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Abstract
In this article, we propose a noisy channel/information restoration model for

error recovery problems in Chinese natural language processing. A language pro-

cessing system is considered as an information restoration process executed through a

noisy channel. By feeding a large-scale standard corpus C into a simulated noisy

channel, we can obtain a noisy version of the corpus N. Using N as the input to the

language processing system (i.e., the information restoration process), we can obtain

the output results C'. After that, the automatic evaluation module compares the original

corpus C and the output results C', and computes the performance index (i.e.,

accuracy) automatically. The proposed model has been applied to two common and

important problems related to Chinese NLP for the Internet: corrupted Chinese text

restoration and GB-to-BIG5 conversion. Sinica Corpora version 1.0 and 2.0 are used

in the experiment. The results show that the proposed model is useful and practical.

1.  Introduction

In this article, we present a noisy channel (Kernighan et al. 1990, Chen 1996) /

information restoration model for automatic evaluation of error recovery systems in

Chinese natural language processing. The proposed model has been applied to two

common and important problems related to Chinese NLP for the Internet: corrupted
Chinese text restoration (i.e., 8-th bit restoration of BIG-5 code through a non-8-bit-clean

channel), and GB-BIG5 code conversion. The concept follows our previous work on

bidirectional conversion (Chang 1992) and corpus-based adaptation for Chinese

homophone disambiguation (Chang 1993, Chen and Lee 1995). Several standard Chinese

corpora are available to the public, such as NUS's PH corpus (Guo and Lui 1992) and

Academia Sinica's sinica corpus (Huang et al. 1995). These corpora can be used for

objective evaluation of NLP systems. Sinica Corpora version 1.0 and 2.0 were used in the
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experiments. The results show that the proposed model is useful and practical.

The Internet and World Wide Web are very popular these days. However, com-

puters and networks are not designed for coding huge numbers of Chinese ideographic

characters since they originated in the western world. This situation has caused several

serious problems in Chinese information processing on the Internet (Guo 1996). While

the popular ASCII code is a seven-bit standard which can be easily encoded in a byte
(eight bits), thousands of Chinese characters have to be encoded in at least two bytes. In

this paper, we explore two error recovery problems for Chinese processing problems on

the Internet: corrupted Chinese text restoration and GB-to-BIG5 conversion.

Mainland China and Taiwan use different styles of Chinese characters (simplified in

Mainland China and traditional in Taiwan) and have also invented different standards for

Chinese character coding. In order to fit different Chinese environments, more than one

version of a web page is usually provided, one in English, and the other(s) in Chinese.
Chinese versions of web pages are encoded in either BIG5 (Taiwan standard) or GB

(Mainland China standard). Furthermore, the Unicode version will become popular in the

near future.

BIG-5 code is one of the most popular Chinese character code sets used in computer

networks. It is a double-byte coding; the high byte range is from (hexadecimal) A1 to FE,

8E to A0, and 81 to 8D; and the low byte range is from 40 to 7E, and from A1 to FE. The
most and second most commonly used Chinese characters are encoded in A440 to C67E,

and C940 to F9D5, respectively; the other ranges are for special symbols and

used-defined characters. On the Chinese mainland, the most popular coding for

simplified Chinese characters is the GB Code. It is also a double-byte coding; the high

byte and low byte coding ranges are the same, (hexadecimal) A1 to FE.

In most international computer networks, electronic mail is transmitted through

7-bit channels (so called non-8-bit-clean). Thus, if messages coded in BIG5 are trans-

mitted without further encoding (using tools like uuencode), the receiver side will only

see some random code messages. In the literature, little work can be found on this

problem. S.-K. Huang of NCTU (Hsinchu) designed a shareware program called Big5fix

(Huang 1995), which is the only previous solution we can find for solving this problem.
The input file for Big5fix is supposed to be a 7-bit file. Big5fix divides the input into

regions of two types: an English Region and a Chinese Region. The characters in the

Chinese region are reconstructed based on collected character unigrams, bigrams,

trigrams and their occurrence counts. Huang estimated the reconstruction accuracy to be

90 percent (95% for the Chinese region and 80% for the English region). It is well known

that shareware programs are provided free of charge for the general public. The accuracy
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rates are estimated without large-scale experiments. Our proposed corpus-based evalu-

ation method based on information restoration can be used for this purpose if a

large-scale standard corpus is available.

In addition to automatic evaluation of the accuracy rate of Big5fix, we will describe

an intelligent 8-th bit reconstruction system, in which statistical language models are

used for resolving ambiguities. (Note that there is no similar ambiguity in a pure GB text,
in which both high bits of the two bytes are set. As one reviewer has pointed out, practical

GB documents may be a mixture of ASCII text and GB codes. In that case, the 8-th bit

reconstruction problem exists if the channel is not 8-bit clean. However, solving the

problem will require a method of separating ASCII text from GB codes. This is actually

beyond the scope of this study.)

In comparison, the GB-BIG5 conversion problem, that is, converting simplified

characters to traditional characters, is well known and especially important nowadays
since information flows rapidly back and forth across the strait and in a great volume. In

addition to dictionaries in book form and manuals of traditional character-simplified

character correspondences, many automatic conversion systems have been designed.

Some of the shareware programs and products are as follows: the HC Hanzi Converter

shareware, KanjiWeb ( ��� ), NJStar ( ��� ), AsiaSurf ( ��� ), and

UnionWin ( ��� ). However, the tools on the Internet commonly used are still

one-to-one code converters. Therefore, we can easily find many annoying GB-BIG5

conversion errors in articles published in some newsgroups, such as alt.chinese.text.big5

or articles published in the BIG5 version of HuaXiaWenZai ( ���� ). Some typical

errors are: "�� (� )", "� (� )� ", "�� (� )", "�� (� )", "�� (� )",

" �� ( � )", " � ( � ) � ", and " � ( � ) � ". In the above examples, a string

contains a two-character word (outside the parentheses) and a single-character correction

(inside the parentheses). In addition to automatic evaluation performed by the HC

converter and KanjiWeb, we will introduce a new intelligent GB-BIG5 converter. The

statistical Chinese language models used in the new converter include the inter-word

character bigram (IWCB) and the simulated-annealing clustered word-class bigram
(Chang 1994, Chang and Chen 1993).
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Figure 1: The proposed model.

Figure 2: The proposed model for 8th bit reconstruction.
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Figure 3: The proposed model for GB-BIG5 conversion.

2.  Information Restoration Model for Automatic Evaluation

Extending the concepts of 'bi-directional conversion', the proposed corpus-based

evaluation method applies the information restoration model for automatically evaluation

of the performance of various natural language processing systems. As shown in Figure

1, a language processing system is considered to be an information restoration process

executed through a noisy channel. By feeding a large-scale standard corpus C into a

simulated noisy channel, we can obtain a noisy version of the corpus N. Using N as the

input to the language processing system (i.e., the information restoration process), we can

obtain the output results C'. After that, the automatic evaluation module compares the

original corpus C and the output results C', and computes the performance index (i.e.,

accuracy) automatically.

The proposed evaluation model will obtain have near perfect results (obtain real

performance) if the simulation of a noisy channel approaches to perfect. The perfect

simulation would be one-to-one correspondence, or a process with near 100% accuracy.

For example, for the syllable-to-character conversion system, a noisy channel, that is,

character-to-syllable conversion, is not a one-to-one process (there are many PoYinZi,

that is, homographs). However, it is not difficult to develop a character-to-syllable
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converter with accuracy higher than 98% (Chang 1992, Chen and Lee 1995). Thus, the

proposed corpus-based evaluation method can be readily applied to estimate the

conversion accuracy of a syllable-to-character conversion system. In fact, the proposed

model can be applied to various types of language processing systems. Typical examples

include linguistic decoding for speech recognition, word segmentation, part-of-speech

tagging, OCR post-processing, machine translation, and two problems we will study in

this article: 8-th bit reconstruction for BIG5 code and GB-to-BIG5 character code

conversion. Indeed, the proposed model has its limitations. For problems where we can

not perform nearly perfect noisy channel simulation, the performance (of either error

recovery or evaluation) is inaccurate. Speech recognition may be one such problem (as

one reviewer pointed out.)

Noisy channel simulation of the 8-th bit reconstruction process is perfect, i.e.,

one-to-one. The only thing the simulation needs to do is to set the 8-th bit of all bytes to

zero. Thus, the proposed corpus-based evaluation method is ideal for application to this

problem. The results will be completely correct. Figure 2 illustrates the proposed model

for 8-th bit reconstruction for BIG5 code.

It is rather complex to simulate a noisy channel for the GB-BIG5 code conversion

problem, not only because some traditional characters can be mapped to more than one

simplified character (e.g., � ���� ; � ���� ), but also because even more

characters can not be mapped to any suitable simplified characters. Nevertheless, the

average accuracy rate for noisy channel simulation still approaches 100%, based on the

occurrence frequency in large corpora. The proposed model is still applicable to this

problem, as shown in Figure 3.

3.  Preparation of Standard Corpora

In this study, we used the Academia Sinica Balanced Corpora, versions 1.0 (released

1995, 2 million words) and 2.0 (released 1996, 3.5 million words), to verify our proposed
corpus-based evaluation model. Some statistics for the two corpora are listed in Table 1.

Table 1. Academia Sinica Balanced Corpora, versions 1.0 and 2.0.

Sinica Corpus Size(bytes) #files #sentences #words
#char.(inclu.

symbols)
#char.

(Hanzi only)
version 1.0 44,525,299 67 284,455 1,342,861 3,347,981 2,953,065
version 2.0 84,256,391 253 411,470 1,946,958 4,834,933 4,143,021
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Word segmentation and sentence segmentation were used as originally provided by

the Academia Sinica. The word segmentation follows the proposed standard set by

ROCLING, which is an earlier version of the Segmentation Standard for Chinese Natural

Language Processing (Draft). The part-of-speech tag set is a 46-tag subset simplified

from the CKIP tag set (Huang et al. 1995). However, the word segmentations and

part-of-speech tags were not used in our experiments. The following steps were used to

restore the text using sentence segmentation:

(1)  Grep (a Unix tool) was used to filter out the article classification headers, i.e., lines

with leading %%; those sentence separator lines (lines filled with '*') were also

removed.

(2)  A small program called extract-word was used to extract the words in a sentence;

part-of-speech information was removed. Output examples were something like " �

�� � � " � " �� � �� � � "

(3)  Words in a sentence into a character string, e.g., " ����� ", and all files were

concatenated into a single huge file.

(4)  All user-defined special characters and non-BIG5 code were replaced with a special

symbol ' � '.
After pre-processing, the corpus became a single file, one sentence per line, and all

the characters were double-byte BIG5 code. The statistics shown in Table 2 were

calculated based on a pre-processed version of the corpora.

4.  The 8-th Bit Reconstruction

4.1  System Design
The 8-th bit reconstruction (also called corrupted Chinese text restoration) problem has

been described in Sections 1 and 2. We will not repeat the description here. To simulate

a noisy channel, we simply set to zero the 8-th bit of each byte in the input. This could be

done using a program of a few lines. We used Big5fix as a baseline system and developed

an intelligent 8-th bit reconstruction system. The system resolves the ambiguity problem

using statistical Chinese language models. The basic architecture follows our previous

approach, called 'confusing set substitution and language model evaluation' (Chang 1994,

1996, Chang and Chen 1993, 1996). As shown in Figure 4, the characters in the input are

replaced with corresponding confusing character sets, sentence by sentence. In this way,
the number of sentence string candidates for an input sentence is generated. Then, the

string candidates are evaluated using a corpus-based statistical language model. The

candidate with the highest score (probability) is chosen to be the output of the system.

Here, the 'confusing set substitution' step can be considered as inverse simulation of a
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'noisy channel'.

noisy channel
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a noisy channel
construction of 

string hypotheses
language model 

evaluation

confusing 
character sets

language model
parameters

Figure 4. The‘confusing set substitution and language 
                model evaluation’ approach.

For the reconstruction problem, the 'confusing set' is very easy to set up. Since BIG5

is a double-byte code, we have at most two hypotheses for each character: the 8-th bits of

all high-bytes are set to 1, and the 8-th bits of the low-bytes can be either 0 or 1

(depending on the code region). For example, the inverse simulation confusing set for

2440 (hex) contains two characters a440��� and a4c0��� , but the confusing set

for 2421 (hex) only contains one character a4a1 ��� (a421 is outside of the coding

region). In the system, we set up confusing sets for each of the 13,060 Chinese characters

(including the 7 so-called Eten characters). Among them, 10,391 confusing sets contain

two characters while the other 2,669 confusing sets contain only one character.

The statistical language model used in our system is an inter-word character bigram

(IWCB) model (Chang 1993). The model is slightly modified from the

word-lattice-based character bigram model of Lee et al. (1993). Basically, it approxi-

mates the effect of a word bigram by applying a character bigram to the boundary

characters of adjacent words. The IWCB model is a variation of the word-lattice-based

Chinese character bigram proposed by Lee et al. (1993). The path probability is com-

puted as the product of the word probabilities and inter-word character bigram proba-

bilities of the words in the path. For path H:
FF jiFji WWWW == ,...,

111 , the

path-probability estimated by the language model is

)|()))(()(
1

21
−∑∑

==

×=
k

j

F

k
ki

F

k
kLM CCPWPHP
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where Cik and Cjk are the first and last characters of the k-th word, respectively. This

model is one of the best among the existing Chinese language models and has been

successfully applied to Chinese homophone disambiguation and linguistic decoding. For

details of the IWCB model, please refer to Lee et al. (1993) and Chang (1993).

4.2  Experimental Results
Table 2 compares the corpus-based evaluation results (the number of errors and the error

rate %) of Big5fix and our intelligent 8-th bit reconstruction system (called CCL-fix).

Table 2. Corpus-based evaluation results, Big5fix vs. CCL-fix.

Sinica Corpus Samples #char. Big5fix CCL-fix
incl. symbols 3,347,981 125,915 3.76 57,862 1.72

Version 1.0
Hanzi 2,953,065 100,006 3.38 53,729 1.81

incl. symbols 4,834,933 173,544 3.58 71,549 1.48
Version 2.0

Hanzi 4,143,021 111,809 2.69 70,758 1.70

As in Table 2 shows, the Hanzi reconstruction rates of Big5fix for the Sinica Cor-

pora versions 1.0 and 2.0 are 96.62% and 97.31%, respectively. They are higher than the

95% rate estimated by Huang by 1.62%, 2.31%. The reconstruction rates of CCL-fix are

98.19% and 98.30%, respectively. This shows that the IWCB language model is indeed

superior to the counts of character unigrams and bigrams. Note that the 1991 UD

newspaper corpus (1991ud), consisting of more than seven million characters, was used

to train the character bigrams in the IWCB model and the word bigrams used in simulated

annealing word clustering. Some statistics for the 1991ud corpus are as follows: 579,123

sentences, 7,312,979 characters, 4,761,120 word-tokens, and 60,585 word-types. The

1991ud corpus is independent of the Sinica Corpus in both its publisher and sample date.

Table 4 lists the reconstruction error analysis results for the Sinica Corpus 1.0

obtained using the two systems. The table shows only the top 20 most frequent types of

errors. Each entry shows the original character, the reconstructed character, and its

occurrence count. For example, the most frequent error made by Big5fix is wrongly

reconstructing '� ' as ' � ', with 3,007 occurrences.
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Table 3. Reconstruction error analysis for the Sinica Corpus 1.0, Big5fix vs. CCL-fix.

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
Big5

fix

��

3007

��

1540

��

1481

��

893

��

819

��

797

��

792

��

771

��

734

��

723

��

722

��

715

��

712

��

709

��

676

��

672

��

664

��

611

��

611

��

601

CCL

fix

��

2298

��

1388

��

1375

�	

1327

��

1325

��

1209

��

1194

��

887

��

638

��

577

��

530

��

491

��

484

��

465

�	

458

��

396





386

��

376

��

359

�	

343

5.  GB-to-Big5 Conversion

5.1  System Design
Three different simulations of the noisy channel for the GB-BIG5 conversion problem

were performed in our experiments: we used (1) HC Hanzi Converter, version 1.2u,

developed by Fung F. Lee and Ricky Yeung; (2) HC, revised version, in which the

conversion table is slightly enhanced; and (3) the MultiCode of KanziWEB. These three

systems all use the table-lookup conversion approach. Thus, the one-to-many mapping

problem is not dealt with, and many errors can be found after converting GB code back

to BIG5.

Table 4 lists the corpus-based evaluation results (the number of errors and the error

rate %) for the three systems: HC1.2u, HC revised, and KanjiWEB .

Table 4. Corpus-based evaluation results for HC1.2u, HC revised, and KanjiWEB.

Sinica Corpus Samples # char. HC1.2u HC revised KanjiWEB
incl. symbols 3,347,981 271,986 8.12% 46,162 1.37% 29,531 0.87%

Version 1.0
Hanzi 2,953,065 43,155 1.46% 43,070 1.45% 29,076 0.98%

incl. symbols 4,834,933 403,954 8.35% 68,047 1.40% 43,705 0.90%
Version 2.0

Hanzi 4,143,021 60,113 1.45% 60,031 1.45% 40,561 0.98%

To deal with the one-to-many mapping problem in GB-BIG5 conversion, we have

developed an intelligent language model conversion method which takes context into

account. In the literature, Yang and Fu (1992) presented an intelligent system for

conversion between Mainland Chinese text files and Taiwan Chinese text files. Their

basic approach is to (1) build tables by means of classification; and (2) compute scores

level by level. However, they resolve ambiguities by asking (the user), instead of using

statistical language models. We take the 'confusing set substitution and language model

evaluation' approach. The Chinese language models we use are (1) the IWCB model

(introduced above) and (2) the SA-class bigram model. In the SA-class bigram model, the

words in the dictionary are automatically separated into N
C

word classes using a sim-
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ulated-annealing word clustering procedure (Chang 1994, 1996, Chang and Chen 1993,

1996). The language models usually seek the optimal path in a word-lattice formed by

candidate characters. The path probability of a word-lattice path is the product of lexical

probabilities and contextual SA-class bigram probabilities. For a path of F words H =

W
1

, W
2

, � , W
F

, the path-probability estimated by the language model is

∑∑
=

−
=

×=
F

i
ii

F

i
iiLM WWPWWPHP

2
1

1

)))(|)((()))(|(()( φφφ

where )( iWφ is the word class which W
i
belongs to.

In the experiments, we used two versions of the SA-class bigram model, with N
C

=200 and N
C

=300, respectively. They will be denoted as the SA-200 and SA-300

models. The corpus for word clustering, 1991ud, was first segmented automatically into

sentences, and then into words by our Viterbi-based word identification program VSG

(Chang and Chen 1993). The same lexicon and word hypothesizer were used in the

language models.

To simulate the inverse noisy channel, we must set up confusing sets, that is, col-

lections of variants and equivalent characters. In other words, it is a simulation of a

one-to-many mapping from GB to BIG5. We found three sources of variants and equi-

valent characters: (1) the YiTiZi file in HC version 1.2u, (2) an annotation table of

simplified characters in mainland China by Zang (1996), and (3) Appendix 10 in a project

report (Hsiao et al.1993). Combining the three sources, we arranged four versions of

confusing sets (A, B, C, and D), which were used and compared in the experiments. Some

statistics of the four versions of confusing sets are shown in Table 5. The column label

'n-way' shows the number of BIG5 characters, each of which has n characters in its

confusing set.

Table 5. Statistics of the four versions of confusing sets.

Confusing Set Source 1-way 2-way 3-way 4-way 5-way
A (1) 12644 364 48 4 0
B (1)(2) 12397 597 57 9 0
C (3) 12301 670 68 16 5
D (1)(2)(3) 12144 777 117 15 7
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5.2  Experimental Results
Table 6 compares the corpus-based evaluation results (the number of errors and the error

rate %) of the three language models and four versions of confusing sets for GB-BIG5

conversion. (The input was provided by the Revised HC.)

Table 6. Comparison of four versions of confusing sets with three language models.

IWCB SA-200 SA-300Sinica

Corpus

Number of

char. A B C D A B C D A B C D

Version

1.0
2,953,065

12,742

0.43%

10,144

0.34%

12,997

0.43%

12,684

0.42%

15,574

0.52%

13,977

0.47%

16,867

0.57%

16,811

0.56%

13,614

0.44%

10,849

0.36%

13,500

0.45%

13,225

0.44%

4,143,021
17,752

0.42%

14,139

0.34%

18,774

0.45%

18,465

0.44%

21,127

0.50%

18,593

0.44%

23,299

0.56%

23,297

0.56%

18,729

0.45%

15,439

0.37%

19,790

0.47%

19,554

0.47%Version

2.0 468,609

(ambiguous)

17,752

3.78%

14,139

3.02%

18,774

4.01%

18,465

3.94%

21,127

4.51%

18,593

3.97%

23,299

4.97%

23,297

4.97%

18,729

3.99%

15,439

3.29%

19,790

4.22%

19,554

4.17%

We can see that the IWCB model achieved the best performance for the problem.

The SA-300 model had comparative performance while the SA-200 model was relatively

weak. However, we must note that the three intelligent conversion methods were all

superior to KanjiWEB's one-to-one mapping method. The error rates are more than

double those of the other methods in the one-to-one mapping system. Among the four

versions of confusing sets, version B performed better than the others. Version C and

version D had a larger set of confusing characters than version B, but their performance

did not reflect this. The reason might have been that the larger sets make more unnec-

essary confusion. In contrast, Version A clearly had an insufficient number of confusing

characters.

The evaluation did not exclude unambiguous characters. Among the 4,143,021

characters in the Sinica Corpus 2.0, 11.31% (468,609) were found to be ambiguous

(316,889 2-way ambiguous, 125,297 3-way, 18,377 4-way, and 7866 5-way ambiguous).

That is, a random (or no-grammar) language model had a 6.4% error rate. Evaluation of

pure ambiguous characters revealed that the random model had an error rate of 55.96%

while the best performance achieved by the models was 3.02%(IWCB), 3.29%(SA-300),

3.97%(SA-200), respectively.

Table 7 lists the conversion error analysis for by the four systems (HC1.2u,

KanziWEB, IWCB, and SA-300) with confusing set version B. The notation is similar to

that used in the above section. � or blanks denote no corresponding character,

a1bc(hex) or a140(hex).
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Table 7. Conversion error analysis for Sinica corpus 2.0 by the four systems

Rank 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20
HC

1.2u

��

6207

��

5974

��

4574

��

3434

��

2052

��

1985

��

1866

��

1800

��

1513

��

1464

��

1430

��

1321

��

1071

��

937

��

860

��

850

��

825

��

797

��

758

��

713

Kanzi

WEB

��

6207

��

2922

��

1985

��

1866

��

1513

��

1464

��

1071

��

825

��

781

��

713

��

668

��

667

��

620

��

603

��

564

��

538

��

455

��

446

�

440

��

439

WCB

/B

��

885

��

825

��

761

��

603

��

440

��

383

��

367

��

325

��

319

��

270

��

248

��

220

��

203

��

196

��

194

��

183

��

181

��

178

��

175

��

155

SA-

300B

��

1544

��

994

��

825

��

634

��

440

��

355

��

353

��

310

��

263

��

239

��

237

��

234

��

223

��

221

��

212

��

206

��

202

��

196

��

194

��

154

6.  Concluding Remarks

In this article, we have presented a corpus-based information restoration model for

automatic evaluation of NLP systems and applied the proposed model to two common
and important problems related to Chinese NLP for the Internet: 8-th bit restoration of

BIG-5 code through a non-8-bit-clean channel and GB-BIG5 code conversion. The

Sinica Corpora versions 1.0 and 2.0 were used in the experiment. The results show that

the proposed model is useful and practical.
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