbeenobsered thathumanbeingsproduce
overspecifiedi.e., non-minimal descriptions. One
mightthereforewonderwhethergeneratingninimal
descriptionss in factappropriate Two pointsspeak
for it.

First, it is unclearwhetherredundantnformation
is presenbecaus®f a cognitive artifact (e.g.,incre-
mentalprocessingpr becauset helpsfulfill some
othercommunicatie goalbesidesdentification.So
for instance(Jordan,1999)shaws thatin a specific
task contet, redundantattributesare usedto indi-
catethe violation of a task constraint(for instance,
whenviolating a colourconstraintataskparticipant
will usethe description“the red table” ratherthan
“the table” to indicatethats/heviolatesa constraint
to the effect that red objectmay not be usedat that
stageof thetask).

More generally it seemsunlikely thatno rule at
all governsthe presencef redundaninformationin
definite descriptions.If redundantdescriptionsare
to be produced they shouldthereforebe produced
in relationto somegeneralprinciple (i.e., because
thealgorithmgoesthrougha fixed orderof attribute
classe®r becauseheredundantnformationfulfills
aparticularcommunicatie goal)notrandomly asis
donein thegeneralisedncrementaklgorithm.

Secondthe psycholinguistiditeraturebearingon
the presenceof redundantinformation in definite
descriptionshasmainly beenconcernedvith unary
atomicrelations.Againoncebinary, ternaryanddis-
junctive relationsare consideredijt is unclearthat
the phenomenorgeneralises.As (Krahmeret al.,
2001)obsenred, “it is unlikely thatsomeoneavould
describeanobjectas“the dognext to thetreein front
of thegarage”in a situationwhere“the dognext to
thetree” would sufice.



Implementation. The ideaspresentedn this pa-
per have been implementedwithin the genera-
tor INDIGEN using the concurrentconstraintpro-

gramminglanguageOz (ProgrammingSystemd.ab

Saarbiicken, 1998) which supportsset variables
rangingover finite setsof integersand providesan

efficientimplementatiorof theassociatedonstraint
theory The proof-of-conceptimplementationin-

cludesthe constraintsolver describedin section4

andits integrationin a chart-basedyeneratorinte-

gratingsurfacerealisationandinference For theex-

amplesdiscussedn this paper the constraintsolver

returnsthe minimal solution (i.e., The cat and the

dog and The poodle, the Jersey, the pitbul and the

Holstein) in 80 msandl.4secondsespectrely. The
integrationof the constraintsolver within thegener

ator permitsrealisingdefinite NPsincluding nega-
tive information (the cat that is not white) andsim-

ple conjunctionqThe cat and the dog).

6 Conclusion

One areathat deseres further investigationis the
relation to surface realisation. Once disjunctive
andnegative relationsareused interestingquestions
ariseasto how theseshouldberealised How should
conjunctionsdisjunctionsandnegationsberealised
within the sentenceHow arethey realisedin prac-
tice? andhow canwe imposethe appropriatecon-
straintssoasto predictlinguistically andcognitively
acceptablestructures?More generally thereis the
guestionof which communicatie goalsreferto sets
ratherthan just individuals and of the relationship
to what in the generationliterature hasbeenbap-
tised “aggregation” roughly the groupingtogether
of factsexhibiting variousdegreesandformsof sim-
ilarity.
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