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Abstract

I present empirical comparisons be-
tween a linear combination of stan-
dard statistical language and trans-
lation models and an equivalent
Maximum Entropy/Minimum Di-
vergence (MEMD) model, using sev-
eral different methods for auto-
matic feature selection. The MEMD
model significantly outperforms the
standard model in test corpus per-
plexity, even though it has far fewer
parameters.

1 Introduction

Statistical Machine Translation (SMT) sys-
tems use a model of p(t|s), the probability
that a text s in the source language will trans-
late into a text t in the target language, to de-
termine the best translation for a given source
text. The standard approach to modeling this
distribution relies on a “noisy channel” de-
composition into a language model p(t) and a
translation model p(s|t), which correspond re-
spectively to prior and likelihood components
in a Bayesian formulation:

p(tls) = p(t)p(s|t)/ Y p(t)p(s|t)

o< p(t)p(slt),

where proportionality holds when searching
for the optimum target text t for a given
source text s. This equation has been called
the “fundamental equation of SMT” (Brown
et al., 1993).

In this paper, I investigate an alternate
technique for modeling p(t|s), based on a di-
rect chain-rule expansion of the form:

t|

p(tls) = [ ptilts .- - tio1,s), (1)
i=1

where t; denotes the ith token in t." The ob-
jects to be modeled in this case belong to the
family of conditional distributions p(w|h,s),
where w is a target word at a particular po-
sition in t, and h denotes the tokens which
precede it in t. The main motivation for
this approach is that it simplifies the “decod-
ing” problem of finding the most likely target
text according to the model. In particular, if
h is known, the problem of finding the best
word at the current position requires only a
straightforward search through the target vo-
cabulary, and simple and efficient dynamic-
programming based heuristics can be used to
extend this to sequences of words. This is very
important for applications such as TransType
(Foster et al., 1997; Langlais et al., 2000),
where the task is to make real-time predic-
tions of the text a human translator will type
next, based on the source text under transla-
tion and some prefix of the target text that
has already been typed.

The main drawback to modeling p(t|s) in
terms of p(w|h,s) is that the latter distri-
bution is conditioned on two very disparate
sources of information which are difficult to
combine in a complementary way. One sim-
ple strategy is to use a linear combination of

1 This ignores the issue of normalization over tar-
get texts of all possible lengths, which can be easily

enforced when desired by using a stop token or a prior
distribution over lengths.



language and translation components, of the
form:

p(wlh,s) = Ap(wlh) + (1 — X)p(wls).  (2)

where A € [0, 1] is a combining weight. How-
ever, this is a weak model because it aver-
ages over the relative strengths of its com-
ponents; when p(w|h) is likely to be a more
accurate estimate than p(w|s), it is obvious
that the model should rely more heavily on
p(w|h), and vice versa, rather than using a
fixed weight. In theory this could be partially
remedied by making A\ depend on h and s,
but in practice significant improvements with
this technique have proven elusive (Langlais
and Foster, 2000). The noisy channel model
avoids this problem by making predictions
based on h the responsibility of the language
model p(t), and those based on s the respon-
sibility of the translation model p(s|t), and
combining the two in an optimum way. But
this comes at the cost of increased decod-
ing complexity, because the chain rule can no
longer be applied as in (1) due to the reversed
direction of the translation model. Much re-
cent research in SMT, eg (Garcia-Varea et al.,
1998; Niessen et al., 1998; Och et al., 1999;
Wang and Waibel, 1998) deals with the de-
coding problem, either directly or indirectly
because of constraints imposed on the form
of the translation model.

A statistical technique which has recently
become popular for NLP is Maximum En-
tropy/Minimum Divergence (MEMD) model-
ing (Berger et al., 1996). One of the main
strengths of MEMD is that it allows informa-
tion from different sources to be combined in a
principled and effective way, so it is a natural
choice for modeling p(w|h,s). In this paper,
I describe a MEMD model for p(w|h,s) and
compare its performance to that of an equiv-
alent linear model. I also evaluate several
different methods for MEMD feature selec-
tion, including a new algorithm due to Printz
(1998). To my knowledge, this is the first ap-
plication of MEMD to building a large-scale
translation model, and one of the few direct
comparisons between a MEMD model and an

almost exactly equivalent linear model.?

2 Models
2.1 Linear Model

The baseline model is a linear combination as
in (2) of a standard interpolated trigram (Je-
linek and Mercer, 1980) for p(w|h) and the
IBM model 1 (IBM1) (Brown et al., 1993)
for p(w|s). As originally formulated, IBM1
models the distribution p(t|s), but since tar-
get text tokens are predicted independently,
it can also be used for p(w|s). The underly-
ing generative process is as follows: 1) pick a
token s at random in s, independent of the po-
sitions of w and s; 2) choose w according to a
word-for-word translation probability p(w|s).
Summing over all choices for s gives the com-
plete model:

ls|

p(wls) =Y plwls;)/(s| +1)

Jj=0

where s; is the jth token in s for j > 0, and
so is a special null token prepended to each
source sentence to account for target words
which have no direct translations. The word-
pair parameters p(w|s) can be estimated from
a bilingual corpus of aligned sentence pairs us-
ing the EM algorithm, as described in (Brown
et al., 1993).

2.2 MEMD Model

A MEMD model for p(w|h, s) has the general

form:

q(w‘ha S) exp(d' i f(wa h, S))
Z(h,s) ’

p(wlh,s) =

where g¢(wlh,s) is a reference distribu-
tion, f(w,h,s) maps (w,h,s) into an n-
dimensional feature vector, & is a corre-
sponding vector of feature weights (the pa-
rameters of the model), and Z(h,s) =
Y wa(wlh,s)exp(@- f(w, h)) is a normalizing
factor.

*Rosenfeld (1996) reports a greater perplexity re-
duction (23% versus 10%) over a baseline trigram lan-
guage model due the use of ME versus linear word
triggers. However, since the models tested apparently

differed in other aspects, it is hard to determine how
much of this gain can be attributed to the use of ME.



It can be shown (Berger et al., 1996) that
the use of this model with maximum like-
lihood parameter estimation is justified on
information-theoretic grounds when ¢ repre-
sents some prior knowledge about the true
distribution and when the expected values of
f in the training corpus are identical to their
true expected values.> There is no require-
ment that the components of f represent dis-
joint or statistically independent events. This
result motivates the use of MEMD models,
but it offers only weak guidance on how to
select g or f. In practice, ¢ is usually chosen
on the basis of efficiency considerations (when
the information it captures would be compu-
tationally expensive to represent as compo-
nents of f), and f is established using heuris-
tics such as described in the next section.
Once g and f have been chosen, the IIS algo-
rithm (Della Pietra et al., 1995) can be used
to find maximum likelihood parameter values.

In the current context, since the aim was to
compare equivalent linear and MEMD mod-
els, I used an interpolated trigram as the ref-
erence distribution g and boolean indicator
functions over bilingual word pairs as features
(ie, components of f). A pair of source,target
words (s,t) has a corresponding feature func-
tion:

_J 1, s€sandt=w
Fst(w, B, s) = { 0, else

Using the notational convention that ag; is 0
whenever the corresponding feature fs; does
not exist in the model, the final MEMD model
can be written compactly as:

p(w|h,s) = g(w|h) exp(z asw)/Z(h,s).

sEs

This model is structurally quite similar to the
one defined in the previous section:

-2 &

p(wlh,s) = Aq(wlh) + P > p(w]s;)
=0

3 Another interpretation, which has been less well
publicized in the NLP literature, is that of a single-
layer neural net with certain weight constraints and a
“softmax” output function (Bishop, 1995).

with the MEMD feature weights oy, playing
the role of the IBM1 probabilities p(w|s), and
the MEMD model summing over contribu-
tions from source sentence words rather than
tokens for efficiency. If there are m free pa-
rameters in the trigram and n word pairs, the
MEMD model will contain m + n free pa-
rameters and the linear model will contain
m+n+1—|V;|+|V;| —1* free parameters, so
if the source and target vocabulary sizes |V|
and |V;| are equal the two models will contain
precisely the same number of free parameters.

One important practical difference between
the two models is the requirement to calcu-
late the MEMD normalizing factor Z(h, s) for
each context in which this model is used. This
makes the MEMD model much more compu-
tationally expensive than the linear model, so
that it is not feasible to have it incorporate all
available word-pair features (ie all bilingual
pairs of words which cooccur in some aligned
sentence pair in the training corpus). More-
over, since the empirical expectations of fea-
tures are supposed to reflect their true values,
having a feature for every cooccurring pair in
the corpus would be theoretically inadvisable
even if it were computationally feasible. Some
method of selecting a subset of reliable fea-
tures is therefore required, as described in the
next section.

3 Feature Selection

I experimented with three methods for select-
ing bilingual word pairs for inclusion in the
models. All methods assign scores to individ-
ual pairs, so feature subsets of any desired size
can be extracted by taking the highest-ranked
pairs.

3.1 Mutual Information

The simplest scoring method was mutual in-
formation (MI), defined for a pair (s,t) as:

HEDEED DY ﬁ(fli,y)log;(xi’w

v€{s,5) ye {6} (=)p(y)

“One free combining weight, one normalization
constraint per source word, and |V;| — 1 free parame-
ters from p(w|so)



where p(s,t) is the probability that a ran-
domly chosen pair of cooccurring source and
target tokens in the corpus is (s,t); p(s,t) is
the probability that the source token is s and
the target token is not ¢; etc; and p(z) and
P(y) are the left and right marginals of p(z, y).
Mutual information measures the degree to
which s and ¢ are non-independent, so it is a
reasonable choice for scoring pairs.

3.2 MEMD Gains

The second scoring method was an approxi-
mation of the MEMD gain for feature fg;, de-
fined as the log-likelihood difference between
a MEMD model which includes this feature
and one which does not:

1 pst(T|8)

Gt = 7= log "2
T8 p(TIS)

where the training corpus (S,7) consists of
a set of (statistically independent) sentence
pairs (s,t), and pg is the model which in-
cludes fg. Since MEMD models are trained
by finding the set of feature weights which
maximizes the likelihood of the training cor-
pus, it is natural to rate features according
to how much they contribute to this likeli-
hood. A powerful strategy for using gains is
to build a model iteratively by adding at each
step the feature which gives the highest gain
with respect to those already added. Berger
et al (1996) describe an efficient algorithm for
accomplishing this in which approximations
to pst(T|S) are computed in parallel for all
(new) features fg by holding all weights in
the existing model fixed and optimizing only
over ag. However, this method requires many
expensive passes over the corpus to optimize
the weights for the set of features under con-
sideration at each step, and it adds only one
feature per step, so it is not practical for con-
structing models containing thousands of fea-
tures or more.

In a recent paper (Printz, 1998), Printz ar-
gues that it is usually sufficient to perform
the iteration described in the previous para-
graph only once, in other words that fea-
tures can be ranked simply according to their
gain with respect to some initial model. He

also gives an algorithm for computing gains
using a numerical approximation which re-
quires only a single pass over the training cor-
pus. I adopted Printz’ method for computing
MEMD gains, using the reference trigram as
the initial model.

3.3 IBM1 Gains

The final scoring method involved the gain of
each word-pair parameter p(t|s) within IBM1.
Instead of taking gains with respect to an ini-
tial model as in the previous section, I com-
puted them with respect to a “full” model
which incorporated all available word pairs:

1 2TIS)

I pa(TIS)
where pz denotes the full IBM1 model p with
the parameter p(t|s) set to zero and the result-
ing distribution p(w|s) renormalized. The ad-
vantage of this method is that it gives a mea-
sure of each parameter’s worth in the presence
of other parameters. As is the previous sec-
tion, this is an approximation because deter-
mining the true gain would require retraining
ps: and not merely renormalizing.

A problem with IBM1 gains is that they are
not very robust. If the corpus contains a sen-
tence pair (s, t) which consists only of a single

word pair (s,t), then G; will contain the term
1 1og PAts)+p(tls0)
7196 " p(tls0)

(as is frequently the case), G4 will be close

to infinity, even though (s,?) may occur only
once in the training corpus. To remedy this, I
computed gains with respect to a linear com-
bination of IBM1 and a smoothing model u,
of the form Ap(w(s) + (1 — A)u(w|h,s). In the
experiments reported below, I used a uniform
distribution for u, with A\ = .99.°

Smoothed IBM1 gains can be computed in
parallel in a single pass over the training cor-
pus using the algorithm in figure 1. The line
marked with an asterisk takes into account
the increase in p(t|s) due to renormalizing
the distribution p(w|s) after setting p(#'|s) to

Gst

, 80 if p(t|sp) is close to zero

5 Another interesting choice for u would be the in-
terpolated trigram, which would make the method de-
scribed here more similar to the MEMD gain ranking
described in the previous section.



segment | file pairs | sentence pairs | English tokens | French tokens
train 922 1,639,250 29,547,936 31,826,112
held-out 30 54,758 978,394 1,082,350
test 30 53,676 984,809 1,103,320

Table 1: Corpus segmentation. The held-out segment was used to train combining weights for
the trigram and the overall linear model; the train segment was used for all other training.

for all word pairs (s,t): Gg <0
for each sentence pair (s,t) € (S,7):
for each token ¢ in t:
1-X)(Js|+1
K « Y5 p(t]sy) + LU (4], 5)
for each word s in s:
K
th — Gst + ]Og m
for all ' #t:

G < Gor + log

1-p(t'[s)

for all (s,t): Gg < Gg/|T|
Figure 1: Algorithm for IBM1 gains. fs(s)
gives the number of times s occurs in s.

zero, for each word #' # t in the vocabulary.
To speed up the algorithm, I performed this
step only for those ¢’ such that p(t'|s) > .01.
This causes the gains for pairs (s, ') such that
p(t'|s) < .01 to be slightly overestimated, but
since the gains of such pairs are low in any
case, the ranking of the most valuable pairs is
unlikely to be radically affected.

4 Experiments

I ran experiments on the Canadian Hansard
corpus, with English as the source language
and French as the target language. After sen-
tence alignment using the method described
in (Simard et al., 1992), the corpus was split
into disjoint segments as shown in table 1.
To evaluate performance, I used perplexity:
p(T|S)~YIT| where p is the model being eval-
uated, and (S,7) is the test corpus. Per-
plexity is a good indicator of performance for
the TransType application described in the
introduction, and it has also been used in the
evaluation of full-fledged SMT systems (Al-
Onaizan et al., 1999). To ensure a fair com-
parison, all models used the same target vo-
cabulary.

K *
K+fs(s) p(t[8)p(¢]s)

45 ;
Ml ——
MEMD
[BM1 -
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Figure 2: MEMD performance versus number
of features for various feature-selection meth-
ods.

To compare MEMD feature-selection meth-
ods, I first ranked all 35 million bilingual
word pairs cooccurring within aligned sen-
tence pairs in the training corpus using the
MI and IBM1 gains methods. Because the
MEMD gains method was much more expen-
sive, it was used to rank only a short list of ap-
proximately 160,000 pairs derived by merging
the top 100,000 candidates from each of the
other methods. As shown in table 2, the three
methods give substantially different rankings,
even among the top-ranked pairs. For each
method, I trained MEMD models on a se-
quence of successively larger feature sets con-
sisting of the top-ranked word pairs for that
method. The results are shown in figure 2.
Due to time constraints,® 20,000- and 30,000-
feature models were trained only for the IBM1
feature sets, which outperformed the other

5A 30,000 feature MEMD model takes approxi-
mately 6 days to train on a 750MHz Pentium.



MI MEMD gains IBM1 gains
mr. m. and et
mr. m. i je government gouvernement
we nous we nous we nous
1 je ?7 7 N
7?7 government gouvernement
offenders loi grant accorder gucci gucci
deleted reglement closer plus depreciation amortissement
interlake felix imperial imperial endorse appuyer
woodbine beaches same la indeed vraiment
question ai stabilization grain appalled consterné

Table 2: Pairs ranked 1-5 (top box) and 20000-20005 for each feature-selection method.

58 T T T T T
trigram+IBM1 +—
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54 |
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50 |
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Figure 3: Performance of the linear model
versus number of IBM1 parameters.

methods by a small margin.

Since the number of features in the MEMD
models was much smaller than the number of
parameters in the full IBM1, before compar-
ing the MEMD and linear models I wanted to
be sure that any performance difference was
not due to IBM1 overfitting the training cor-
pus. To eliminate this possibility, I optimized
the number of IBM1 parameters by training
linear models with various sizes of translation
parameter sets obtained from the IBM1 gain
ranking. As shown in figure 3, the larger lin-
ear models do exhibit a very slight overtrain-
ing effect, with the optimum parameter set
size around 1M, compared to 35M parame-

model word pairs | ppx A

3G — | 61.0 —
3G+IBM1 | 34,969,331 | 43.6 0%
3G+IBM1 | 1,000,000 | 43.2 | 0.9%
MEMD 1,000 | 41.1 | 5.7%
MEMD 30,000 | 23.2 | 46.9%

Table 3: Comparison of model performances.
The word pairs column gives the number of
word pairs selected by the IBM1 gain rank-
ing method, the ppz column gives test corpus
perplexity, and the A column gives the per-
plexity drop as a percentage of the baseline.
3G is the trigram model and '+’ denotes lin-
ear interpolation.

ters in the full model.

Table 3 presents final results for various lin-
ear and MEMD models. The MEMD models
give a striking improvement over the linear
models, with a 1000-feature MEMD model
performing better than the best linear model
(despite containing 1000 times fewer word-
pair parameters), and the best MEMD model
yielding a perplexity reduction of more than
45% over the baseline linear model.

5 Discussion

The main result of this paper is that the
MEMD framework appears to be a much
more effective way to combine information
from different sources than linear interpola-
tion, at least for the problem studied here. It
is fairly easy to see intuitively why this should



be the case: MEMD essentially multiplies pre-
dictive scores arising from different sources
rather than averaging them. This gives infor-
mation sources which assign either very high
or very low scores much more influence over
the final result. When such scores are based
upon reliable evidence, this will lead to better
models.

One somewhat surprising result of these ex-
periments was that the IBM1 gains feature
selection method resulted in better models
than the MEMD gains method, despite the
fact that the latter is based on a much more
direct measure of each feature’s worth within
the MEMD model. A possible explanation
for this is that the gain over the reference tri-
gram is not a good predictor of the gain in
the presence of many other features; this is
borne out by the fact that, for very small fea-
ture sets (on the order of 100 words and less),
the MEMD method did outperform the IBM1
method. Another explanation is inaccura-
cies in the gain approximations computed by
Printz’ method, which involves many numer-
ical parameters that require tuning. Further
investigation is required into this and other
techniques for finding valid word pairs, since
all methods tested yielded significant quan-
tities of noise beyond 30,000 pairs. Because
the source vocabulary contains about 50,000
words this is obviously an unrealistically small
number of translations.

Although the main use for the model I
have described in this paper is in applica-
tions like TransType which need to make
rapid predictions of upcoming target text, it
is interesting to speculate about whether a
MEMD model for p(w|h,s) could also be use-
ful for SMT. Compared to the standard noisy
channel approach, this has the advantage of
permitting much less complex search proce-
dures; of allowing any information which is
directly observable in the training corpus to
be very easily incorporated into the model
via boolean features; and of an estimation
procedure where translation model parame-
ters can be optimized for use with an existing
language model.” Disadvantages include the

"In principle, both language and translation com-

high cost of training MEMD models, the fact
that p(w|h,s) is somewhat less general than
p(s|t) for building realistic translation mod-
els; and the lack of a mechanism equivalent
to the EM algorithm for incorporating “hid-
den” variables into MEMD models (see (Fos-
ter, 2000) for a discussion of this problem).

6 Conclusion

The problem of searching for the best target
text in statistical translation applications can
be greatly simplified if the fundamental dis-
tribution p(t|s) is expanded directly in terms
of the distribution p(w|h,s), rather than us-
ing the standard noisy-channel approach. I
compared a simple linear model for p(w|h, s)
based on IBM’s model 1 with an equivalent
MEMD model, and found that the MEMD
model has over 45% lower test corpus per-
plexity, despite using two orders of magnitude
fewer parameters. I also compared several
methods for selecting MEMD word-pair fea-
tures, and found that a simple method which
ranks pairs according to their gain within
model 1 offers slightly better performance and
significantly lower computational cost than a
more general MEMD feature-selection algo-
rithm due to Printz. Finally, I suggest that it
may be fruitful to explore the idea of using a
MEMD model for p(w|h,s) as an alternative
to the noisy-channel approach to SMT.
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