Automatic detecting/correcting errors in Chinese text by an
approximate word-matching algorithm

Lei Zhang
Dept. of Computer Science and Technology
Tsinghua University
Beijing, China, 100084
zhl@s1000e.cs.tsinghua.edu.cn
Changning Huang
Microsoft Research China
Beijing, China, 100080
cnhuang@microsoft.com

Abstract

An approximate word-matching algorithm
for Chinese is presented. Based on this
algorithm, an effective approach to Chinese
spelling error detection and correction is
implemented. With a word tri-gram
language model, the optimal string is
searched from all possible derivation of the
input sentence using operations of character
substitution, insertion, and deletion.
Comparing the original sentence with the
optimal string, spelling error detection and
correction is realized simultaneously.

Introduction

No system aiming at automatic detecting
and correcting errors in Chinese text achieves
satisfying result today. One representative
approach is confusing character substitution
method (Chang, 1994), where confusing
characters are used to replace every character in
the input sentence, and a "correct" result with
highest evaluation score is searched from all
paths. While achieving relatively good result, it
has obvious weakness: only character
substitution errors can be detected and corrected,
other kinds of errors can not be handled,
including character deletion, character insertion,
and string substitution errors.

There is a clear two-level structure in
English spelling error detection and correction,
"non-word" error and "real-word" error (Kukich,
1992). Things are different in Chinese. Although

Ming Zhou
Microsoft Research China
Beijing, China, 100080
mingzhou@microsoft.com

Haihua Pan

Dept. of Chinese, Translation and Linguistics

City University of Hong Kong
Kowlong, Hong Kong, China
cthpan@cityu.edu.hk

many approaches find that most errors in
Chinese cause segmentation abnormal (Sun,
1997 and Zhang, 1998), no one stress on such
"non-word" error and the two-level structure is
not adopted in Chinese. Following are possible
reasons for this situation. There is no obvious
word boundary in Chinese text, so automatic
word segmentation must be introduced. If error
exists, segmentation result could be weird. For
example, the segmentation of HkEk, which is
a character deletion error for the word fL/CrEk
Bk, may appear like M&/HK/HK, including three
one-character words. It’s easy for human to
judge that [LHKIK is some kind of "non-word"
error, but it's difficult for computer to make such
a decision because most Chinese characters
could be used as a one-character word.

A fast approximate Chinese word-matching
algorithm is presented. Based on this algorithm,
a new automatic error detection and correction
approach using confusing word substitution is
implemented. Compared with the approach of
(Chang, 94), its distinguished feature is that not
only character substitution error, but also
character insertion or deletion error and string
substitution error could be handled.
word-

1 Fast approximate Chinese

matching algorithm

1.1 Error types in Chinese text

When classifying errors in Chinese text,
most papers prefer to categorize errors on the
character level. In our opinion, this kind of

classification contributes little to improve the
performance for Chinese text error detection and
correction. Referring to what’s common in
English spelling error detection and correction,
we classify errors as followed:

(DNon-word errors: The string mapping to
a word in the correct text can’t be treated as a
word in the corresponding error text. This kind
of error can be further classified into: @O
Character substitution error. A correct character
is replaced by another character. Such as 444
B> MR, A > mgiAL ©
String substitution error. A correct string is
replaced by another string, and at least one of
the two strings consists of more than one
character. Such as SZHRE > SR E. @
Character insertion error. Such as iRz >
PR KB, @Character deletion error. Such
as AOIKEK > K.

(2) Real-word errors. This kind of error
could be further classified into: O Word
substitution error. Such as 4ty > WH. @
Word insertion error. Such as #&F 2> JT3t
F. ®Word-Deletion error. Such as —4cJ& >

1.2 Fast precise Chinese word-matching
algorithm

Dictionary organized in (deterministic)
finite state recognizer (FSR) format is used to
implement the fast precise Chinese word-
matching algorithm. FSR = (Q, 4, § F) with Q
denoting the set of states, 4 denoting the input
alphabet, which are all Chinese characters for a
Chinese dictionary, 0 : Ox4=>Q denoting the
state transition function and /' [J O denoting the

final states. Besides, let stStart denote the
starting state of a F'SR, stError denote the state
when input character cannot be accepted.

Precise Chinese word match is to find all
the strings, starting from a specific position in a
sentence, which are items in a dictionary. For
example, with the dictionary including words:
yohEL PEAC BAL AL AR, at the
beginning of the sentence “ M7 [E A [l dg >k
71”7, three words of different length “H1>, “r
[¥>, “H#[E N> should be matched. Figure 1
shows the algorithm of fast precise Chinese
word match. Where dict=(Q, 4, 0, F) is a
Chinese dictionary, state is its current state, str
is the string currently read by dict, sentence is
the input sentence, idx is the subscript in the
sentence of the character that should be read
immediately. All matched words are put into
result. The initial values when calling this
recursive function should assure: str=nil,
state=stStart, result=0. This function is used by
approximate word-matching algorithm later.

1.3 Approximate Chinese word-matching
algorithm

Approximate word match based-on FSR is
used in English spelling error detection and
correction to find all words in a dictionary
whose minimum edit distance to a given string is
less than a threshold. However, there are great
differences between the approximate word
match of Chinese and English. First, the length
of the English string to be matched is
determinate. Because there are no obvious word
boundaries in Chinese text, the length of the
Chinese string to be matched is unknown. So
approximate Chinese word match must find
words that are similar to all strings of different
length. For example, when approximately
matching the sentence “Jf& V225 MFIR T
at its beginning, the algorithm should give out
all Chinese words that are similar to “Ji”, “f%

%”, “){:‘12.%/%{\”, “){:‘_‘é%% » a’, “@%é‘\ﬁgﬁ”-u

begin

begin
if (state’l] F') then

end;
end;

Procedure CnPreciseMatch(dfa, state, str, sentence, idx, Var result)

if (idx is not the end of sentence) and ((state’ & Xstate,sentence[idx])) # stError) then

result€result\J { str + sentence[idx] };
CnPreciseMatch(dfa, state’, str+sentence[idx], sentence, idx+1, result);

Figure 1. Fast precise Chinese word-matching algorithm

Second, character is the basic unit in the English,
and its approximate word-matching algorithm
can adopt a cut-off method (Oflazer, 1996)
depending on the string currently read and only
one character to be read next time. This
decreases the search space greatly. As
mentioned before, errors in Chinese text may be
caused by string replacement where the lengths
of the correct string and its corresponding error
string may be different. This means, no matter
how far the FSR has read from the beginning
position, how dissimilar the string currently read
is to all possible words, we can’t determine
whether or not words that are similar to the
target string could be found if more characters
are read later. For example, the error #t2 KK
> Bk KIFeXALIE, which is caused because
the Five-stroke input code are similar between
K(tdi) and XM IR (tmdi). Although B2 K
Fe X B is dissimilar to all words in dictionary,
K2 KIFeXALIE is similar to word 2 KK,

The direct way to implement the
approximate Chinese word match is: for each
substring with length 1, 2, 3, ..., N, starting at
specified position in sentence, browse the
dictionary and count their similarity or edit
distance to every word in it. This approach will
face two problems: (U High computational
complexity. A common Chinese dictionary with
normal size contains about 60,000 words.
Besides, the evaluation of the similarity between
two strings is also time-consuming. Its
computing cost is far from the real-time
requirement of error detection and correction.
(2What is the maximum substring length N?
One may think that 4 or 5 is enough. Let’s look
at an extraordinary example. Imaging an
inexperienced Five-Stroke typewriter is
supposed to input a four-character word and he
makes mistakes on every character. More
unfortunately, his carelessness causes every
single character transformed to a four-character
word. Finally he gets a 16-character string
instead of the expected four-character word.
Here, N should be at least 16 to get the proper
match.

1.3.1 Definition of the distance

To implement approximate match, distance
of two strings should be defined. Some
predefined distances of two strings is called
meta-distance, denoted with MetaD. We define

MetaD(X,Y) between two Chinese strings X and
Y according to their grapheme, pronunciation
and input code: (DThe similarity of their Pinyin
input code. For characters X and Y with same
pronunciation, for example [f](tong) and i
(tong), MetaD(X,Y)=30. For characters X and Y
different only on surd/sonant, for example
(shan) and = (san), MetaD(X,Y)=40. @ The
similarity of their Five-Stroke input code. For
strings X and Y that one input code could be
transformed to another at most by one
substitution operation, for example’} il (ahnm)
and 1. H5(ahnn), MetaD(X,Y)=30. For strings
X and Y that one input code could be
transformed to another only by one insertion,
deletion or transposition operation, for example
A (aa) and T (aaa), P (bwj) and Bl (wbj),
MetaD(X,Y)=40. (3 Some rules learned from
text errors reflecting common human confusion
on Chinese characters. For example, MetaD(E,
)=26. In addition, let € mean null string, for
each character z, let MetaD(g,€) = MetaD(z, z) =
0, MetaD(z, €) = Metad(e, z) = 50. For those
string pairs X and Y that there is no meta-
distance definition between them, just let
MetaD(X,Y)=+ oo. Define the set of meta-strings
M as:

M={X|X#¢g 0V #X, MetaD(X, Y) <+oo }

For each meta-string XUM, define its
confusing string set cfs(X) as:

cfs(X)={ Y| YOM, Y # €, MetaD(X, Y) < +oo}

And each Ylcfs(X) is called confusing
string of X. When character transposition error”
is not considered, the distance of two strings X"
and Y,", where m and n is the length of X and Y
respectively, can be defined as:

Q’\/[etaD(le,Yl") MetaD (X" ,Y,") < +oo
X", y") =0 i v moyn
E MIN {d(X,Y,)+d(X 5, Y0} other

1<i<m, 1< j<n

This recursive definition is not easy to
compute. Fortunately, our approximate match
algorithm use a heuristic expanding method and
avoid the computing cost.

* Character transposition error is rare in Chinese text.

1.3.2 Fast approximate Chinese word-matching
algorithm

Chinese word approximate match is to find,
from a specific position in the target sentence,
all words that has a distance less than a threshold
t, to substrings beginning at the position with
different length 1, 2, 3, At the same time, the
beginning position of the match next time and
the distance d between the matched word and its
corresponding original string should also be
given. In our implementation, the set of meta-
string M is also organized in a FSR format. In
M’s every final state representing a meta-string
X, all strings in ¢fs(X) and their distances to X is
recorded. Figure 2 shows the approximate
Chinese word-matching algorithm. Where
cdfa=(Q’, A, 0, F’) is M. dict=(Q, A4, o, F) is
Chinese dictionary. state is the current state of
dict. str is the string currently read by dict.
sentence 1is the target sentence. idx is the
subscript in the sentence of the character to be
read next time. diff is the distance of two partial
strings already matched. result is a set of 3-tuple
elements like (word, next, d), where word is the
approximate matched word, next is the position
where the approximate match should start next
time. d is the distance between the matched
word and its corresponding original string. The
initial values when calling this algorithm should

assure: str=nil, state=stStart, diff=0, result=[1.
The algorithm could restore character insertion,
deletion, substitution errors as well as string
substitution errors. The threshold ¢, decreases
the search space.

For example, when to approximate match
at the beginning of "JEIGKS4SIMFIR LI ",
where Ifi is a character substitution error of ',
the result may be contains (J&, 2, 0), (¥4, 2, 30),
(%, 2, 30), (AL, 2, 40), ..., (JBYL, 3, 0), (JEI
2,4,0), (JBH, 2, 50), (BH, 2, 50),..., (FHE,
2,50), (Z&, 2, 50)..., etc. The correct word Ji

W2 is in the list.

2 Confusing word substitution approach

Confusing character substitution approach
(Chang, 1994) got a relatively good result, but
can not deal with errors of character insertion,
character deletion and string substitution. Our
confusing word substitution approach is an
improvement on the confusing character
substitution approach by mending such
disability. It is based on the fast approximate
Chinese word-matching algorithm. In this
approach, a given sentence is approximately
segmented from all possible derivation of the
input sentence using operations of substitution,

begin
if (idx is the end of sentence) then return;
if (diff+MetaD(sentence[idx],€) < t,)) then

if (diff+tMetaD(x, €) <t,) then
begin
if (state’[1F)then
result

end;

Foreach { X| X U set } do
Foreach { Y| Y U c¢fs(X) } do

begin
if (state’1F) then

end;
end;

Procedure CnFussyMatch(dict, state, str, sentence, idx, diff, t,, cdfa, Var result)

//try to delete a Chinese character
CnFussyMatch(dict, state, str, sentence, idx+1, diff+MetaD(sentence[idx], £),
Foreach { x | (state’€ Nstate, x)) % stError } do

+= { (str+x, idx, diff+MetaD(x, €)) };
CnFussyMatch(dict, state’, str+x, sentence, idx, Diff+MetaD(x, €), t,,, cdfa, resulf);

CnPreciseMatch(cdfa, stStart, nil, sentence, idx, set=01);

//try to veplace X with its similar string Y
If (diff+tMetaD(X,Y)< t,,) and ((state € state, Y)) # stError) then

result += { (str+7Y, idx+|X], diff+MetaD(X,Y)) };
CnFussyMatch(dict, state’, str+ Y, sentence, idx+|X|, diff+MetaD(X, Y), t,, cdfa, result);

Figure 2. Fast approximate Chinese word-matching algorithm

cdfa, result);

wo

//try to insert a Chinese character

//get all possible meta-strings into set

begin
if Cidx is the end of sentence) then
result += path,
else begin

end;
end;

Procedure CnFussySeg(dict, path, sentence, idx, diff, cdfa, Var result)

CnFussyMatch(dict, stStart, nil, sentence, idx, 0, min{ ¢t-diff, ,}, cdfa, fussyWords=0);
foreach ((word, next, d)in fussyWords) do
CnFussySeg(dict, path~+{(word, next, d)}, sentence, next, diff+d, cdfa, result);

Figure 3. Complete approximate segmentation algorithm

insertion, and deletion. Paths are then evaluated
using base language model and distance
discount. The optimal path with highest score is
searched and treated as the correction of the
original sentence.

2.1 Approximate segmentation

As what happens in precise segmentation,
approximate segmentation is to give a
segmentation path for a input sentence, but with
error tolerant ability. On the path, each word is
similar to its corresponding original string in the
input sentence. That's why we call this confusing
word substitution approach. For a input sentence,
let threshold 72> ¢,. It's required that the sum of
distances between all the words W’ on an
approximate segmentation path and their
corresponding original string W can not be
greater than ¢

AW WY<t
; ,

W 'Upath

The reason for using ¢, is that there are
always little errors in one sentence and it could
decrease the space of the approximate
segmentation paths. Figure 3 shows the
algorithm of the approximate segmentation
listing all possible paths. Where the path is an
approximate segmentation for input sentence,
it’s an array of elements like (word, next, d).
result is the set of all possible approximate
segmentation paths. Other symbols, such as dict
and cdfa, are of same meaning as in section
1.3.2.

2.2 Path evaluation

The evaluation of paths consists basic

language model evaluation and distance discount.

For a given approximate segmentation path,

basic language model evaluation can adopt N-
Gram models of character, word, POS tag or
word class. Denote the score with
ModelScore(path). The distance discount
multiplies the ModelScore with a discount,
valued from 0 to 1, according to the distance
between the path and the input sentence. The
final score of a path FS is:

FS(path, sentence)=ModelScore(path) *
discount(path, sentence)

In this paper, we use:

discount(path, sentence)=

[/ Cn.alrw))

WUpath

Where [is the length of W, n is the number
of the segment units when its corresponding
original string W is segmented. d(W’, W) is the
distance between W’ and W. f is the discount
function. Generally, the value of f should be
closer to 1.0 if d is less, / is longer or n is
greater.

Because the number of possible paths in an
approximate segmentation is very large, to avoid
the computational complexity, dynamic
programming is adopted and some changes are
made to the segmentation algorithm.

3 Experiment and results

First define some evaluating indicator for
the automatic error detection and correction task,
let:

A=number of errors in target text.
B=number of warnings the proofreading
approach given
C=number of errors
approach detected
D=number of errors

approach corrected

the proofreading

the proofreading

Character String Character | Character . .
* substitution |substitution| deletion insertion Total Number of | Recall |Precise| Correctior
error error error error warnings | rate | rate rate
Test text 395 76 29 35 535
(Chang 1994) [315/297| 17/0 3/0 6/0 |341/297| 622 64% | 55% | 56%
This approach |317 /298| 66 /63 19/18 | 27/24 [420/403 656 79% | 64% | T5%

*(number of error warned/ number of error corrected)
Figure 4. Error distribution and experiment result

Then, recall rate = C/A*100%, precise rate =
C/B*100%, correction rate = D/A*100%.

In the experiment, a text containing 535
errors is to be detected and corrected. The
corpus to train the word tri-gram language
model is about 200M bytes, including people’s
daily 93 and 94, 10 years reader, BaiJiaBao’94,
ShiChangBao’94. Two thresholds #s and tw are
set 59 and 50 respectively. Zhang Zhaohuang’s
approach is also applied on the test text as a
comparison. The distribution of different kinds
of errors and the experiment results are shown in
Figure 4.

From the result, we can see that our
approach using similar word substitution has the
same ability to detect and correct the character
substitution errors as (Zhang 1994) approach.
But its ability to detect and correct character
insertion error, character deletion error and
string substitution error are highly enhanced.
The result shows that our approach has great
practicability.

The reason for those incorrect warnings and

undetected or uncorrected errors mainly on: (O
Insufficient of the similar string set. When a
correct string is not included in the similar string
set, some errors will not be detected and
corrected. For example, the error “ X5 [F].Lat)p
J17 > K20)1 did not detected in our

experiment because “Z” does not in the similar
string set of ““%”. More complete similar string
set will detect and correct more errors, yet they
may also cause more incorrect warnings, and
increase the computing cost. @Language Mode
deficiency. Tri-gram only has local linguistic
constraints. It’s necessary to adopt long-distance
constraints. 3)Incomplete of the dictionary. @
Data sparseness. Larger corpus needed in
training.

4 Conclusion

A fast approximate Chinese word-matching
algorithm is presented in this paper. Based on
the algorithm, an automatic Chinese Spelling
Error Correction approach using similar word

Error sentences

Detection and Correction results

BERIMERAFERA. ..

BRI ER ..

CETEEEE 1 5y T IR L.

RERTZEE L 5 T IR

ﬁﬁﬁl‘ﬁﬁﬁﬂ%%mﬂﬂ% A B M ZER L
s ARSIV BR 78 173 P T o

A 1T AR DA 2 o NS SR 3) 2
R P RO BRI ﬁﬁﬁ/ﬁk

PR EA TR A .

PRAT S EAT IR A —HR T .

LA T Bl B 5 IR B AL AR %
o

WA T X 5 PR BB AR S A F

NP EITR SR R 2 P I TR T

L/ G PRI ES Y SRl tiE 5 i vl B

Figure 5. Examples of the test result using our error detection and correction approach

substitution and language model evaluation is
designed. Compared with Zhang Chao-Huang’s
confusing character substitution method, this
new approach can deal with not only character
substitution errors but also insertion, deletion
and string substitution errors. Because no word
boundaries in Chinese text, there is not a two-
level structure of “non-word” and “real-word”
errors in Chinese spelling correction task like
that in English spelling correction. The fast
approximate Chinese word-matching algorithm
can handle Chinese ‘“non-word” error efficiently,
making it easy to establish a two-level structure
in Chinese spelling correction.

The future research may include: (DPruning
the approximate word matching result before
they take part in the approximate segmentation.
This will decrease the computing cost. @
Introducing long distance constraints. What’s
need to point out is that dynamic programming
may dislike this kind of long distance constrains.
So they are more suitable in the pruning and
discounting.

References

Chang Chao-Huang (1994) 4 Pilot Study on
Automatic Chinese Spelling Error Correction.
Communication of COLIPS, 4/2, pp. 143—149

Karen Kukich (1992) Techniques for automatically
correcting words in text. ACM Computing Surveys,
24/4, pp. 377—439

Kemal Oflazer (1996) Error-tolerant Finite-state
Recognition with Applications to Morphological
Analysis and Spelling Correction. Computational
Linguistics, Computational Linguistics, 22/1, pp.
73—89

Sun Cai (1997) Research on Lexical Error Detection
and Correction of Chinese Text: [Master
Dissertation]. Tsinghua University, Beijing. 96p

Zhang Yansen, Ding Bingqing (1998). Research and
Practice on the Lexical Error Detecting System
Based on “Banding and Filtering” in Chinese Text
Automatic Proofread. In Proc. of International
Conference on Chinese Information Processing,
Tsinghua University Publishers, Beijing, China, pp.
392—437

