Fast Lexical Post-Processing on
Cursive Script Recognition

Marco A. Torres, Susumu Kuroyanagi and Akira Iwata

Nagoya Institute of Technology
Department of Electrical and Computer Engineering'

1 Introduction

A Lexicon based text recognition system (handprinted or handwritten), receives as an
input an image representing a word, and produces at the output the word on the lexicon
that best matches that image (seefig. 1). It works as follows: The input image representing
the word to be recognized is segmented and, features extracted from each segment are
used by a Character Classifier to produce Character Candidates, which are combined to
produce String Candidates, that are matched with a list of valid words (Lexicon); those
strings not in the Lexicon are rejected (for example on fig. 1 the input image “test”,
produced 81 String Candidates, from which only two of them are valid words). Further
processing could be applied to the remaining Word Cand1dates to select the most fea31ble B

Abstract
This paper presents a novel, fast approach to the problem of lexicon reduction. It is
based on the concept of direct-addressing a table in which there is a slot of 1 bit for
each component of 4 characters contained on the lexicon. In one of our experiments,
the time needed for post-processing was reduced from 31sec to only 134ms, without
any loss on recognition accuracy. The structure proposed is very flexible, and can be
used as a front end for contextual post-processing on Handwritten or Handprinted
Recognition. It is ideal to be implemented on parallel computers or hardware.

to represent the input image on that partlcular context.

Input Image Segmented

1 [+

»
Pre-Processing Segmentation

Figure 1: A Lexicon Based Text Recognition System

The time needed to analyze all the String Candidates (¢e;) is a function of the num-
ber of strings (Nyirings) and the time needed to search in the lexicon structure for each
individual StI’iIlg (tsearch), tiex = tsearch X Nstrings- On the other hand, Nstrings is a func-
tion of the number of segments (Nsegments) in which the input image was divided and, the

Character
Candidates

L Zninjng 2
(el
(slfolfa]
oln[o|

Character
Classifier

Candidates

T8l

>

1#

Lexicon

1Gokiso-cho, Showa-ku, Nagoya 466, Japan. e-mail: marco@mars.elcom.nitech.ac.jp

247

Word
Candidates

it]

number of character candidates (Nars) that are considered, Nyirings = (Nepars)Vecoments,
While the list of String Candidates can be very large, it is mostly composed by not valid
combinations of characters. This is specially important on script recognition where differ-
ent segmentation points can be proposed and more String Candidates are produced. Then,
while fast search methods are highly desirable, the most important point for efficient lexi-
cal post-processing systems is their ability to rapidly discard those not valid combinations
of characters. This process is called lexicon reduction or lexicon filtering][1].

This paper examines the effectiveness of a new, fast method that reduces drastically
the post-processing time by reducing the number of String Candidates. The Lexicon Re-
duction Method is based on pre-processing the Character Candidates before creating the
actual list of String Candidates. To do this, a fast method using look-up tables (we called
them Prune Tables) is proposed.

2 Description of Method

Two main goals must be considered on designing an efficient lexicon reducer: i) speed is
a critical issue, especially for large lexicons, and ii) a very high percentage of the input
strings must be discarded [1].

The list of String Candidates is obtained by combining the Character Candidates
produced by the Classifier, for example, for an input image that was divided on 8 segments,
taking 3 character candidates by segment, 3% = 6,561 String Candidates will be evaluated.
But, if we divide it in two groups, only 3* 4+ 3* = 162 components must be evaluated.
Accepted components, are recombined to form the reduced list of String Candidates which
will be presented to the lexicon structure on searching for valid words (see fig. 2).

- Character
o image ;;m_"" __,./" ul Candidates Com.:m Coxggewnu Reduced
compulis Ll e, oSt it | D[clle]fa] B listof
o[oo — nja[m » Condiates
A 4 — »
[ooo ‘ W . ’
[=] [= Bl Prane
P-prcsien o ooo Il g e
Segmentation Charcter Lexicon ! ’ ’l |
Text R o S ™ :
‘ext Recognition System
8 Y [r][n] Prune Process
Figure 2: Including the Prune Process
If we represent Nirings by its components:
Nsegments Nsegmenta Nsegments Nsegmenta
Nst'rings = (Ncha'rs) 2 + g - \(Ncha'rs) 2 , X chhars) 2 (1)
comp;nent comp:nent

Then, instead of create the entire list of String Candidates, we evaluate their com-
ponents, e.g. verify if they exists on the lexicon structure or not. It is done by direct
addressing [2] a table that contains one slot of 1 bit for each component in the lexicon.
The size of the table is 2" bits (where r is the size on bits of a component). Then, if
we represent each of the 26 characters of English with 5 bits: from 00001 for letter a to

248

11010 for letter z, a table for 4 characters components will need 2%° locations of 1 bit
(128KB), and for 5 characters, 225(4MB). Wells et al. [3], reported that using a long list
of words, 85.4% of 2-grams are allowable, 37.1% of 3-grams would be accepted, and in
the case of 4-gram only 5.5% are accepted. A good balance between a high rejection rate
and memory usage could be obtained by using 4 characters components.

To produce the Prune Tables, first the lexicon is divided in four parts: 1) contain-
ing words of 1 to 4 characters, 2) words from 5 to 8 characters, 3) words from 9 to 12
characters and 4) words from 13 to 16 characters. Then each word is left justified, filling
with NULL characters the gap at the right. Next, all the characters are represented on
5 bits. On this way, all the “words” from 1 to 4 characters, are represented by 20 bits
(4 characters x 5 bits); then using the value of each word as the address on the Prune
Table, the bit so pointed is set (bit = 1). Words from 5 to 8 characters are represented
by 40 bits, then 2 Prune Tables are needed. On the same way for 9 to 12 characters, 3
tables are created, and for 13 to 16 characters, 4 tables. (see fig. 3)

Prune Tables

Lexicon 32 bits ' 20 bits
= 1~4 chars many Example
.? 3,450 . 1T .
. | ¢4 Filter 8TO 5 40 t e s t Word
the
: - 61H -> 00001 r H 74H 65H T73H T74H ASCII 8bits
Sharaceer | 5.8 cha b-San>o0010 117 L 10100° 00101 10011 10100 Shits
: chars oA g
: 32,145 d-8am-> 00100 10100001011001110100 Address (20 bits)
combinations , . b
: X - 78H -> 11000 A1674H Set biton
: y - 75H > 11001
cl.mxuctorilticl —_” z- 7AH - 11010 | | eo
Ll
maltidimensional - ame
. 9-~12 chars - i= = Prune Tables'a Size
transportability 24,322
: +— 220 2 1Mb =128 KB
. . 128 80 ymum | 1
13~16 chai . ==
2,365 words BEC:

Figure 3: Prune Tables

To evaluate a component, it is only needed to read all their 4 characters, represent
them on 5 bits, concatenate it to obtain the address on the Prune Table, and then verify
if the bit pomted is set (accepted) or not (reJected) It is simple, efﬁment and fast, in all
the cases it takes only one memory read.

3 Tests and Results

To evaluate the performance of the proposed method we used an English Lexicon of 62,385
words, that was divided by word size as showed on table 1. Taking 3 character candidates
by segment and components of 4 characters, with Prune Tables of 128KB, two experi-
ments were conduced:

1) Rejection Rate. Using a classifier simulator [4], we produced large data sets (see ta—
ble 1) to simulate the most common mistakes produced on segmentation based recognition
systems. The objective was to verify how good the proposed system can reject not valid
combinations of characters. ,

2) Real task. Using a paragraph (see table 1), which contains words of different length.
Results are illustrated on table 2.

249

Lexicon Data Sets
Chars [Size Name Strings Chars/String Paragraph Test
1~4 3,450 the 48 3,4 The goal on text recognition is to convert
5~8 32,145 alterate 62,208 8 information represented on a spatial form into
912 24,322 window 8,820 6,7,8,9 a symbolic one. A typical text recognition
13~16 | 2,468 animation 907,200 9,10,11,12 system receives an image of a word as an entry,
character 139,968 9,10 segments it and, for each segmented component
recognition | 1,944,000 | 11, 12,13 produces character candidates, which are then
j combined to form string candidates. While
75 words the list of string candidates could be very
40 are 4 = large, it is mostly composed by not valid
characters combinations of characters, which must
or shorter be pruned quickly

Table 1: Lexicon and Data sets used on the experiments

4 Discussion

Results from experiment 1, showed that the proposed system performs good on rejecting
not valid components of String Candidates. From experiment 2 we confirmed that by using
direct-addressing, the proposed method can achieve a very fast performance, compared
with that obtained for the same task when no lexicon reduction process is used. For
Short Words (1 to 4 characters) the proposed method can complete the Prune Process
and the Search Process in ONE memory read (see fig. 4). Furthermore, on a study made
by Suen [5], it was showed that most of the words found on written texts occupy two to
five letters. According to that the proposed method will perform very fast on recognizing
English text. '

i

Input Image Character
Candidates Valld Strin, =

‘ = Word
4-chars Components — Candi = Candidates
»[X]» NN ”
mEm | | e——— ——
hl . —

= |5
| |[= | |2 T SheriWords
Long Words)
PEEE S »E

Pre-Processing .
EEE »
* : EEl ’% L] >
e B
Classifier

Input image II”:EIEI > ‘%’:
]

Prune
oloi Tables Lexicon

Figure 4: Text Recognition System including Prune

5 Conclusions

We presented a new method for reducing the time needed for lexical post-processing on
cursive script recognition. Results obtained from our experiments showed an impressive
degree of reduction without any loss on accuracy. It can be used by itself as a Search
Method for words of 4 characters or less. On any case, the time needed to evaluate
a 4 characters component is only one memory read. The proposed method is ideal to

250

Data set Components Prune Valid Components String Candidates Search Valid
Evaluated Time * w/fo Prune | w/ Prune | Time * « Words

Experiment 1: Degree of Rejections :
the 48] 2] 48 2
alterate 288+181 R — 40%x19 62,208 760
window 153+184] T JE— 12x17] T 8,820 204 T
animation 4504816469 — 18x114x22] 907,200 45,144
character 1804432412 _— 16X69x9 139,968 9,936
recognition | [108+4255+240] | ———— 8x22x14 1,944,000 | 2,464
Experiment 2: Real Task
4/1 3] x4 24us 4 ‘ 12 4
17 / 2 9|x17 306us 19 153 19
7/3 27|x7 378us 11 189 11
12 /4 81[x12 1,944us 13 972 13
8/5 81+3[x8 1,344ps [9x1] [11x2] [7x2] [9x2]

[13x2] [7x3] [13 x1] [11x2] 1,944 145 2.9 ms 12
5/6 [81+9]x5 900 us [9x1] [13x2] [7x3] [13x4] :

. [11 x2] 3,645 130 2.6ms 7
4/7 81427|x4 864 us [6x1] [13x2] [7x3] [14 x5] 8,748 123 2.46 ms 4
6/8 81481|x6 1,944 us [9x1] [13x2] [7x3][13 x1]

111 x2] [11x2] 39,366 113 2.26 ms 8
3/9 [81+81+3]%x3 990 us [18 x13 x2] [9 x14 x3]

[9x12 x2] 59,049 1,062 21.2 ms [
4/10 [81+81+9]x4 1,368 us [9x13 x4] [8 x6 x4]

[9%x11 x5] [16 x13 x4] 236,196 1,987 39.7 ms 4
4/11 [81+81+27]x4 | 1,512 us [16 x16 x4] [9x11x2]

. [9x12 x3] [8x13 x2] 708,588 1,754 35.1 ms 4

1/12 [81+81+81] 486 us [9x13 x7] 531,441 | 819 16.4 ms 1
75 words | 6,030 [12.1 ms@® | [[6,133 122.62 ms@®
Total time with Prunning ®+@ : : i 134.72 ms
Total time without Prunning | 1,590,303 x 20us = 31.81 sec.

* The time to read a Prune Table is 2 us. * The average time to search for a string on the lexicon structure is 20us.
t From 153 components evaluated, only 12 were valid, and from 184 evaluated, only 17 were valid, then the number of
String Candidates to be evaluated was 12 X 17 = 204.

v Table 2: Results

be implemented on parallel computers, or better yet in hardware, producing a very fast
system. Work is in progress to incorporate this method with a fast search method to obtain
a very fast lexical post-processing system to be applied on cursive script recognition.

References

[1'] S. Madhvanath and S. N. Srihari. Effective reduction of large lexicons for recognition
of offline cursive script. In Proc. of the 5th Intl. Workshop on Front. in Handwriting
Rec., pages 189-194, 1996.

Thomas H. Cormen, Charles E. Leiserson, and Ronald L. Rivest. Introduction to

Algorithms. The MIT Press, 1994.

C.J. Wells, L.J. Evett, P.E. Whitby, and R.J. Whitrow. Fast dictionary look-up for
contextual word recognition. Pattern Recognition, 23(5):501-508, 1990.

2]
3]

R. M. K. SINHA. On using syntactic constraints in text recognition. In Proceedings

[4] _
of 2nd Intl. Conf. on Doc. Anal. and Rec., pages 858-861, 1993.

Ching Y. Suen. N-gram statistics for natural language understanding and text pro-
cessing. IEEE Trans. on Patt. Anal. and Machine Intell., PAMI-1, No. 2:164-172,
april 1979.

[5]

251

