Incorporating Bigram Constraints into an LR Table

Hiroki Imai, Hui Li and Hozumi Tanaka
Department of Computer Science, Tokyo Institute of Technology
2-12-1 O-okayama, Meguro, Tokyo 152 Japan
{imai,li,tanaka}@cs.titech.ac. jp

Abstract

In this paper, we propose a method to construct a bigram LR table to incorporate bigram
constraints into an LR table. An LR table which incorporates bigram constraints is called a
bigram LR table. Using the bigram LR table, it is possible for a GLR parser to make use of
both bigram and CFG constraints in natural language processing.

A method for constructing bigram LR tables is proposed. Applying the resultant bigram LR
table to our GLR method has the following advantages:

1. A language model utilizing a bigram LR table has lower perplexity than a bigram language
model, since local constraints (bigram) and global constraints (CFG) are combined in the
single bigram LR table at the same time.

2. Bigram constraints are easily acquired from a given corpus. Therefore data sparseness is
not likely to arise.

The former advantage leads to a reduction in complexity, and as the result, produces better
performance for GLR parsing.

Our experiments demonstrate the effectiveness of our method.

1 Introduction

In natural language processing, stochastic language models are commonly used for lexical and syntactic
disambiguation (Fujisaki et al., 1991; Franz, 1996). Stochastic language models are also helpful in
reducing the complexity of speech and language processing by way of providing probabilistic linguistic
constraints (Lee, 1989).

N-gram models (Jelinek, 1990), including bigram and trigram models, are the most commonly used
method of applying local probabilistic constraints. However, contexf-free grammars (CFGs) produce
more global linguistic constraints than.N-gram models. It seems better to combine both local and global
constraints and use them both concurrently in natural language processing. The reason why N-gram
models are preferred over CFGs is that N-gram constraints are easily acquired from a given corpus.
However, the larger N is, the more serious the problem of data sparseness becomes.

CFGs are commonly employed in syntactic parsing as global linguistic constraints, since many
efficient parsing algorithms are available. GLR (Generalized LR) is one such parsing algorithm that

uses an LR table, into which CFG constraints are precompiled in advance (Knuth, 1965; Tomita, 1986).

76

a, b,

Figure 1: Connection check by CFG

Therefore if we can incorporate N-gram constraints into an LR table, we can make concurrent use of
both local and global linguistic constraints in GLR parsing.

In the following section, we will propose a method that incorporates bigram constraints into an LR
table. The advantages of the method are summarize‘d as follows:

First, it is expécted that this method produces a lower perplexity than that for a bigram language
model, since it is pbssible to utilize both local (bigram) and global (CFG) constraints in the LR table.
We will evidence this reduction in perplexity by considering states in LR table for the case of GLR
parsing.

Secondly, bigram constraints are easily acquired from smaller-sized corpora. Accordingly, data

sparseness is not likely to arise.
2 CFG, Connection Matrix and LR table

2.1 Relation between CFG and Connection Constraints

Figure 1 represents a situation in which a; and b; are adjacent each other, where a; belongs to
Setr (1 = 1,---,I) and b; belongs to Set; (j = 1,---,J). Set; and Set; are defined by last1(A)
and first1(B)(Aho et al., 1986), respectively. If a € Set; and b € Set; happen not to be able to occur
in this order, it becomes a non-trivial task to express this adjacency restriction within the framework
of CFG. '

One solution to this problem is to introduce a new nonterminal symbol A; for edch a; and a
nonterminal symbol B; for each b;. Introducing new nonterminal symbols A; and B;, we replaces the
rule X — A B with a set of rules of {X — A; B; | for all pairs (A4;,B;) where b; can follow a;}.
After this rule replacement, the order of the number of rules will become I x J in the worst case. The
introduction of such new nonterminal symbols leads to an increase in grammar rules, which not only
makes the LR table very large in size, but also diminishes efficiency of the GLR parsing method.

The second solution is to augment X — A B with a procedure that checks the connection between

a; and b;. This solution can avoid the problem of the expansion of CFG rules, but we have to take care

77

b, b=+ Db, - b
al i ?
e g reseaseanes
) [T 0 -rsnemeenes
a i

Figure 2: Connection matrix

of the information flow from the bottom leaves to the upper nodes in the tree, A, B, and X.

Neither the first nor the second solution are preferable, in terms of both efficiency of GLR parsing
and description of CFG rules. Additionally, it is a much easier task to describe local connection
constraints between adjacent two terminal symbols by way of a connection matrix such as in Figure 2,
than to express these constraints within the CFG.

The connection matrix in Figure 2 is defined as:

1 if b; can follow a;
0 otherwise

Connect(a;, b;) = { (1)

The best solution seems to be to develop a method that can combine both a CFG and a connection
matrix, avoiding the expansion of CFG rules. Consequently, the size of the LR table will become smaller
and we will get better GLR parsing performance. In the following section, we will propose one such

- method.

2.2 Relation between the LR Table and Connection Matrix

First we discuss the relation between the LR table and a connection matrix. The action part of an LR
~ table consists of lookahead symbols and states. Let a shift action sh m be in state [with the lookahead
symbol a. After the GLR parser executes action sh m, the symbol a is pushed onto the top of the stack
and the GLR parser shifts to the state m. Suppose there is an action A in state m with lookahead b (see
Figure 3). The action A is executable if Connect(a,b) # 0 (b can follow a), whereas if Connect(a,b) =0
(b cannot follow a), the action A in state m with lookahead b is not executable and we can remove
it from the LR table as an invalid action. Removing such invalid actions enables us to incorporate
connection constraints into the LR table in addition to the implicit CFG constraints.

In section 3.2, we will propose a method that integrates both bigram and CFG constraints into an

LR table. After this integration process, we obtain a table called a bigram LR table.

78

LR table

[|------ shm|-emeem | [2mmmmmeeee-

A is removed if Connect (a,b) =0
Stack Input symbols

Figure 3: LR table and Connection Constraints

3 Integration of Bigram and CFG Constraints into an LR Table

3.1 The Definition of a Probabilistic Connection Matrix

A close relation exists between bigrams and connection matrices, in that the bigram probability P(b|a)
corresponds to the matrix element of Connect(a,b). A connection matrix incorporating bigram proba-
bilities is called a probabilistic connection matrix, in which Connect(a,b) = 0 still means b cannot follow
a, but instead of connection matrix entries having a binary value of 0 or 1, a probability is associated
with each element. This is then used to construct a probabilistic LR table.

The N-gram model is the most commonly used probabilistic laﬁguage model, and it assumes that
a symbol sequence can be described by a higher order Markov process. The simplest N-gram model
with IV = 2 is called a bigram model, and approximates the probability of a string X = z1z223 -z,

as the product of conditional probabilities:

P(X) = P(z1|#)P(z2|z1) - - P(%n|Tn—1)P(8|zs) " (2)

~ In the above expression, “#” indicates the sentence beginning marker and “$” indicates the sentence
ending marker. The above bigram model can be represented in a probabilistic connection matriz defined -

as follows.

DEFINITION 1 (probabilistic connection matriz)

Let G = (Vy,Vr, P,S) be a context-free grammar. For Va,b € Vr (the set of terminal symbols),

the probabilistic connection matriz named PConnect is defined as follows.

79

PConnect(a,b) = P(bla) (3)

where P(bla) is a conditional probability and).y, P(bla) = 1.

PConnect(a,b) = 0 means that o and b cannot occur consecutively in the given order.

PConnect(a,b) # 0 means b can follow ¢ with probability P(b|‘a).

3.2 An algorithm to construct an bigram LR table

An algorithm to construct a probabilistic LR table, combining both bigram and CFG constraints, is
given in Algorithm 1:

Algorithm 1

Input: A CFG G = (VN,Vr, P,S) and a probabilistic connection matrix PConnect.

Output: An LR table T with CFG and bigram constraints.

Method:

Step 1 Generate an LR table Ty from the given CFG G.

Step 2 Removal of actions:
For each shift action sh m with lookahead a in the LR table Ty, delete actions in the state m with

lookahead b if PConnect(a,b) = 0.

Step 3 Constraint Propagation (Tanaka et al., 1994):

Repeat the following two procedures until no further actions can be removed:

1. Remove actions which have no succeeding action,

2. Remove actions which have no preceding action.
Step 4 Compact the LR table if possible.

Step 5 Incorporation of bigram constraints into the LR table:

For each shift action sh m with lookahead a in the LR table Ty, let

N
P= Z PConnect(a, b;)

i=1
where {b; : i =1,---, N} is the set of lookaheads for state m. For each action A, in state m with
lookahead b;, assign a probability p to action A;:
_ P(bila) _ PConnect(a,b;)

Pxn Pxn

where n is the number of conflict actions in state m with lookahead b;. The denominator is clearly

a normalization factor.

Step 6 For each shift action A with lookahead a in state 0, assign A a probability p = P(a|#), where

“#” is the sentence beginning marker.

80

(1) S—-XY (6) A—al
(2) X-A (7) A— a2
3) X—=AB (8) B— bl
4 Y—=A (9 B-b2
(5) Y bl A

Figure 4: Grammar G

al a2 b1 b2 §

#1106 04 00 0.0 0.0
al | 0.0 0.0 0.0 1.0 0.0
a2| 0.0 0.0 0.8 0.0 0.7
b1 1 0.0 0.1 0.9 00 0.0
b2 | 0.0 0.0 1.0 0.0 0.0

Figure 5: Probabilistic connection matrix M;

Step 7 Assign a probability p = 1/n to each action A in state m with lookahead symbol a that has not
been assigned a probability, where n is the number of conflict actions in state m with lookahead

symbol a.

Step 8 Return the LR table T produced at the completion of Step 7 as the Bigram LR table.

As explained above, the removal of actions at Step 2 corresponds to the operation of incorporating
connection constraints into an LR table. We call Step 3 Constraint Propagation which reduces the size
of the LR table (Li, 1996). As many actions are removed from the LR table during Step 2 and 3, it
becomes possible to compress the LR table in Step 4. We will demonstrate one of such example in the
following section. ‘

It should be noted that the above algorithm can be applied to any type of LR table, that is a
canonical LR table, an LALR table, or an SLR table.

4 An Example

4.1 Generating a Bigramn LR Table

In this section, we will provide a simple example of the generation of a bigram LR table by way
of applying Algorithm 1 to both a CFG and a probabilistic connection matrix, to create a bigram
LR table. Figure 4 and Figure 5 give a sample CFG G; and a probabilistic. connection matrix M,
respectively.

Note that grammar G; in Figure 4 does not explicitly express local connection constraints between
terminal symbols. Such local connection constraints are easily expressed by a matrix M; as shown in
Figure 5.

From the CFG given in Figure 4, we can generate an LR table, Table 1, in Step 1 using the

conventional LR table generation algorithm.

81

state action goto
al a2 b1 2| $ |A|B|X|Y|S
0 shl | sh2 3 4 5
1 re6 | re6 re6 re6
2 re7 | re7 re7 re7
8 | re2| re2 | re2/sh6 | sh7 8
4 sh9 | sh10 | shitl 12 13
5 acc
6 re§ | re8 re8
7 red | ‘re9 red
8 red | red red
9 re6
10 re7
11 | sh9 | sh10 14
12 red
18 rel
14 res
Table 1: Initial LR table for G,
state " action goto
’ al a2 b1 b2 [] ATBIX[Y]S
0 shi sh2 3 4| 5
1 re6(2) | re6(2) | re6(2) re6
2 | re?(2) | re?(2) re7 re?(2)
3 | re2(3) | re2 | re2/sh6 | sh7 8
4 sh9(3) | shi10 sh11 12 13
5 acc
6 re8(2) re8 re8
7 | re9(3) | re9(2) re9
8 | re3(3) | re3 red
9 re6(2)
10 re7
11 | sh9(8) | shi0 14
12 red
13 rel -
1/ re5

Table 2: LR table after Step 2 and 3

82

Table 2 is the resultant LR table at the completion of Step 2 and Step 3, produced based on
Table 1. Actions numbered (2) and (8) in Table 2 are those which are removed by Step 2 and Step 3,
respectively.

In state 1 with a lookahead symbol b1, re6 is carried out after executing action shl in state O,
pushing al onto the stack. Note that al and b1 are now consecutive, in this order. However, the
probabilistic connection matrix (see Figure 5) does not allow such a sequence of terminal symbols, since
PConnect(al,bl) = 0. Therefore, the action re6 in state 1 with lookahead b1 is removed from Table 1
in Step 2, and thus marked as (2) in Table 2. For this same reason, the other refs in state 1 with
lookahead symbols a! and a2 are also removed from Table 1.

On the other hand, in case of re6 in state 1 with lookahead symbol 42, as al can be followed by
b2 (PConnect(al,b2) # 0), action re6 cannot be removed. The reason remaining actions marked as
(2) in Table 2 should be self-evident to the readers.

Next, we would like to consider the reason why action sh9 in state 4 with lookahead a! is removed
from Table 1. In state 9, re6 with lookahead symbol $ has already been removed in Step 2, and there is
no succeeding action for sh9. Therefore, action sh9 in state 3 is removed in Step 3, and hence marked
as (3). ’

Let us consider action red in state 8 with lookahead al. After this action is carried out, the GLR
parser goes to state 4 after pushing X onto the stack. However, sh9 in state 4 with lookahead a1
has already been removed, and thefe is no succeeding action for red. As a result, re3 in state 8 with
lookahead symbol a! is removed in Step 3. Similarly, re9 in state 7 with lookahead symbol a1 is also ‘
removed in Step 3. In this way, the removal of actions propagates to other removals. This chain of
removals is called Constraint Propagation, and occurs in Step 3. Actions removed in Step 3 are marked
as (3) in Table 2.

Careful readers will notice that there is now no action in state 9 and that it is possible to delete
this state in Step 4. Table 3 shows the LR table after Step 4.

As a final step, we would like to assign bigram constraints to each action in Table 3. Let us consider
the two re8s in state 6, reached after executing shé6 in state 4 by pushing a lookahead of b1 onto the
stack. In state 6, P is calculated at Step 5 as shown below:

P = PConnect(bl,a2)+ PConnect(bl,bl)

0.1+0.9

=1

We can assign the following probabilities p to each re8 in state 6 by way of Step 5:

PC t(b1,a2 .
onnect(b1, a2) = 10 11 = 0.1 for re8 with lookahead a2

P=1 PContecs(b1,b1) 0.0
onnect(bl1, = ——=0.9 for re8 with lookahead b1
Pxn 1x1

83

state action goto
al a2 b1 b2 $ |A|B|X|Y|S
0 shl | sh2 3 4 5
1 re6
2 re7 .
3 re2 | re2/sh6 | sh7 8
4 sh10 sh1l 12 13
5 acc
6 re8 re8
7 red
8 red red
10 re7
11 sh10 14
12 re4
13 rel
14 red

Table 3: LR table after Step 4

After assigning a probability to each action in the LR table at Step 5, there remain actions without

probabilities. For example, the two conflict actions (re?/shﬁ) in state 3 with lookahead b1 are.not

assigned a probability.. Therefore, each of these actions is assigned the same probability, 0.5, in Step 7.

A probability of 1 is assigned to remaining actions, since there is no conflict among them.

Table 4 shows the final results of applying Algorithm 1 to G; and Ml

4.2 Comparison of Language Models

Using the bigram LR table as shown in Table 4, the probability P1 of the string “a2 b1 a2” is calculated

as:

Pl =

P(a2 b1 a2)

P(0,a2,sh2) x P(2,b1,re7) x P(3,b1,7re2) x P(4,b1,sh11)

xP(11,a2,sh10) x P(10,8,re7) x P(14,8,re5) x P(13,8, rel)

xP(5,$, acc)

04x10x05x10x1.0x1.0x1.0x1.0x1.0

0.2

where P(S, L, A) means the probability of an action A in state S with lookahead L.

On the other hand, using only bigram constraints, the probability P2 of the string “a2 b1 a2’ is

calculated as:

P2

P(a2 b1 a2)

P(a2|#) x P(b1]a2) x P(a2|b1) x P($]a2)

x0.3 x 0.1 x 0.7

84

state action goto
al a2 b1 2| $ | A|B|X|Y
shl | sh2
0 0.6 | 0.4 3 4
re6
1 1.0
re7
2 1.0
re2 | re2/sh6 | sh7
3 1.0 | 0.5/0.5 | 1.0 | 8
sh10 shi11 ‘
4 1.0 1.0 12 13
acc | -
) 1.0
re8 re8
6 0.1 0.9
reg -
7 1.0
red re3
8 1.0 1.0
: ' re7
10 1.0
sh10
11 1.0 14
re4
12 1.0
rel
13 1.0
red
14 1.0

Table 4: The Bigram LR table constructed by Algorithm 1

85

= 0.0084

The reason why P1 > P2 can be explained as follows. Consider the beginning symbol a2 of a
sentence. In the case of the bigram model, a2 can only be followed by either of the two symbols 61 and
$ (see Figure 5). However, consulting the bigram LR table reveals that in state 0 with lookahead a2,
sh2 is carried out, entering state 2. State 2 has only one action re7 with lookahead symbol 1. In other
words, in state 2, $ is not predicted as a succeeding symbol of a. The exclusion of an ungrammatical
prediction in $§ makes P1 larger than P2.

Perplexity is a measure of the complexity of a language model. The larger the probability of the
language model is, the smaller the perplexity of the language model is. The above result (P1 > P2)
indicates that the bigram LR table model gives smaller perplexity than the bigram model. In the next

section, we will demonstrate this fact.
5 Evaluation of Perplexity

Perplezity is a measure of the constraint imposed by the language model. Test-set perplezity (Jelinek,
1990) is commonly used to measure the perplexity of a language model from a test-set. Test-set

perplezity for a language model L is simply the geometric mean of probabilities defined by:
QL) =27

where
1 M
H(L) = ¥ ; log P(S;)

Here N is the number of terminal symbols in the test set, M is the number of test sentences and P(S;)
is the probability of generating i-th test sentence S;.

In the case of the bigram model, P(S;) is:

P(S;) = P(z1,22,"",%n)
= Pz, |#)P(xs|z1) - - - P(Tn|Tn—1)P(8|z5)

Table 5 shows the test-set perplezity of allophones for each language model. Here the allophone
bigram models (i.e. probabilistic allophone connection matrix) were trained on a corpus with about
220,000 phrases, with the open test-set consisting of about 17,000 phrases. The CFG used is a phrase
context-free grammar used in speech recognition tasks, and the number of rules and words is 2813 and
1588, respectively.

As is evident from Table 5, the use of a bigram LR table decreases the test-set perplezity from 8.50
to 5.06, not considering CFG constraints, and from 4.30 to 2.95, with CFG constraints. This result
shows the effectiveness of using a bigram LR table.

Even though the experiment described above is concerned with speech recognition, our method is

applicable to all kinds of natural language processing systems.

86

| Language model | Perplexity |

Connection matrix 8.50
Bigram 5.06
CFG + Connection matrix 4.30
CFG + Probabilistic connection

matrix (Bigram LR table) 2.95

Table 5: Perplexity of language models

6 Conclusions

In this paper, we described a method to construct a bigram LR table, and then discussed the advantage
of our method, comparing our method to the bigram language model. The principle advantage is that,
in using a bigram LR table, we can combine both local probabilistic connection constraints (bigram
constraints) and global constraints (CFG).

It is well known that the perplexity of a bigram language model is greater than that of a trigram
language model. We have already shown that the perplexity of a bigram language model is greater
than that of a language model using a bigram LR table. It is an interesting question as to which of
a trigram language model and a bigram LR table language model has larger perplexity. With regard
to data sparseness, a bigram LR table language model is better than a trigram language model, since
bigram constraints are easier to acquire than trigram constraints. In order to compare the bigram LR
table language model with the trigram language model, we need to carry out further experimentation.

Su et al. (Su et al., 1991) and Chiang et al. (Chiang et al., 1995) have proposed a very interesting
corpus-based natural language processing method that takes account not only of lexical, syntactic, and
semantic scores concurrently, but also context-sensitivity in the language model. However, their method
seems to suffer from difficulty in acquiring probabilities from a given corpus.

Wright (Wright, 1990) developed a method of distributing the probability of each PCFG rule to
each action in an LR table. However, this method only calculates syntactic scores of parsing trees based
on a context-free framework.

Briécoe and Carroll (Briscoe and Carroll., 1993) attempt to incorporate probabilities into an LR
table. They insist that the resultant probabilistic LR table can include probabilities with context-
sensitivity. In a recent technical report, (Inui et al., 1997) reported out that the resultant probabilistic
LR table has a defect in terms of the process used to normalize probabilities associated with each action
in the LR table. Inui et. al. are now obtaining promising experimental results which will be published
elsewhere.

Finally, we would like to mention that Klavans and Resnik (Klavans and Resnik, 1996) have
advocated a similar approach to ours which combines symbolic and statistical constraints, CFG and

bigram constraints.

87

References

A.V. Aho, S. Ravi, and J.D. Ullman. 1986. Compilers: Principle, Techniques, and Tools. Addison
Wesley.

T. Briscoe and J. Carroll. 1993. Generalized probabilistic LR parsing of natural language (corpora)
with unification-based grammars. Computational Linguistics, 19(1):25-59.

T.H. Chiang, Y.C. Lin, and K.Y. Su. 1995. Robust learning, smoothing, and parameter tying on
syntactic ambiguity resolution. Computational Linguistics, 21(3):321-349.

A. Franz. 1996. Automatic Ambiguity Resolution in Natural Language Processing. Springer.

T. Fujisaki, F. Jelinek, J. Cocke, E. Black, and T. Nishino. 1991. ‘A probabilistic parsing method

for sentence disambiguation. In M. Tomita, editor, Current Issues in Parsing Technologies, pages
139-152. Kluwer Academic Publishers.

K. Inui, V. Sornlertlamvanich, H. Tanaka, and T. Tokunaga. 1997. A new probabilistic LR language
model for statistical parsing. Technical Report TR97-0004, Department of Computer Science,
Tokyo Institute of Technology.

F. Jelinek. 1990. Self-organized language modeling for speech recognition. In A. Waibel and K.F. Lee,
editors, Readings in Speech Recognition, pages 450-506. Morgan Kaufmann.

J.L. Klavans and P. Resnik. 1996. The Balancing Act: Combining Symbolic and Statistial Approaches
to Language. The MIT Press.

D.E. Knuth. 1965. On the translation of languages left to right. Information and Control, 8(6):607-639.

K.F. Lee. 1989. Automatic Speech Recognition: The Development of the SPHINX System. Kluwer
Academic Publishers.

H. Li. 1996. Incorporation of phoneme-context-depencence into LR table through constraint propaga-
tion method. Journal of Japanese Society for Artificial Intelligence, 11(2):246-254.

K.Y. Su, J.N. Wang, M.H. Su, and J.S. Chang. 1991. GLR parsing with scoring. In M. Tomita, editor,
Generalized LR Parsing. Kluwer Academic Publishers.

H. Tanaka, H. Li, and T. Tokunaga. 1994. Incorporation of phoneme-context-dependence into LR
table through constraints propagation method. In Workshop on Integration of Natural Language
and Speech Processing, pages 15-22.

M. Tomita. 1986. Efficient Parsing for Natural Language: A Fast Algorithm for Practical Systems.
Kluwer Academic Publishers.

J.H. Wright. 1990. LR parsing of probabilistic grammars with input uncertainty for speech recognition.
Computer Speech and Language, 4(4):297-323.

38

