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Abstract

In this paper we present hidden
Markov models for Korean part-of-
speech tagging, which consider Ko-
rean characteristics such as high
agglutinativity, word-spacing, and
high lexical correlativity. In order
ot consider rich information in con-
texts, the models adopt a less strict
Markov assumption. In the models,
sparse-data problem is very serious
and their parameters tend to be esti-
mated unreliably because they have
a large number of parameters. To
overcome sparse-data problem, our
model uses a simplified version of
the well-known back-off smoothing
method. To mitigate unreliable esti-
mation problem, our models assume
joint independence instead of con-
ditional independence because joint
probabilities have the same degree of
estimation reliability. Experimental
results show that models with rich
contexts perform even better than
standard HMMs and that joint in-
dependent assumption is effective in
some models.

1 Introduction

Korean is an highly agglutinative language
which has word-spacing orthography. It
makes Korean part-of-speech (POS) tagging
different from English POS tagging. Gener-
ally English POS tagging can be regarded as
a process in which a proper POS tag is as-
signed to each word in texts. However, in Ko-
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rean POS tagging, each word is tagged with a
proper combination of categories and lexical
forms of morphemes(Lee et al., 1999) because
Korean words can be freely formed by aggluti-
nating morphemes and so the number of cate-
gories of Korean words can be (theoretically)
infinite.

Over a decade, many works for Korean
POS tagging have used a wide range of ma-
chine learning techniques such as a hidden
Markov model (HMM) (Lee, 1995)(Kim et
al., 1998), a maximum entropy model (Kang,
1998), transformation rules (Lim, 1997), a de-
cision tree (Lee et al., 1999), discriminative
learning (Kim et al., 1995), a fuzzy net (Kim
et al.,, 1993), a neural network (Lee, 1994),
and so on.

In this paper we propose hidden Markov
models for Korean POS tagging, which adopt
a less strict Markov assumption(Cinlar, 1975)
to consider rich contexts and which consider
Korean characteristics such as high agglutina-
tivity, word-spacing, and high lexical correla-
tivity. In the models, sparse-data problem is
very serious because they have a large num-
ber of parameters. To overcome sparse-data
problem, our model uses a simplified version
of the well-known back-off smoothing method.
If the parameters are very specific like lexi-
calized ones, they tend to have very different
estimation reliability, making the Markov as-
sumption implausible. To mitigate this prob-
lem, our models assume joint independence
between random variables instead of condi-
tional independence because joint probabili-
ties have the same degree of estimation reli-
ability. Experimental results for the KUNLP
corpus (Lee et al., 1999) show that models



with rich contexts perform even better than
standard HMMs and that joint independent
assumption is effective in some models.

2 Lexical correlativity of Korean

In Korean, the same word form can be made
from different morpheme sequences with the
same tag sequence. For instance, a word
form Na-Neun can correspond to two differ-
ent morpheme sequences with the same tag
sequence, Na/V(=to sprout)+ Neun/E(=case
marker) and Nal/V(=to fly)+Neun/E!. We
call this ambiguity “homo-categorial” ambi-
guity.

Usually homo-categorial ambiguity is not
easy to resolve without consulting lexical in-
formation in contexts. For example, Na-Neun
is tagged with Na/V+Neun/E in “SSag-i Na-
Neun Jung-i-Da (= A bud is sprouting)” and
with Nal/V+Neun/E in “Sae-Ga Na-Neun
Jung-i-Da (= A bird is flying)’. Because
these sentences have the same tag context
“N+P V4+E N+I+E”2, they cannot be dis-
criminated by considering only POS tag in-
formation in contexts. Moreover, although
two lexical probabilities, Pr(Na | V) and
Pr(Nal | V), are considered, the word can
not be correctly tagged since the tag with
larger probability is always selected in both
sentences.

However, such ambiguity can be resolved
by referring lexical relations in contexts. For
example, Na-Neun can be correctly tagged if
we consider lexical relations between SSag-Gi
and Na-Neun and between Sae-Ga and Na-
Neun.

3 HMM-based Korean POS
tagging

Figure 1 shows a morpheme-unit lattice struc-
ture of a Korean sentence, “Neo-Neun Hal Su
iss-Da.” , where each node has a morpheme
and its POS tag and where the sequence con-
nected by bold lines indicates the most likely
sequence. Because Korean has word-spacing
orthography, transitions between nodes can
1V denotes a verbal stem, and E a verbal ending.

2N denotes a noun, P a postposition, and T a cop-
ula.
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Figure 1: A morpheme-unit lattice of
“NeoNeun Hal Su issDa.” (= You can do it.)

be distinguished by a word boundary. Tran-
sitions across a word boundary, which are de-
picted by a solid line, are distinguished from
transitions within a word, which are depicted
by a dotted line.

3.1 Standard word-unit model

We basically follow the notation of (Char-
niak et al., 1993) to describe Bayesian

models. In this paper, we assume that
{w!, w?, ..., w¥} is a set of words,
{t', 2, ..., t"} is a set of POS tags,
a sequence of random variables W, =
Wi Wy W, is a sentence of n words,
a sequence of random variables Ti, =
Ty Ty ... T, is a sequence of n word cat-
egories. Because each of random variables

W can take as its value any of the words
in the vocabulary, we denote the value of W;
by w; and a particular sequence of values for
Wi; (i < j) by wi;. In a similar way, we
denote the value of T; by ¢; and a particu-
lar sequence of values for T; ; (i < j) by t; .
For generality, terms w; ; and ¢;; (i > j) are
defined as being empty.

The purpose of Bayesian models for POS
tagging is to find the most likely sequence of
POS tags for a given sequence of words, as
follows:

T(w1,n)



= argmaxPr(Ti,, =ti,n | Win =wi,) (1)

t1,n

= argmaxPr(ti,, | wi,.) (2)
t1,n

= argmax Prtin, win)
tl,n Pr(wl,n)

= argmax Pr(ti,n, wi,n) (3)

t1,n

Eqn. 1 becomes Eqn. 2 because reference to
the random variables themselves can be omit-
ted. Eqn. 2 is then transformed into Eqn. 3
since Pr(wy y,) is constant for all ¢ .

Then, the probability Pr(¢i,,w: ) is bro-
ken down into Eqn. 4 by using the chain rule.

puct oo = I (DL ) @
i=1

However, it is either implausible or impossible

to compute Pr(t; | t1,-1,w1;-1) and Pr(w; |

tl,i,wl,i_l) in Eqn. 4.

The standard HMM simplifies them by
making the following two strict Markov as-
sumption (conditional independence), Eqn. 5
and Eqn. 6, to get a more tractable form,
Eqn. 7.

Pr(t: [ t1,i—1,w1i-1) =
Pr(w; | t1s,w1,i-1) &

1 Prti | ti-x,io
Pr(ti,n,wi,n) = H ( X P(’r(luz | t:) : ) @

i=1

Pr(t; | ti—k,i—1) (5)
Pr(w; | ti) (6)

The standard HMM assumes that the proba-
bility of a current tag ¢; conditionally depends
on only the previous K tags t;_k ;1 and that
the probability of a current word w; condi-
tionally depends on only the current tag?.
Generally, the standard HMM has a limita-
tion that it can not solve complicated ambi-
guities because it does not consider rich con-
texts. To overcome this limitation, the stan-
dard HMM should be extended so that it can
consult rich information in contexts.
Moreover, the standard word-unit model
can not be used effectively for tagging highly
agglutinative languages like Korean. There-
fore, the word-unit model should be trans-
formed into a morpheme-unit model.
3Usually, K is determined as 1 (bigram as in (Char-

niak et al,, 1993)) or 2 (trigram as in (Merialdo,
1991)).

3.2 Extended morpheme-unit model

Bayesian models for morpheme-unit tagging
find the most likely sequence of morphemes
and corresponding tags for a given sequence
of words, as follows:

T(wi,pn) = argmax Pr(ci y, miy | wiyn)  (8)
C1,u,M1,u

) argmax Pr(cl,ua DP2,u, ml,u) (9)
C1l,usM1,u

In the above equations, u(> n) denotes the
number of morphemes in a sequence corre-
sponding the given word sequence, ¢ denotes a
morpheme-unit tag, m denotes a morpheme,
and p denotes a type of transition from the
previous tag to the current tag. p can have
one of two values, “#” denoting a transition
across a word boundary and “+” denoting a
transition within a word. Because it is diffi-
cult to calculate Eqn. 8, the word sequence
term w1, is usually ignored as in Eqn. 9. In-
stead, we introduce p in Eqn. 9 to consider
word-spacing®.

The probability Pr(ci .y, p2u,m1,) is also
broken down into Eqn. 10 by using the chain
rule.

Pr (cl wy P2,uy M1 u)

_ H ( Pr(c;, pi | C1,i—1,P2,i—1,M1,i— 1) )(10)

X PI' mZ | C1 z;pZZamll 1)

Because Eqn. 10 is not easy to compute, it is
simplified by making a Markov assumption to
get a more tractable form.

An extended HMM for morpheme-unit tag-
ging can be defined by making a less strict
Markov assumption, as follows:

AClyyx,1), Misyz,r) B Pr(eiu, P2us miw)

CiK i1, PieK+1,i-1];

Pr(cl, p; PR ’

~ H ( z[,pz] | mi gi1 ) (11)
=1 X Pr(m; | ¢i—ri[, Pi—L+1,4), Mi—1,i—1)

In a model A(C[s](K’J),M[S](L’[)), the proba-
bility of the current morpheme tag c; condi-
tionally depends on both the previous K tags

4Most previous HMM-based Korean taggers except
(Kim et al., 1998) did not consider word-spacing.



¢i—K,i—1 (optionally, the types of their tran-
sition p;—x1,—1) and the previous J mor-
phemes m;_;;_1 and the probability of the
current morpheme m; conditionally depends
on the current tag and the previous L tags
¢i—1,; (optionally, the types of their transi-
tion p;_r41,;) and the previous I morphemes
mj_r;—1- In experiments, we set K as 1 or
2, Jas0Oor K, Las 1or 2, and I as 0 or
L. If J and I are zero, the above models are
non-lexicalized models. Otherwise, they are
lexicalized models.

For example, the extended model
A(Cy2,2), M(2,2)), where word-spacing is
considered only in the tag probabilities, cal-
culate the probability of a node “Su/NNBG”
of the most likely sequence in Figure 1 as
follows:

Pr(NNBG,# | VV,EFD,+, Ha,l)
x Pr(Su | VV, EFD,NNBG, Ha, )

4 Parameter estimation

The extended models have a large number
of parameters, as compared to the standard
models. Therefore, they must suffer from
both sparse-data problem and unreliable es-
timation problem. The models adopt a sim-
plified back-off smoothing technique as a so-
lution to the first problem, and joint indepen-
dence assumption as a solution to the second.

4.1 Simplified back-off smoothing

In supervised learning, the simpliest pa-
rameter estimation is the maximum like-
lihood(ML) estimation(Duda et al., 1973)
which maximizes the probability of a train-
ing set. The ML estimate of morpheme tag
(K +1)-gram probability, Prasr(c; | ci—ki-1),
is calculated as follows:

Fa(ci—k.i)

Fq(ci—k,i-1) (12)

P . - - —
MII‘/(Cz | Ci—K,i 1)

where the function Fq(z) returns the fre-
quency of z in the training set. When using
the ML estimation, data sparseness is even
more serious in the extended models than in
the standard models because the former has
even more parameters than the latter.

In (Chen, 1996), where various smoothing
techniques was tested for a language model by
using the perplexity measure, it was reported
that the back-off smoothing method(Katz,
1987) performs better on a small traning set
than other methods. In the back-off smooth-
ing, the smoothed probability of tag (K+1)-
gram Prspo(c; | ¢i—Kk,i—1) is calculated as fol-
lows:

P N s 1) =
SBI'O(CZ|C'L K,i 1)

d, PI‘ML(CZ' | Cz’—K,z’—l) ifr>0
a(ci—k;i-1)Prspo(ci | cixy1,-1)if 7 =0
where r = Fq(ci_k ), 7 = (r+ 1)@
n

T

(13)

r* (T+1)an+1
d — T n1
T o (1‘—|—1)an+1
ni

In the equation above, n, denotes the num-
ber of (K+1)-gram whose frequency is r,
and the coefficient d, is called the discount
ratio, which reflects the Good-Turing es-
timate(Good, 1953)°. Eqn. 13 says that
Prgpo(ci | ¢i—k,—1) is under-estimated by
d, than its maximum likelihood estimate, if
r > 0, or is backed off by its smoothing term
Prspo(ci | ciok+1,—1) in proportion to the
value of the function a(c;—x;—1) of its condi-
tional term ¢;—g;—1, if r = 0.

However, because Eqn. 13 requires compli-
cated computation in a(c¢;— k1), we simplify
it to get a function of the frequency of a con-
ditional term, as follows:

a(Fq(ci-k,i-1) = f) =
E[Fq(ci-k,i-1) = f]
A 3
8 Y7o ElFq(ci-k,i-1) = f]

(14)
where
Zci*K,i,7'>O Prspo(cilci-k,i-1)
ZC'L—K,-L,7'>0 Prur(ci |Ci—K,i—1)
E[Fa(ci k1) = f] =
Pr (cileimii1.im
Z SBI(‘)(CZ|CZ K+41,i-1)

Ci—k+41,ir=0,Fq(c; ki 1)=f

A=1-

bl

In Eqn. 14, the range of f is bucketed into 7
regions such as f = 0,1,2,3,4,5 and f > 6

In (Katz, 1987) d» = 1 if r > 5.



since it is also difficult to compute this equa-
tion for all possible values of f.

In the formalism of the simplified back-
off smoothing, each probability whose ML
estimate is zero is backed off by its cor-
responding smoothing term. In experi-
ments, the smoothing term of Prsgo (e[, pi] |
CiK,i-1[,Pi-K+1,i-1),Mi— ;1) is determined
as follows:

Ci—K+1,—1
’ L K>,
Prspo(cil,pil | [pi-Kk+2,i-1], ) if 71
Myi—J+1,i—1
Ci—Kji—1 . K Z 1
Pr cil, pi o if ’
spoleil. il | [ Pi—K41,i-1] J=1
Ci K41i-1 o K>1,
Pr cil, pi ’ ’ if
SBO( z[ pz] | [7pi—K+2,z'—1] J=0
L K=1,
Prap(c) if 7—0
The smoothing term of Prggo(m; |
Ci—Lil,Pi-L+1,4)smi—145-1) is  determined
as follows:
Ci—L+14
Prspo(mi | [,pi-r+24], ) fL>1,1>1
mi—141,4—1
Prspo(m; | % ) HL>1,1=1
[api—L+1,i]
Prspo(m; | O Pt fL>1,1=0
[api—L+2,i]
Prap(m;) if L=0,1=0

In the equations above, the unigram proba-
bilities are calculated by using the additive
smoothing with § = 1072, which is chosen
through experiments. The equation for the
additive smoothing(Chen, 1996) is as follows:

Fq(ci—k,i) + 6
> (Fa(ei-k,i) +9)

4.2 Joint independence

Eg(ci | Ci—ki1) =

The parameters of an HMM may have differ-
ent degree of statistical reliability because pa-
rameter reliability depends on the frequency
of conditional term. For example, let a corpus
consist of 1 million words and let the follow-
ing parameters be extracted from the corpus
by using the maximum likelihood estimation.

Pr(a) =0.01 Pr(d|a)=0.1
Pr(b) = 0.001 Pr(d|b) = 0.1
Pr(c) = 0.0001 Pr(d|c)=0.1

In this case, three conditional probabilities,
Pr(d | a), Pr(d | b), and Pr(d | c¢) are all 0.1
but Pr(d | a) is statistically more reliable than
others because its sample size (10,000 words
= 1 millionx Pr(a)) is bigger than others. Ac-
tually, this problem becomes very serious in
extended models, even though parameters of
the models are seen in the training corpus.

To consider such statistical reliability of a
probability estimate, we introduce the con-
cept of weighting Markov assumption, as fol-
lows:

Pr(c; | c1i-1,m1,i-1) =
Pr(c; | ci-kji-1,mi—gi-1) (15)
XW(ci Ki1,Mi Ji 1)
Pr(m; | c14,m1-1) =
Pr(m; | ¢i—14, mi—r,i-1) (16)
X W(Ci—Li,Mi1,i—1)

If the probability function, Pr, is used as
the weight function, W, the equations above
become equations assuming joint indepen-
dence between random variables as follows:

PI‘(Ci | cl,i*laml,ifl) =~ (17)
Pr(ci, ci—ki—1,Mi—gi—1)
Pr(m; | c1i,m1i—1) =

18
Pr(mi, ci—ri,mi—1,i-1) (18)

The equations above assume that the proba-
bility of the current morpheme tag c; jointly
depends on both the previous K tags c¢;_xi—1
and the previous J words m;_7; 1 and that
the probability of the current word m; jointly
depends on the current tag and the previous L
tags ¢;_r; and the previous I words m;_r;_1.
If a Bayesian model assumes joint indepen-
dence, we call it a joint independence model
(JIM).

Actually, using the probability function as
the weight function is mathematically incor-
rect and implausible. For example, while the
sum of probabilities of all sentences with the
same length becomes 1.0 in an HMM, it be-
comes naturally less than 1.0 in a JIM. There-
fore, JIMs should not be used in calculating
the probability of a sentence. However, if we
want to find the most likely sequence for each
sentence and the joint probability of each pa-



rameter is regarded as a score, JIMs work
well.

By replacing corresponding parameters, an
extended morpheme-unit HMM can be trans-
formed into the corresponding JIM, which is
defined as follows:

O(Cls)(x,0)> Mis)(z,1) F Pr(ciu, pous miu)

Pr(ef pi), (b Pacl

~

=1 X Pr(mg, ¢i—ri[, PimL41,i)s Mi—1,i—1)

In the extended JIM, ®(Cj(5,2), M(23)), the
probability of a node “Su/NNBG” of the most
likely sequence in Figure 1 is calculated as
follows:

Pr(NNBG,#,VV,EFD,+, Ha,l)
x Pr(Su,VV,EFD,NNBG, Ha, )

The parameters of a JIM are estimated by
using the parameters of the corresponding
HMM as follows:

Prspol(ci[, pils Ci—Ki-1[sPimK+1,i-1]s ) =

mi—Ji—1
Prsgo(cil,pi] | fril_-KJ,i-_ll[’pi_KH’i_l]’ )
i—J,i—
X PrAD( ci_K,i—l[apz’—K-q-Li_l], )
MG Ji—1

Pr(mg, cipil,Pi-Ly1smi-1i-1) =
Pr(m; | ¢i—ril, Pier41,i), Mi—1,i—1)
X Pr(ci—ri[, Pi—r+41,i), Mi—1,i-1)
Fq(ci—k;:) + 6

Yok Falcimk,i) +0)

EB(Ci—K,i) =

5 Experiments

In experiments, we used the KUNLP corpus
which consists of 167,115 words and 15,211
sentences and is tagged with 65 POS tags. It
was segmented into two parts, the training
set of 90% and the test set of 10%, in the
way that each sentence in the test set was
extracted from every 10 sentence. In the same
way, we made 10-fold data set for 10-fold cross
validation.

In order to morphologically analyze each
word, we used the Korean morphological ana-
lyzer (Lee, 1999) which is consistent with the

= miJi1 (19)

KUNLP corpus. By using the morphologi-
cal analyzer, the average number of possible
analyses per word becomes 3.41.

Figure 2-5 illustrate graphs showing the
average accuracy rates of HMMs and JIMs,
without considering word-spacing, with con-
sidering word-spacing only in the lexical prob-
abilities, with considering word-spacing only
in the tag probabilities, and with considering
word-spacing in both the tag and lexical prob-
abilities, respectively. Here, labels in x-axis
specify models in the way that IL(j denotes
A(Clsye, 1) Misi(z.n) or S(Csjae, 1y Misyz.n)-
The models are arranged by the ascending or-
der of theoretical number of parameters. The
first two models are standard models and the
others are extended models. The average ac-
curacy rates beyond the range of each graph
are intentionally omitted.

In these figures, we can observe that the
simplified back-off smoothing technique mit-
igates sparse-data problems in both HMMs
and JIMs. As expected, JIMs achieves
higher accuracy than the corresponding
HMMs in some extended models consult-
ing rich contexts. Consulting word-spacing
makes slight improvement in some of both
HMMs and JIMs. It is statistically signifi-
cant with confidence 99that the best model,
A(Cy2,2) My(2,2)) (96.97%), is better than
any other models including the previous stan-
dard model A(C( 0y, M(o,0)) (94.95%)(Lee,
1995), the previous model A(Cy,0), M(0,0))
(94.96%) (Kim et al., 1998), and the best
JIM, A(C1,1), Ms(1,1)) (96.95%).

6 Conclusion

We have presented the extended HMMs for
Korean POS tagging, which assume joint in-
dependence between random variables, which
are based on the morpheme-unit lattice struc-
ture, and which consider word-spacing and
rich information in contexts. In the models,
a simplified version of back-off smoothing is
used to mitigate data sparseness problem.
From the experimental results, we have ob-
served that extended models achieved even
better results than the standard models in
case of both HMMs and JIMs, that the simpli-



97.0 — T
HMM -X- -
JIM & X .
96.5 o X\
: 1]
96.0 __.>< -
XX
95.5 _
X
95.0 Lo 1 ! ! ! !
1,0 2,0 L0 20 1,1 1,1 1,0 20 1,1 1,0 20 1,1 22 22 22 22 1,0 20 1,1 22
0,0 0,0 1,0 1,0 0,0 1,0 2,0 20 2,0 22 22
Figure 2: Without considering word-spacing
97.0 — T
HMM -X- - «
JIM &—
96.5 _
. 1
96.0 - X R -
X :
95.5 — b e -
x
95.0 Lo 1 ! ! ! ! ! !
1,0 2,0 10 20 1,1 1,1 1,0 20 L1 10 20 1,1 22 22 22 22 10 20 L1 22
0,0 0,0 10 1,0 0,0 1,0 2,0 2,0 2,0 1,1 1,1 1,1 0,0 1,0 2,0 1,1 22 22 22 22

Figure 3: With considering word-spacing only in the lexical probabilities

fied back-off smoothing technique mitigated
data sparseness quite effectively, that consult-
ing word-spacing made slight improvement of
accuracy, and that some extended JIMs out-
performed the corresponding HMMs.

Now, we are implementing and evaluat-
ing various smoothing techniques in order to
find more effective smoothing technique for
HMM /JIM-based Korean POS tagging. And
also, we are trying to apply JIMs to different
areas such as information extraction in the
bio-molecular domain, noun phrase chunck-
ing, and so on.
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