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Abstract

We present a new approach to

stochastic modeling of constraint-

based grammars that is based on log-

linear models and uses EM for esti-

mation from unannotated data. The

techniques are applied to an LFG

grammar for German. Evaluation on

an exact match task yields 86% pre-

cision for an ambiguity rate of 5.4,

and 90% precision on a subcat frame

match for an ambiguity rate of 25.

Experimental comparison to train-

ing from a parsebank shows a 10%

gain from EM training. Also, a new

class-based grammar lexicalization is

presented, showing a 10% gain over

unlexicalized models.

1 Introduction

Stochastic parsing models capturing contex-

tual constraints beyond the dependencies of

probabilistic context-free grammars (PCFGs)

are currently the subject of intensive research.

An interesting feature common to most such

models is the incorporation of contextual de-

pendencies on individual head words into rule-

based probability models. Such word-based

lexicalizations of probability models are used

successfully in the statistical parsing mod-

els of, e.g., Collins (1997), Charniak (1997),

or Ratnaparkhi (1997). However, it is still

an open question which kind of lexicaliza-

tion, e.g., statistics on individual words or

statistics based upon word classes, is the best

choice. Secondly, these approaches have in

common the fact that the probability models

are trained on treebanks, i.e., corpora of man-

ually disambiguated sentences, and not from

corpora of unannotated sentences. In all of the

cited approaches, the Penn Wall Street Jour-

nal Treebank (Marcus et al., 1993) is used,

the availability of which obviates the standard

e�ort required for treebank training�hand-

annotating large corpora of speci�c domains

of speci�c languages with speci�c parse types.

Moreover, common wisdom is that training

from unannotated data via the expectation-

maximization (EM) algorithm (Dempster et

al., 1977) yields poor results unless at

least partial annotation is applied. Experi-

mental results con�rming this wisdom have

been presented, e.g., by Elworthy (1994) and

Pereira and Schabes (1992) for EM training

of Hidden Markov Models and PCFGs.

In this paper, we present a new lexicalized

stochastic model for constraint-based gram-

mars that employs a combination of head-

word frequencies and EM-based clustering

for grammar lexicalization. Furthermore, we

make crucial use of EM for estimating the

parameters of the stochastic grammar from

unannotated data. Our usage of EM was ini-

tiated by the current lack of large uni�cation-

based treebanks for German. However, our ex-

perimental results also show an exception to

the common wisdom of the insu�ciency of EM

for highly accurate statistical modeling.

Our approach to lexicalized stochastic mod-

eling is based on the parametric family of log-

linear probability models, which is used to de-

�ne a probability distribution on the parses

of a Lexical-Functional Grammar (LFG) for

German. In previous work on log-linear mod-

els for LFG by Johnson et al. (1999), pseudo-



likelihood estimation from annotated corpora

has been introduced and experimented with

on a small scale. However, to our knowledge,

to date no large LFG annotated corpora of

unrestricted German text are available. For-

tunately, algorithms exist for statistical infer-

ence of log-linear models from unannotated

data (Riezler, 1999). We apply this algorithm

to estimate log-linear LFG models from large

corpora of newspaper text. In our largest ex-

periment, we used 250,000 parses which were

produced by parsing 36,000 newspaper sen-

tences with the German LFG. Experimental

evaluation of our models on an exact-match

task (i.e. percentage of exact match of most

probable parse with correct parse) on 550

manually examined examples with on average

5.4 analyses gave 86% precision. Another eval-

uation on a verb frame recognition task (i.e.

percentage of agreement between subcatego-

rization frames of main verb of most proba-

ble parse and correct parse) gave 90% pre-

cision on 375 manually disambiguated exam-

ples with an average ambiguity of 25. Clearly,

a direct comparison of these results to state-

of-the-art statistical parsers cannot be made

because of di�erent training and test data and

other evaluation measures. However, we would

like to draw the following conclusions from our

experiments:

� The problem of chaotic convergence be-

haviour of EM estimation can be solved

for log-linear models.

� EM does help constraint-based gram-

mars, e.g. using about 10 times more sen-

tences and about 100 times more parses

for EM training than for training from an

automatically constructed parsebank can

improve precision by about 10%.

� Class-based lexicalization can yield a gain

in precision of about 10%.

In the rest of this paper we intro-

duce incomplete-data estimation for log-linear

models (Sec. 2), and present the actual design

of our models (Sec. 3) and report our experi-

mental results (Sec. 4).

2 Incomplete-Data Estimation for

Log-Linear Models

2.1 Log-Linear Models

A log-linear distribution p�(x) on the set of

analyses X of a constraint-based grammar can

be de�ned as follows:

p�(x) = Z�
�1
e
���(x)

p0(x)

where Z� =
P

x2X e
���(x)

p0(x) is a normal-

izing constant, � = (�1; : : : ; �n) 2 IRn is a

vector of log-parameters, � = (�1; : : : ; �n) is
a vector of property-functions �i : X ! IR for

i = 1; : : : ; n, � � �(x) is the vector dot prod-

uct
Pn

i=1 �i�i(x), and p0 is a �xed reference

distribution.

The task of probabilistic modeling with log-

linear distributions is to build salient proper-

ties of the data as property-functions �i into

the probability model. For a given vector � of

property-functions, the task of statistical in-

ference is to tune the parameters � to best

re�ect the empirical distribution of the train-

ing data.

2.2 Incomplete-Data Estimation

Standard numerical methods for statis-

tical inference of log-linear models from

fully annotated data�so-called complete

data�are the iterative scaling meth-

ods of Darroch and Ratcli� (1972) and

Della Pietra et al. (1997). For data consisting

of unannotated sentences�so-called incom-

plete data�the iterative method of the EM

algorithm (Dempster et al., 1977) has to be

employed. However, since even complete-data

estimation for log-linear models requires

iterative methods, an application of EM to

log-linear models results in an algorithm

which is expensive since it is doubly-iterative.

A singly-iterative algorithm interleaving EM

and iterative scaling into a mathematically

well-de�ned estimation method for log-linear

models from incomplete data is the IM

algorithm of Riezler (1999). Applying this

algorithm to stochastic constraint-based

grammars, we assume the following to be

given: A training sample of unannotated sen-

tences y from a set Y, observed with empirical



Input Reference model p0, property-functions vector � with constant �#, parses

X(y) for each y in incomplete-data sample from Y.

Output MLE model p�� on X .

Procedure

Until convergence do

Compute p�; k�, based on � = (�1; : : : ; �n),
For i from 1 to n do


i :=
1
�#

ln
P

y2Y
~p(y)
P

x2X(y) k�(xjy)�i(x)P
x2X

p�(x)�i(x)
,

�i := �i + 
i,

Return �
� = (�1; : : : ; �n).

Figure 1: Closed-form version of IM algorithm

probability ~p(y), a constraint-based grammar

yielding a set X(y) of parses for each sentence

y, and a log-linear model p�(�) on the parses

X =
P

y2Yj~p(y)>0X(y) for the sentences in

the training corpus, with known values of

property-functions � and unknown values

of �. The aim of incomplete-data maximum

likelihood estimation (MLE) is to �nd a value

�
� that maximizes the incomplete-data log-

likelihood L =
P

y2Y ~p(y) ln
P

x2X(y) p�(x),
i.e.,

�
� = argmax

�2IRn
L(�):

Closed-form parameter-updates for this prob-

lem can be computed by the algorithm of Fig.

1, where �#(x) =
Pn

i=1 �i(x), and k�(xjy) =
p�(x)=

P
x2X(y) p�(x) is the conditional prob-

ability of a parse x given the sentence y and

the current parameter value �.

The constancy requirement on �# can be

enforced by adding a �correction� property-

function �l:

Choose K = maxx2X �#(x) and

�l(x) = K � �#(x) for all x 2 X .

Then
Pl

i=1 �i(x) = K for all x 2 X .

Note that because of the restriction of X to

the parses obtainable by a grammar from the

training corpus, we have a log-linear probabil-

ity measure only on those parses and not on

all possible parses of the grammar. We shall

therefore speak of mere log-linear measures in

our application of disambiguation.

2.3 Searching for Order in Chaos

For incomplete-data estimation, a sequence

of likelihood values is guaranteed to converge

to a critical point of the likelihood function

L. This is shown for the IM algorithm in

Riezler (1999). The process of �nding likeli-

hood maxima is chaotic in that the �nal likeli-

hood value is extremely sensitive to the start-

ing values of �, i.e. limit points can be lo-

cal maxima (or saddlepoints), which are not

necessarily also global maxima. A way to

search for order in this chaos is to search for

starting values which are hopefully attracted

by the global maximum of L. This problem

can best be explained in terms of the mini-

mum divergence paradigm (Kullback, 1959),

which is equivalent to the maximum likeli-

hood paradigm by the following theorem. Let

p[f ] =
P

x2X p(x)f(x) be the expectation of

a function f with respect to a distribution p:

The probability distribution p
� that

minimizes the divergence D(pjjp0) to
a reference model p0 subject to the

constraints p[�i] = q[�i]; i = 1; : : : ; n
is the model in the parametric fam-

ily of log-linear distributions p� that

maximizes the likelihood L(�) =
q[ln p�] of the training data1.

1If the training sample consists of complete data



Reasonable starting values for minimum di-

vergence estimation is to set �i = 0 for

i = 1; : : : ; n. This yields a distribution which

minimizes the divergence to p0, over the

set of models p to which the constraints

p[�i] = q[�i]; i = 1; : : : ; n have yet to be ap-

plied. Clearly, this argument applies to both

complete-data and incomplete-data estima-

tion. Note that for a uniformly distributed

reference model p0, the minimum divergence

model is a maximum entropy model (Jaynes,

1957). In Sec. 4, we will demonstrate that

a uniform initialization of the IM algorithm

shows a signi�cant improvement in likelihood

maximization as well as in linguistic perfor-

mance when compared to standard random

initialization.

3 Property Design and

Lexicalization

3.1 Basic Con�gurational Properties

The basic 190 properties employed in our

models are similar to the properties of

Johnson et al. (1999) which incorporate gen-

eral linguistic principles into a log-linear

model. They refer to both the c(onstituent)-

structure and the f(eature)-structure of the

LFG parses. Examples are properties for

� c-structure nodes, corresponding to stan-

dard production properties,

� c-structure subtrees, indicating argument

versus adjunct attachment,

� f-structure attributes, corresponding to

grammatical functions used in LFG,

� atomic attribute-value pairs in f-

structures,

� complexity of the phrase being attached

to, thus indicating both high and low at-

tachment,

� non-right-branching behavior of nonter-

minal nodes,

� non-parallelism of coordinations.

x 2 X , the expectation q[�] corresponds to the em-
pirical expectation ~p[�]. If we observe incomplete data
y 2 Y, the expectation q[�] is replaced by the condi-
tional expectation ~p[k�0 [�]] given the observed data y

and the current parameter value �0.

3.2 Class-Based Lexicalization

Our approach to grammar lexicalization is

class-based in the sense that we use class-

based estimated frequencies fc(v; n) of head-
verbs v and argument head-nouns n in-

stead of pure frequency statistics or class-

based probabilities of head word dependen-

cies. Class-based estimated frequencies are in-

troduced in Prescher et al. (2000) as the fre-

quency f(v; n) of a (v; n)-pair in the train-

ing corpus, weighted by the best estimate of

the class-membership probability p(cjv; n) of
an EM-based clustering model on (v; n)-pairs,
i.e., fc(v; n) = max

c2C
p(cjv; n)(f(v; n) + 1).

As is shown in Prescher et al. (2000) in an

evaluation on lexical ambiguity resolution, a

gain of about 7% can be obtained by using

the class-based estimated frequency fc(v; n)
as disambiguation criterion instead of class-

based probabilities p(njv). In order to make

the most direct use possible of this fact, we

incorporated the decisions of the disambigua-

tor directly into 45 additional properties for

the grammatical relations of the subject, di-

rect object, indirect object, in�nitival object,

oblique and adjunctival dative and accusative

preposition, for active and passive forms of the

�rst three verbs in each parse. Let vr(x) be the
verbal head of grammatical relation r in parse

x, and nr(x) the nominal head of grammatical

relation r in x. Then a lexicalized property �r

for grammatical relation r is de�ned as

�r(x) =

8<
:

1
if fc(vr(x); nr(x)) �
fc(vr(x

0); nr(x
0)) 8x0 2 X(y);

0 otherwise:

The property-function �r thus pre-

disambiguates the parses x 2 X(y) of a

sentence y according to fc(v; n), and stores

the best parse directly instead of taking the

actual estimated frequencies as its value. In

Sec. 4, we will see that an incorporation of

this pre-disambiguation routine into the mod-

els improves performance in disambiguation

by about 10%.
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Figure 2: Evaluation on exact match task for 550 examples with average ambiguity 5.4
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estimation

P: 84.5

E: 73.1

P: 88.5

E: 84.9

P: 90

E: 86.3

Figure 3: Evaluation on frame match task for 375 examples with average ambiguity 25

4 Experiments

4.1 Incomplete Data and Parsebanks

In our experiments, we used an LFG grammar

for German2 for parsing unrestricted text.

Since training was faster than parsing, we

parsed in advance and stored the resulting

packed c/f-structures. The low ambiguity rate

of the German LFG grammar allowed us to

restrict the training data to sentences with

at most 20 parses. The resulting training cor-

pus of unannotated, incomplete data consists

of approximately 36,000 sentences of online

available German newspaper text, comprising

approximately 250,000 parses.

In order to compare the contribution of un-

ambiguous and ambiguous sentences to the es-

timation results, we extracted a subcorpus of

4,000 sentences, for which the LFG grammar

produced a unique parse, from the full train-

2The German LFG grammar is being imple-
mented in the Xerox Linguistic Environment (XLE,
see Maxwell and Kaplan (1996)) as part of the Paral-
lel Grammar (ParGram) project at the IMS Stuttgart.
The coverage of the grammar is about 50% for unre-
stricted newspaper text. For the experiments reported
here, the e�ective coverage was lower, since the cor-
pus preprocessing we applied was minimal. Note that
for the disambiguation task we were interested in,
the overall grammar coverage was of subordinate rel-
evance.

ing corpus. The average sentence length of

7.5 for this automatically constructed parse-

bank is only slightly smaller than that of

10.5 for the full set of 36,000 training sen-

tences and 250,000 parses. Thus, we conjec-

ture that the parsebank includes a representa-

tive variety of linguistic phenomena. Estima-

tion from this automatically disambiguated

parsebank enjoys the same complete-data es-

timation properties3 as training from manu-

ally disambiguated treebanks. This makes a

comparison of complete-data estimation from

this parsebank to incomplete-data estimation

from the full set of training data interesting.

4.2 Test Data and Evaluation Tasks

To evaluate our models, we constructed

two di�erent test corpora. We �rst parsed

with the LFG grammar 550 sentences

which are used for illustrative purposes in

the foreign language learner's grammar of

Helbig and Buscha (1996). In a next step, the

correct parse was indicated by a human dis-

ambiguator, according to the reading intended

in Helbig and Buscha (1996). Thus a precise

3For example, convergence to the global maximum
of the complete-data log-likelihood function is guar-
anteed, which is a good condition for highly precise
statistical disambiguation.



indication of correct c/f-structure pairs was

possible. However, the average ambiguity of

this corpus is only 5.4 parses per sentence, for

sentences with on average 7.5 words. In order

to evaluate on sentences with higher ambigu-

ity rate, we manually disambiguated further

375 sentences of LFG-parsed newspaper text.

The sentences of this corpus have on average

25 parses and 11.2 words.

We tested our models on two evalua-

tion tasks. The statistical disambiguator was

tested on an �exact match� task, where ex-

act correspondence of the full c/f-structure

pair of the hand-annotated correct parse and

the most probable parse is checked. Another

evaluation was done on a �frame match� task,

where exact correspondence only of the sub-

categorization frame of the main verb of the

most probable parse and the correct parse is

checked. Clearly, the latter task involves a

smaller e�ective ambiguity rate, and is thus

to be interpreted as an evaluation of the com-

bined system of highly-constrained symbolic

parsing and statistical disambiguation.

Performance on these two evaluation tasks

was assessed according to the following evalu-

ation measures:

Precision = #correct

#correct+#incorrect
,

E�ectiveness = #correct

#correct+#incorrect+#don't know
.

�Correct� and �incorrect� speci�es a suc-

cess/failure on the respective evaluation tasks;

�don't know� cases are cases where the system

is unable to make a decision, i.e. cases with

more than one most probable parse.

4.3 Experimental Results

For each task and each test corpus, we cal-

culated a random baseline by averaging over

several models with randomly chosen pa-

rameter values. This baseline measures the

disambiguation power of the pure symbolic

parser. The results of an exact-match evalu-

ation on the Helbig-Buscha corpus is shown

in Fig. 2. The random baseline was around

33% for this case. The columns list di�erent

models according to their property-vectors.

�Basic� models consist of 190 con�gurational

properties as described in Sec. 3.1. �Lexical-

ized� models are extended by 45 lexical pre-

disambiguation properties as described in Sec.

3.2. �Selected + lexicalized� models result

from a simple property selection procedure

where a cuto� on the number of parses with

non-negative value of the property-functions

was set. Estimation of basic models from com-

plete data gave 68% precision (P), whereas

training lexicalized and selected models from

incomplete data gave 86.1% precision, which

is an improvement of 18%. Comparing lex-

icalized models in the estimation method

shows that incomplete-data estimation gives

an improvement of 12% precision over train-

ing from the parsebank. A comparison of mod-

els trained from incomplete data shows that

lexicalization yields a gain of 13% in preci-

sion. Note also the gain in e�ectiveness (E)

due to the pre-disambigution routine included

in the lexicalized properties. The gain due to

property selection both in precision and e�ec-

tiveness is minimal. A similar pattern of per-

formance arises in an exact match evaluation

on the newspaper corpus with an ambiguity

rate of 25. The lexicalized and selected model

trained from incomplete data achieved here

60.1% precision and 57.9% e�ectiveness, for a

random baseline of around 17%.

As shown in Fig. 3, the improvement in per-

formance due to both lexicalization and EM

training is smaller for the easier task of frame

evaluation. Here the random baseline is 70%

for frame evaluation on the newspaper corpus

with an ambiguity rate of 25. An overall gain

of roughly 10% can be achieved by going from

unlexicalized parsebank models (80.6% preci-

sion) to lexicalized EM-trained models (90%

precision). Again, the contribution to this im-

provement is about the same for lexicalization

and incomplete-data training. Applying the

same evaluation to the Helbig-Buscha corpus

shows 97.6% precision and 96.7% e�ectiveness

for the lexicalized and selected incomplete-

data model, compared to around 80% for the

random baseline.

Optimal iteration numbers were decided by

repeated evaluation of the models at every

�fth iteration. Fig. 4 shows the precision of

lexicalized and selected models on the exact
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Figure 4: Precision on exact match task in number of training iterations

match task plotted against the number of it-

erations of the training algorithm. For parse-

bank training, the maximal precision value

is obtained at 35 iterations. Iterating fur-

ther shows a clear overtraining e�ect. For

incomplete-data estimation more iterations

are necessary to reach a maximal precision

value. A comparison of models with random

or uniform starting values shows an increase

in precision of 10% to 40% for the latter.

In terms of maximization of likelihood, this

corresponds to the fact that uniform starting

values immediately push the likelihood up to

nearly its �nal value, whereas random starting

values yield an initial likelihood which has to

be increased by factors of 2 to 20 to an often

lower �nal value.

5 Discussion

The most direct points of compar-

ison of our method are the ap-

proaches of Johnson et al. (1999) and

Johnson and Riezler (2000). In the �rst ap-

proach, log-linear models on LFG grammars

using about 200 con�gurational properties

were trained on treebanks of about 400

sentences by maximum pseudo-likelihood

estimation. Precision was evaluated on an

exact match task in a 10-way cross valida-

tion paradigm for an ambiguity rate of 10,

and achieved 59% for the �rst approach.

Johnson and Riezler (2000) achieved a gain

of 1% over this result by including a class-

based lexicalization. Our best models clearly

outperform these results, both in terms of

precision relative to ambiguity and in terms

of relative gain due to lexicalization. A

comparison of performance is more di�cult

for the lexicalized PCFG of Beil et al. (1999)

which was trained by EM on 450,000 sen-

tences of German newspaper text. There, a

70.4% precision is reported on a verb frame

recognition task on 584 examples. However,

the gain achieved by Beil et al. (1999) due to

grammar lexicalizaton is only 2%, compared

to about 10% in our case. A comparison

is di�cult also for most other state-of-the-

art PCFG-based statistical parsers, since

di�erent training and test data, and most

importantly, di�erent evaluation criteria were

used. A comparison of the performance gain

due to grammar lexicalization shows that our

results are on a par with that reported in

Charniak (1997).

6 Conclusion

We have presented a new approach to stochas-

tic modeling of constraint-based grammars.

Our experimental results show that EM train-

ing can in fact be very helpful for accurate

stochastic modeling in natural language pro-

cessing. We conjecture that this result is due

partly to the fact that the space of parses

produced by a constraint-based grammar is

only �mildly incomplete�, i.e. the ambiguity

rate can be kept relatively low. Another rea-

son may be that EM is especially useful for

log-linear models, where the search space in

maximization can be kept under control. Fur-

thermore, we have introduced a new class-



based grammar lexicalization, which again

uses EM training and incorporates a pre-

disambiguation routine into log-linear models.

An impressive gain in performance could also

be demonstrated for this method. Clearly, a

central task of future work is a further explo-

ration of the relation between complete-data

and incomplete-data estimation for larger,

manually disambiguated treebanks. An inter-

esting question is whether a systematic vari-

ation of training data size along the lines

of the EM-experiments of Nigam et al. (2000)

for text classi�cation will show similar results,

namely a systematic dependence of the rela-

tive gain due to EM training from the relative

sizes of unannotated and annotated data. Fur-

thermore, it is important to show that EM-

based methods can be applied successfully

also to other statistical parsing frameworks.
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