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Abstract 

A Corpus-Based Statistics-Oriented (CBSO) methodology, which is an attempt to 
avoid the drawbacks of traditional rule-based approaches and purely statistical 
approaches, is introduced in this paper. Rule-based approaches, with rules induced 
by human experts, had been the dominant paradigm in the natural language 
processing community. Such approaches, however, suffer from serious difficulties 
in knowledge acquisition in terms of cost and consistency. Therefore, it is very 
difficult for such systems to be scaled-up. Statistical methods, with the capability 
of automatically acquiring knowledge from corpora, are becoming more and more 
popular, in part, to amend the shortcomings of rule-based approaches. However, 
most simple statistical models, which adopt almost nothing from existing linguistic 
knowledge, often result in a large parameter space and, thus, require an 
unaffordably large training corpus for even well-justified linguistic phenomena. 
The corpus-based statistics-oriented (CBSO) approach is a compromise between 
the two extremes of the spectrum for knowledge acquisition. CBSO approach 
emphasizes use of well-justified linguistic knowledge in developing the underlying 
language model and application of statistical optimization techniques on top of 
high level constructs, such as annotated syntax trees, rather than on surface strings, 
so that only a training corpus of reasonable size is needed for training and long 
distance dependency between constituents could be handled. In this paper, 
corpus-based statistics-oriented techniques are reviewed. General techniques 
applicable to CBSO approaches are introduced. In particular, we shall address the 
following important issues: (1) general tasks in developing an NLP system; (2) 
why CBSO is the preferred choice among different strategies; (3) how to achieve 
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good performance systematically using a CBSO approach, and (4) frequently used 
CBSO techniques. Several examples are also reviewed. 

Keywords: Corpus, CBSO, Knowledge Acquisition, Class-Based Language 
Modeling, Natural Language Processing 

1. Introduction 

In general, the development of a natural language processing (NLP) system must handle the 
following problems. 

(1)  Knowledge representation: how to organize and describe linguistic knowledge in a 
linguistically meaningful and computationally feasible manner. For example, one may 
describe linguistic knowledge in terms of grammar rules and restriction rules on 
grammatical constructs. On the other hand, the same knowledge could be described using a 
set of features and the associated probabilities in statistical approaches. 

(2)  Knowledge control: how to apply linguistic knowledge for effective processing. For 
instance, a context-free grammar may be carried out by an LR parser. The disambiguation 
process may be carried out by an expert system by consulting a set of disambiguation rules. 
Or a statistics-oriented system may adopt a statistical language model by using likelihood 
measures for choosing the most likely analysis among all. 

(3)  Knowledge integration: how to use the various knowledge sources effectively. A system 
may resolve ambiguity by using both syntactic and semantic constraints. It may also adopt 
a rule-based system for parsing; however, probability is used for choosing preferences 
instead of the rule-based system. A system adopting different paradigms (e.g., rule-based 
and statistical approaches) at the same time is called a "hybrid system" by some researchers 
[Su 92a]. 

(4)  Knowledge acquisition: how to systematically and cost-effectively acquire the required 
knowledge and maintain consistency of the knowledge base, so that there is no confliction 
among the rules which may degrade system performance. Some systems may rely on 
human experts to induce linguistic rules based on linguistics theory or the materials they 
have observed. Statistical approaches, on the other hand, would automatically acquire the 
knowledge, which is the probability values in this case, via estimation processes, from a 
corpus. 

In general, real text contains much greater numbers of ambiguities and illformed 
sentences than people realize at the first glance. For instance, the sentence "The farmer's wife 
sold the cow because she needed money" usually seems to people to have no ambiguity. It 
normally refers to, unambiguously, the fact that "she" is "the farmer's wife" [King 95]. Similar 
sentences, such as "The farmer's wife sold the cow because she wasn't giving enough milk," 
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however would be interpreted in quite different ways by people without any difficulty. 
However, both sentences present an ambiguity problem to an NLP system. The knowledge 
required for resolving such ambiguity and ill-formedness is usually non-deterministic, huge in 
amount, messy and fine-grained in nature although most people are not aware of these facts. 
Therefore, it is costly and time-consuming to acquire such knowledge by hand. As a result, 
usually, knowledge acquisition is the major engineering bottleneck for designing a large NLP 
system 

Due to its important role in NLP, various knowledge acquisition strategies had been 
exploited in the literature. Roughly, the methodologies can be characterized into the following 
major categories, namely (1) rule-based approaches [Hutchins 86], (2) purely statistical 
approaches [Brown 90], (3) corpus-based statistics-oriented (CBSO) approaches [Chen 91; Su 
92a], (4) symbolic learning approaches developed in the AI field [Michalski 83; 86], and (5) 
connectionist approaches (i.e., neural network approaches [Cottrell 89; Schalkoff 92]). Each 
category may have its own specific method for knowledge representation. Since the first three 
categories are frequently used in the NLP community, and the last two approaches have not 
shown much success in real NLP applications so far, this paper will discuss and compare the 
first three methodologies with particular emphasis on the CBSO approaches. 

A rule-based approach usually has the following characteristics. (1) The linguistic 
knowledge is usually expressed in terms of high level constructs such as parts of speech, 
phrases, syntactic trees and feature structures, which are described in most traditional 
linguistics textbooks, and the knowledge is expressed in the form of syntactic or semantic 
constraints over such constructs. (2) Most rule-based systems have a strict sense of 
well-formedness; therefore, the rules are applied deterministically to reject ill-formed 
constructs. (3) Most rules are based on existing linguistic theories that are linguistically 
interesting. When the required knowledge does not appear in the literature, ad hoc heuristic 
rules may be used. (4) Such rules are normally induced by linguists based on their expertise. 
For instance, heuristics such as "a determiner cannot be followed by a verb" may be used in 
filtering out inappropriate part of speech tags in a rule based POS tagging system. 

In contrast to a rule based system, a purely statistical approach has the following 
characteristics. (1) Its knowledge is expressed in terms of the likelihood of certain events. 
Most of the time, the language generation process is simply modeled as a simple stochastic 
decoding process, such as a Markov chain [Brown 90]. Each event is associated with the 
occurrence of a particular word string, such as a word N-gram, not a high level construct. 
There is, essentially, no syntactic or semantic constraints on the words. Normally, the only 
constraint on the words is the dependency implied by the conditional probabilities among 
adjacent words. (2) There is not a strict sense of well-formedness. Therefore, all possible 
analyses will be assigned probabilities for searching the most probable analysis. Hence, a 
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large computation time is usually required. (3) The probabilities are usually estimated 
automatically to maximize the likelihood of generating the observations in a training corpus. 
Therefore, the knowledge acquisition task is simply an estimation process. 

For instance, a purely statistical approach for translating an English sentence into a 
French sentence might be interested in asking which French words are most likely to be the 
translation of a particular English word, and what the most likely word order of the translated 
words is [Brown 90]. The most likely translation is then determined based on such 
probabilities for all possible target words and word orders. 

The major advantage of a rule-based system is that existing linguistic knowledge can be 
incorporated into the system directly in a compact and comprehensive way. However, it is 
hard to scale up such a system for several reasons. First, the required knowledge is huge and 
messy; the cost for acquiring and maintaining the huge set of rules is extremely high. Second, 
it is not easy for such a system to resolve problems of ambiguity and ill-formedness, which 
usually need nondeterministic knowledge and require objective preference metrics to 
quantitatively qualify all possible analyses. Third, the portability of such a systemis poor when 
porting from one domain to another or from one language to a different language. Finally, 
although new included rules may improve the system performance for certain cases, they may 
not improve, and may very likely even degrade, performance in other cases. In other words, a 
local improvement made by modifying the rules for bad cases does not guarantee a global 
improvement for all cases; the result, then, is a `seesaw phenomena,' in which a few mistakes 
are corrected at the cost of producing even more new mistakes. Such phenomena have been 
observed in many cases in the history of NLP development. The induced effects for other 
unseen cases as a result of adding new rules, are, therefore, usually unpredictable. As a result, 
enlarging the rule base of the system does not guarantee that a monotonic increase in system 
performance will result. Besides, from a practical point of view, it is very difficult to maintain 
the rules, especially when the system must be maintained by many persons across a long time 
span. Therefore, scaling-up such a system often degrades the system performance and renders 
it cost-ineffective because it is very difficult to further improve the system performance in 
later stages. 

Purely statistical models are preferred with respect to a rule-based approach in several 
respects. (1) Non-deterministic behavior and uncertainty can be objectively qualified by 
objective probabilistic metrics. (2) The system parameters can be consistently maintained 
easily even when the system is scaled up because the knowledge acquisition task, namely the 
estimation process, can easily be repeated over enlarged training materials when new instances 
of interest are included. (3) Automatic or semi-automatic training of the system parameters is 
possible using well developed optimization techniques. Hence, the burden of knowledge 
acquisition can be shifted from human experts to machines. (4) The methodologies can be 
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easily adapted to other languages and domains since the estimation process is highly 
independent of any particular language and application domain. Furthermore, since no high 
level constructs are used in a purely statistical model, no preprocessing, such as syntax 
analysis, is required to produce such constructs; therefore, the optimization process of a purely 
statistical model can be implemented easily. 

However, the parameter space of a purely statistical model is usually extremely large, 
and searching for the optimal solution is time consuming in many cases because the language 
model is not established on top of high level constructs. For instance, a practical NLP system 
should be able to handle 105 words for real applications. Using a purely statistical approach 
whose language model is a simple word trigram model would requires 105 (= 
105×105×105)parameters to describe the complete probabilistic knowledge. According to the 
general rule, the number of samples required to reliably estimate a set of parameter values is 
about 5 to 10 times the parameter size. Therefore, a text corpus having about 106 words is, 
theoretically, required to estimate the parameter values reliably in this case. The estimated 
parameter values might not be reliable if a large corpus is not available. (Although, practically 
many tri-gram combinations never occur, and a smaller corpus should be sufficient. However, 
the magnitude of the number of parameters is still huge.) For this reason, a system which 
attempted to extend the scope of knowledge by including more words in its n-gram model 
would be unaffordable in most applications. Ambiguity resolution, which must take long 
distance dependency into consideration, sometimes also would be infeasible using such purely 
statistical approaches. Therefore, a compromise must be made to take advantage of both 
rule-based approaches and purely statistical approaches. To avoid the drawbacks of both 
rule-based and purely statistical approaches, CBSO approaches were proposed in [Chen 91; Su 
92a]. Basically, these approaches impose stochastic models on classes, not just on words as 
some n-gram models do, as will be described in the following sections. 

In fact, words can be clustered into different equivalent classes of certain particular types 
for processing purposes, and many such equivalent classes are well identified in linguistics. 
For instance, words having the same parts of speech exhibit similar syntactic behavior. 
Therefore, we can use classes, instead of words, in developing statistical language models. A 
statistical language model based on part of speech trigram, for example, requires only about 
106 parameters to describe the complete statistical knowledge if we are using a tag set of 100 
parts of speech. The size of the training corpus would be about 107 in this case, which is 
affordable in the current environment. 

A statistical language model can even be developed based on syntactic categories, i.e., 
nonterminal nodes of syntax trees or can even be based on semantic categories when higher 
level analysis is necessary for applications. By developing statistical language models based 
on high level constructs at the syntactic or semantic level, most of the above-mentioned 
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disadvantages of a purely statistical method can be relieved. For instance, the size of the 
training corpus can be greatly reduced. The linguistic knowledge need not be learned from low 
level constructs. Long distance dependency can also be modeled since we are able to impose 
constraints among adjacent nonterminal nodes (such as NP and VP), whose head words may 
be far apart in the surface strings. All such advantages suggest use of the CBSO approaches 
proposed in the following sections. 

2. What are CBSO Approaches and Why CBSO Approaches 

The CBSO approaches are hybrid approaches which take advantage of both rule-based and 
purely statistical approaches. A CBSO approach builds statistical language models on top of 
high level constructs such as annotated syntax trees. For example, a CBSO model for machine 
translation was proposed in [Su 90; 92a; 95] based on high level constructs such as parse trees 
and normal forms; the translation problem is modeled as an optimization problem which 
selects the best translation that maximizes the following translation score: 
(1) ( | )i iP T S  

    ( ) ( ) ( ){ | ( ) ( ) | 1 ( ) 1 ( ) | 2 ( )i t t t t t
Ii

P T PT i P PT i NF i P NF i NF i⎡ ⎤≅ × ×⎣ ⎦∑  

(2) ( )2 ( ) | 2 ( )t sP NF i NF i⎡ ⎤×⎣ ⎦  

(3) ( ) ( ) ( ) }2 ( ) | 1 ( ) 1 ( ) | ( ) ( ) |s s s s s iP NF i NF i P NF i PT i P PT i S⎡ ⎤× × ×⎣ ⎦ , 

where (Si , Ti) is the i-th source-target translation pair, (PTs , PTt ) are the parse trees for the 
source-target sentences, NF1s and NF2s represent syntactically and semantically normalized 
parse trees, called normal forms, of the source sentence, NF1t and NF2t are the normal forms 
of the target sentence, and the summation of the probabilities is taken over all such 
intermediate representations, Ii. The three equations (1), (2) and (3) by themselves define the 
generation, transfer and analysis models of a transfer-based MT system in a CBSO manner; 
they can be further simplified for implementation. (Some of the details will be given in later 
sections.) 

Such an approach usually has the following characteristics. (1) It uses high level 
constructs long adopted in conventional linguistics, instead of surface strings, to model the 
stochastic behavior of the languages, so that the number of parameters in the language model 
can be greatly reduced. (2) It uses a parameterized statistical approach to resolve ambiguities 
and ill-formedness, so that the language processing task can be objectively optimized and the 
required knowledge; i.e., the parameter values, can be acquired automatically and consistently. 
(3) It is usually more robust compared with the purely statistical approaches since statistical 
optimization is applied on high level constructs, whose statistical properties are more likely to 
be generalized to unseen data better than surface strings. 



 

 

       An Overview of Corpus-Based Statistics-Oriented(CBSO) Techniques for       101   

Natural Language Processing 

 

For instance, in a CBSO approach for parts of speech tagging, we are interested in 
knowing the likelihood of a part of speech following a determiner and an adjective, and we 
use such knowledge to justify the most likely part of speech for a word which appears 
immediately following a word from the determiner category and the adjective category. 
Unlike a purely statistical model, which needs to estimate all the 1015 probabilities of 
occurrences of word pairs in a system having 105 words in its vocabulary, a CBSO tagger only 
requires 106 parameters, which correspond to all possible occurrences of part of speech pairs, 
to model the system if the words are classified into 100 parts of speech. 

In a more complicated system, such as a machine translation system, the CBSO approach 
will be even more demanding considering the huge amount of analysis, transfer and 
generation knowledge required to optimize the translation score, P(PTi|Si), for all possible 
source-target sentence pairs (Si|Ti). In a purely statistical model, the huge number of possible 
alignments will make this impractical for a large system. On the other hand, by introducing 
intermediate linguistics constructs, such as nodes in parse trees and normal forms, which 
represent particular syntactic or semantic equivalent classes, as shown in the above CBSO 
translation model [Su 95], the translation task can be greatly simplified by using a parameter 
space of affordable size. Using such a formulation, statistical optimization techniques can be 
applied to get the best translation objectively without resorting to rules or a large parameter 
space. Such a formulation thus combines the advantages of both the rule-based systems and 
purely statistical methods. 

In summary, in comparison with rule-based approaches, the CBSO approaches can 
handle non-deterministic situations more objectively by adopting probabilistic measures 
estimated from the corpus. Knowledge acquisition for such a system is also less expensive and 
much faster than that for a rule-based system since the acquisition process is simply a 
parameter estimation process. The knowledge base, namely the probability values, can also be 
maintained more consistently as every parameter is estimated by jointly considering all the 
data in the corpus, which is a big plus compared with a rule-based system, especially when its 
knowledge is maintained by different persons across a long time span. 

In comparison with purely statistical approaches, the CBSO approaches make use of well 
justified linguistics constraints and constructs in structural and semantic levels. Therefore, an 
unaffordably large corpus is not required in a CBSO approach to develop the underlying 
language model. Under such circumstances, the parameter values can usually be estimated 
more reliably than can those for a purely statistical model. Furthermore, models based on high 
level constructs have greater generalization capability for unobserved text. Therefore, a CBSO 
approach is usually more robust than are other approaches. 

Furthermore, since the language models for CBSO approaches are based on high level 
constructs, the dependency of such constructs, instead of the dependency among surface 
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strings, can be easily modeled for statistical optimization. Therefore, long distance 
dependency, which can not be handled in a purely statistical mode, can be handled easily in 
CBSO approaches. Finally, the searching space for optimal solution finding is significantly 
reduced in CBSO approaches. Therefore, CBSO approaches are preferred over purely 
statistical approaches. 

To make a CBSO approach feasible, a corpus of moderate size, cheap computation power 
and well developed statistical techniques for reliable estimation of the parameter values are 
essential. Fortunately, large online electronic texts and dictionaries are becoming more and 
more easily accessible due to the rapid growth of the number of companies adopting online 
processing and publication in recent years. Microelectronic technology has also seen 
computation power, including processor speed and memory size, increase with time 
exponentially at very low cost. Furthermore, statistical techniques for parameter re-estimation, 
smoothing, backing-off, and robust estimation, which will be described in later sections, have 
been well developed and widely used in the statistics and speech communities in the last 
twenty years and further make CBSO approaches most appropriate for developing large scale 
NLP applications. Finally, the knowledge required to attack problems of ambiguity and 
ill-formedness, which are the two main problems in natural language processing, is largely 
inductive, not deductive. Statistical methods are especially appropriate for such problems. 
Therefore, we believed that CBSO approaches will be the most promising design 
methodologies for handling NLP tasks in the future. 

3. Techniques Frequently Used in CBSO Approaches 

In a typical CBSO NLP system, several important issues, including feature selection, 
language modeling, corpus annotation, parameter estimation, smoothing and learning, must 
be taken into consideration. 

For instance, in a part-of-speech tagging task, we may use the current word (wi) and the 
assigned tags of two preceding words (ci-1, ci) as the feature vector to decide the tag of this 
word. We then use the language model: 

1 2ˆ arg max ( | , ) ( | )
i

i i i i i i
c

c P c c c P w c− −= ×  

to select the tag for wi, where P ( ci|ci-1, ci-2) is the probability that the current tag is ci given 
that the preceding tags are ci-1, ci-2 , and P ( wi|ci) is the probability that the current word will 
be wi given that the current tag is ci. The argmax operator returns the argument ci which 
makes the product of the above two probabilities maximal among all possible ci. The 
probabilities, of the form P (ci|ci-1, ci-2) and P ( wi|ci) , referred to as the parameters of the 
model, are all we need to make decisions in the part-of-speech tagging task. To estimate the 
values of the parameters, we might first annotate the corpus with correct parts of speech for 
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the words in the corpus and then use MLE to estimate the parameters. Since the training 
corpus may not be large enough, many parameter values may be assigned zero probability 
according to the maximum likelihood criterion. Such assignments, in general, will result in 
poor performance for unseen input data. Therefore, smoothing techniques, which assign 
non-zero probabilities to unseen events, are important when the parameter space is large and 
the training data are sparse. Further details will be given in the following sections. 

3.1 Designing Issues of an NLP System 
In general, two kinds of features, namely statistical features and linguistic features (such as 
parts of speech and word senses) have been commonly used in various research works. 
Statistical features, such as mutual information and entropy, usually carry only statistical 
senses and carry few traditional linguistic notions. A few such features will be introduced in 
the following sections. Linguistic features, such as parts of speech, on the other hand, are 
usually used to designate certain properties of the linguistic constructs under consideration. 

Good (statistical or linguistic) features should be able to provide discriminative 
information for the task. However, discriminative features are usually not easy to determine. 
Therefore, techniques for selecting the most discriminative features will be introduced in the 
following sections. 

Given a set of features, the NLP system must make proper decisions based on a language 
model. The main purpose of language modeling is to choose a desired result from different 
alternatives for various kinds of linguistic problems, such as assigning the best POS to a word 
or assigning the best syntactic structure to a sentence. Therefore, the language modeling 
problem can usually be considered as a classifier design task, in which a set of features are 
given and decision rules are established to optimize certain performance criteria, such as 
minimum recognition error or minimum cost. We therefore introduce two commonly used 
classifiers, the maximum likelihood classifier and Bayesian classifier. 

Note that some of the feature selection mechanisms are designed to select a set of 
features that maximizes the system performance. Therefore, feature selection and classifier 
design might be integrated as a single step. Examples, such as CART (Classification and 
Regression Tree), which integrate the two tasks will be introduced as well. 

Third, before applying a language model to resolve problems, the values of system 
parameters must be specified in advance through some parameter estimation process; such 
values of the parameters represent our knowledge of the language; therefore, the knowledge 
acquisition task in a CBSO approach can be regarded as an estimation process. 

In general, the values of the parameters are estimated from an annotated corpus (called 
the training set) to meet some estimation criteria. This kind of training is usually called 
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supervised training if the information for estimating the parameter values, such as the parts of 
speech of the words, is annotated by linguists in advance. However, corpus annotation is 
usually labor-intensive (and, hence, expensive). Another way to obtain the parameter values 
without making use of labeled corpora is called unsupervised training. Two typical 
unsupervised training methods, the EM algorithm and the Viterbi training algorithm, will be 
discussed in this paper. 

The estimation process may introduce estimation errors due to insufficient training data. 
Although estimation errors can be reduced by increasing the size of the training corpus, the 
cost is generally too high to prepare a large annotated corpus. Therefore, several parameter 
smoothing procedures, capable of reducing the estimation error by smoothing unreliably 
estimated parameter values, are introduced. 

Furthermore, the parameters, in general, are estimated using a maximum likelihood 
estimator (MLE) which assigns values to the parameters in such a way as to maximize the 
likelihood of the training corpus. The estimated values which maximize the likelihood of the 
training sentences, however, do not necessarily minimize the error rate (or other performance 
criteria) of the system when such values are used to resolve the NLP task. Therefore, such 
values may not provide the best discrimination power as far as the system performance for the 
training set is concerned. To compensate for the modeling errors and estimation errors, the 
adaptive learning process is usually required to adjust the parameter values to minimize the 
training set error rate. 

Even though such values are properly adjusted so that the training set error rate 
performance is minimized, they may not be the best parameter values when used to resolve 
problems of ambiguity and ill-formedness in NLP tasks for testing set sentences that are never 
seen in training sentences. In most cases, the performance using such values, which optimizes 
the training set performance, is over-optimistic; the performance for unseen testing data, in 
general, will be degraded using such parameter values. To enhance the robustness of the 
system, robust estimators must be used so that the estimated values will still provide sufficient 
discrimination power when used on unseen testing data. For the above reasons, robust 
adaptive learning techniques capable of reducing the modeling error and statistical error as 
well as enhancing the discrimination capability and robustness will be reviewed. All the issues, 
including feature selection, language modeling, parameter estimation, parameter smoothing 
and robust oriented adaptive learning, will be addressed in the following sections. 

3.2 Language Modeling as a Classifier Design Process 
Given a set of features, the central problem is to design some decision rules which can 
maximize system performance. Most natural language tasks, especially for ambiguity 
resolution, can be formulated as pattern classification problems in which the classes are 



 

 

       An Overview of Corpus-Based Statistics-Oriented(CBSO) Techniques for       105   

Natural Language Processing 

 

defined from the linguistic point of view. The compound noun detection model proposed in 
[Su 94a] and the unknown word detection model in [Lin 93] are two such applications. In fact, 
POS tagging, probabilistic parsing, word sense disambiguation, and many other interesting 
problems, can also be models as classification problems in which the classes are the set of 
possible parts of speech, parse trees or word senses. Therefore, we can regard language 
modeling as a classifier design process. In general, the choice of the classifier depends on the 
criterion to be optimized. Two widely used classifiers, the Bayesian classifier and maximum 
likelihood selection, are introduced here. 

Bayesian Classifier 

If the cost (or penalty) associated with each type of misclassification is known and the a 
posteriori probability, P (cj|x), (i.e., the probability that the input feature vector x belongs to 
class cj ) is known, then it is possible to design a classifier which minimizes the risk (such as 
the error rate) of making a classification decision. This could be done by assigning x to the 
class ci which has the minimal risk, Ri , defined as follows for classifying an input token into 
class ci : 

1
( | ) ( | )

K
i i j j

j
R l c c P c x

=
= ∑  

In the above equation, l (ci|cj) is the loss one may incure if a token in cj is misclassified as ci , 
and P (cj|x) is the chance that the real class of x is cj . Briefly, if one assigns x to class ci, then 
the possible cost, Ri , one may incure for doing such judgement is the weighting sum of the 
loss l (ci|cj) of all the different kinds of possible misclassifications, where the probability of 
`possible misclassifications' is P (cj|x). To minimize the cost of making a wrong decision, the 
best classifier, in terms of a given cost function, will therefore assign x to class cj if 

i
j = argmain iR , 

where the argmin operator returns the argument (i) which has the minimum risk. Such a 
classifier is called the Bayesian classifier for the classification problem. 

The simplest version of the Bayesian classifier is the minimum error rate classifier, which has 
the following special zero-one loss (or cost) function: 

0,  
( | )   , 1,...,

1,  
i j

i j
i j

c c
l c x c i j K

c c

=⎧⎪∈ = =⎨ ≠⎪⎩
. 

This means that the loss function assigns no penalty to a correct classification and assigns a 
unity loss to any type of error. Such a classifier will insure minimum probability of 
classification errors because the risk associated with class ci is now simplified as 
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1
( | ) ( | )

     = ( | )

    1 ( | )

K
i i j j

j

j
j i

i

R l c c P c x

P c x

P c x

=

≠

=

= −

∑

∑ . 

Minimizing the risk thus reduces to finding the class cj which has minimum error 
probability 1 - P (ci|x) or maximum a posteriori probability P (ci|x). The minimum error rate 
classifier is normally used when the penalty of all types of errors are equally weighted. 

In a part-of-speech (POS) tagging task, the minimum error rate classifier can be derived 
by regarding the input words as the input vector, and the classes are all possible POS 
sequences associated with the input words. We can, therefore, expect the minimum probability 
of tagging errors if we choose the POS sequence which has the maximum a posteriori 
probability, that is, 

ˆ arg max ( | )
i

i j
c

c P c x= . 
 

Maximum Likelihood Selection 

If all the classes are uniformly distributed, i.e., P ( cj) = K -1 for j = 1, ..., K, where K is the 
number of classes, then the class with maximal a posteriori probability P( cj|x) is also the one 
having maximal likelihood P ( x|cj) since 

j j jc c c

( | ) ( )
arg max ( | ) arg max arg max ( | )

( )
j j

j j
P x c P c

P c x P x c
P x

= = . 

The probabilities P ( cj) and P ( x) do not affect the selection of the class because they are 
constants for different classes in this case. 

With the ML selection scheme, the decision is made to select class ci if the conditional 
likelihood value of the input feature vector is maximum, i.e., 

       
jc

ˆ arg max ( | )i jc P x c= . 

The maximum likelihood decision rule is used when the class probabilities are not 
available. 

3.3 Statistical Features 
The decisions made by the classifiers are based on a set of features. The features can be 
statistical measures, which can be acquired easily from a training corpus. Some features, on 
the other hand, are linguistic features such as parts of speech. In the following sections, some 
frequently used statistical features are introduced. Automatic methods for generating linguistic 
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features will be introduced in later sections. 

3.3.1 Likelihood and Likelihood Ratio 
Likelihood is a measure of how likely it is that an event will happen under a specific condition. 
Formally, the conditional probability of P (x|ωi) is called the likelihood of an event x being 
generated from the i-th class (or model) ωi. The likelihood values of a feature vector are 
normally used in the maximum likelihood classifiers for classification; the feature vector x is 
categorized into class ωm if 

( | ) ( | ) for all m i i mP Pω ω ω ω> ≠x x . 

Another measure, known as the likelihood ratio of the feature vector x in the two classes 

ω1 and ω2 , is defined as follows [Duda 73]: 

1

2

( | )
( | )

P x
P x

ω
γ

ω
= . 

It is frequently used to determine the source from which the feature vector is generated for 
two-class classification problems. 

To avoid mathematical overflow and to save computation time, the logarithmic version 
of the likelihood ratio, known as the log-likelihood ratio, defined below, is often used instead 
[Duda 73]: 

log γ = log P (x|ω1) - P (x|ω2) . 

In such applications, the feature vector will be labelled as class-1 (ω1) if log γ≥ 0; 
otherwise, it will be classified as class-2 (ω2). For example, [Su 94a] uses the log-likelihood 
ratio to determine whether a word bigram (or trigram) belongs to the compound class or the 
non-compound class in a compound noun extraction task where the normalized frequency, 
mutual information and parts of speech are used in the feature vector. 

3.3.2 Mutual Information 
The mutual information of x and y, I ( x; y ) [Blahut 87], is the log-likelihood ratio of the joint 
probability of events x and y over the probability that these two events will happen 
independently. In other words, 

2
( , )( ; ) log

( ) ( )
P x yI x y

P x P y
⎧ ⎫

≡ ⎨ ⎬
⋅⎩ ⎭

. 

It provides a measure of the degree of dependence between two events. Intuitively, I ( x; y ) 
>> 0 when x and y are highly associated, I ( x; y ) ≈ 0 when x and y are independent, and I ( x; 
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y ) << 0 if x and y are complementorily distributed. Therefore, it can be used to measure the 
degree of "word association" between two words. For instance, the mutual information 
between "strong" and "tea" is greater than the mutual information between "powerful" and 
"tea" [Church 88]. Therefore, "strong tea" is more likely to be a lexicon entry than is 
"powerful tea." 

3.3.3 Entropy and Perplexity 
The entropy of a random variable X represents the average uncertainty of X [Blahut 87]. For 
example, the expected number of word candidates, in bits, (i.e., the expected number of binary 
decisions) at a decision point (or state) k can be estimated by the entropy, H, associated with 
the distribution P (wi|k) [Lee 88]: 

{ }2
1

( | ) ( | ) log ( | )
V

i i i
i

H w k P w k P w k
=

= − ⋅∑ , 

whereP (wi|k) is the probability of candidate word wi at state k, and W denotes a sequence of 
V words w1 , w2 , ..., wv , which can be accepted at state k. Alternatively, the number of binary 
decisions can be expressed in a real number with the perplexity (Q) at the decision point [Lee 
88] as: 

Q (W| j) = 2H(W| k) . 

In natural language applications, the entropy or perplexity metrics can be used to indicate 
how random the neighbors W of a particular word k are. For instance, [Tung 94] used the 
entropy measure to determine whether an n-word chunk belongs to one lexicon unit; if the left 
and right neighbors of the chunk are randomly distributed, which indicates that there are 
possible natural break points between the chunk and its neighbors, then the chunk is likely to 
be a lexicon unit; otherwise, the chunk tends to appear simultaneiously with its neighbors, and 
hence is less likely to be a lexicon unit by itself. 

3.3.4 Dice 
The dice metric is commonly used in information retrieval tasks [Salton 93] to identify closely 
related binary relations. It has been used for identifying bilingual collocation translation 
[Smadja 96]. The dice metric for a pair of words x, y is defined as follows [Smadja 96]: 

2 1
2

( 1, 1)( , )
[ ( 1) ( 1)]

P x yD x y
P x P y

= =
=

= + =
, 

where x=1 and y=1 correspond to the events where x appears in the first place and y appears 
in the second place, respectively. It is another indication of word co-occurrence which is 
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similar to the mutual information metric. It has been suggested in some researches (e.g., 
[Smajda 96] ) that this feature is a better indication of word co-ocurrence than is (specific) 
mutual information in some cases since it discards less infor- mative events corresponding to 
the x=0 and y=0 (0-0 match) cases in estimating word cooccurrence. For instance, if x 
represents a term in the source language and y is a possi- ble translation of x in the target 
language, than it is possible to evaluate the dice metric between such a translation pair and to 
tell whether y is the preferred translation of x. 

3.4 Parameter Estimation and Smoothing 

3.4.1 Parameter Estimation 
The operation of the classifiers depends on the values assigned to the parameters of the system. 
Therefore, the parameter values encode all statistical knowledge of a CBSO model. The 
parameter estimation process thus corresponds to the knowledge acquisition process of such a 
model. In the parameter estimation process, the parameters are regarded as variables whose 
values are to be determined based on the observation of a training set. Various estimation 
criteria can be adopted so that the estimated values objectively optimize the stochastic 
behaviors of the training data. The most commonly used criterion for parameter estimation is 
the maximum likelihood estimation (MLE) criterion [Papoulis 84]; the "best" estimated 
parameter values are the set of values which maximizes the likelihood of obtaining the (given) 
training set. 

By definition, given the training data X = {x1 , x2 , ... xn} , the objective of the MLE 
estimator is to find the parameter set L that maximizes the likelihood function P(X |Λ). If the 

'
ix s are assumed to be independent, then the likelihood function can be rewritten as follows: 

1
( | ) ( | )

n
i

i
P X P x

=
Λ = Λ∏ . 

To find the parameter values which maximize the likelihood function, we can take partial 
derivatives on the likelihood function with respect to all the parameters and set them to zeros. 
The solutions of the equations then correspond to the maximum likelihood estimate of the 
parameters. In other words, the maximum likelihood estimator can be acquired by resolving 
the solutions of 

( )( | ) 0f P XΛ∇ Λ = , 

where ( )fΛ∇ ⋅  is the gradient of the function f (⋅) with respect to the parameter set Λ, and f (⋅) 
can be any monotonically increasing or decreasing function of P(X|Λ). One convenient 
function for f (⋅) is the natural logarithm function, which makes the above constraint on Λ 
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take the following equivalent form: 

1
log{ ( | )} 0

n
i

i
P xΛ

=
∇ Λ =∑ . 

For example, the ML  estimate  for  the mean μ  of a Gaussian  probability 
densityfunction (pdf) with a known variance is the  sample mean, i.e., 1

1
ˆ

n
in

i
x

=
µ = ∑  and the  

MLE of the probability of an event is the relative frequency of the event occurring in the 
sample space, i.e., ( ) r

ML NP e =  for the event e occuring r times out of a total of N trials. 

However, the MLE is quite unreliable when the training data is insufficient. For example, 
in a case with sparse training data, the events that do not appear in the training set will be 
assigned a zero probability by the ML estimator. This is inappropriate for most applications. 
Therefore, effective smoothing of the parameters of the null events should be adopted to 
reduce the degree of estimation error. 

A variety of parameter smoothing methods have been proposed in the literature. Two of 
the most frequently adopted methods, Good-Turing's formula [Good 53] and the back-off 
procedure [Katz 87], will be discussed in the following sections. 

3.4.2 Good-Turing's Formula [Good 53] 
Let N be the number of training tokens and nr be the number of events that occur exactly r 
times. Then, the following equation holds: N r

r
r n= ⋅∑ . The maximum likelihood estimate PML 

for the probability of an event e occurring r times is known to be ( ) r
ML NP e = . The estimate 

based on Turing's formula [Good 53] is given by ( ) r
GT NP e

∗
= , where 

1( 1) r

r

n
r r

n
∗ += + . 

The total probability estimate, using Turing's formula, for all the events that actually 
occur in the sample space is equal to 

1

: ( ) 0
( ) 1 n

GT N
e C e

P e
>

= −∑ , 

where C(e) stands for the frequency count of the event e in the training data. This, in turn, 
leads to the following equation: 

1

: ( ) 0
( ) 1 n

GT N
e C e

P e
=

= −∑ . 
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According to Turing's formula, the probability mass 1n
N  is then equally distributed over the 

events that never occur in the sample. In simple language models, such as the n-gram models, 
the number of parameters can be calculated easily. Therefore, the number of events that never 
occur, i.e., n 0 , can be set to the number of possible parameters minus the number of events 
that have already appeared in the training corpus. However, depending on the real nature of 
the language, not all possible parameters should really be given nonzero probabilities. 
Therefore, another way to estimate n 0 is to extrapolate it from n r for all r > 1. 

Back-off Procedure [Katz 87] 

In 1987, Katz proposed a back-off procedure to estimate m-gram parameters, i.e., the 
conditional probabilities of words given the (m-1) preceding words [Katz 87]. This procedure 
is summarized as follows: 

1
1 1

1 1 1
1 2 2 1 2

-1
2 1

( | ),                       ( ) 0,

( | ) ( ) ( | ),        ( ) 0 & ( ) 0,

( | ),                         ( ) 0,  
m

m m
GT m

m m m m m
BF m BF m

m m
BF m

w

P w w if C w

P w w w P w w if C w C w

P w w if C w

−

− − −

⎧
>⎪

⎪⎪= α ⋅ = >⎨
⎪

=⎪
⎪⎩

∑

 

where PGT(⋅) and PBF(⋅) are the probabilities estimated with the Good-Tuning formula and 
Back-off procedure, respectively, C(⋅) is the frequency count for a word string and 

1

1

1
1

: ( ) 01
1 1

2
: ( ) 0

1 ( | )
( )

1 ( | )

m
m

m
m

m
BF m

w C wm
m
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P w w
w
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−
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>

−
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−

∑
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is a normalization factor that makes 

1 1

1 1
: ( ) 0 : ( ) 0

( | ) ( | ) 1
m m

m m

m m
BF m BF m

w C w w C w
P w w P w w

> =
+ =∑ ∑ . 

Compared with Good-Turing's formula, the probability for an m-gram that does not 
occur in the training set is backed-off to refer to its corresponding (m-1)-gram probability. 
Taking the part-of-speech tagging as an example, we suppose that three events (p,n ,n ), (p, art, 
n ), (n, v, n ) in the trigram model are not found in the samples, where "art", "n", "p", "v" stand 
for lexical tags of "article", "noun", "preposition", and verb", respectively.               
We further suppose that 1 0.03n

N = by Good-Turing's formula. Since n 0=3, the probabilities of 
these three events, P(n|np), P(n|art, p), P(n|v, n) , are assigned equally to be 0.01 by 
Good-Turing's smoothing method, while these probabilities, using the Back-Off method, are 
distributed according to P(n|n), P(n|art) and P(n|v) , respectively. For instance, s               
upposing P(n|n) = 0.1, P(n|art) = 0.2, and P(n|v)= 0.3, the estimated probabilities smoothed 
using the Back-Off method are 
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( | )   ( | , ) 0.03 0.005,
( | ) ( | ) ( | )

( | )  ( | , ) 0.03 0.01,
( | ) ( | ) ( | )

( | )   ( | , ) 0.03 0.015.
( | ) ( | ) ( | )

P n nP n n p
P n n P n art P n v

P n artP n art p
P n n P n art P n v

P n vP n v n
P n n P n art P n v

= × =
+ +

= × =
+ +

= × =
+ +

 

3.5 Automatic Feature Selection 
The purpose of feature selection is to choose a subset of discriminative features for the 
language processing task. By selecting the features properly, the dimension of the feature 
space can be reduced withoutsignificantly degrading system performance. In some cases, the 
system performance can even be improved since noisy features are discarded and the 
estimation error of the parameters is reduced due to a smaller number of parameters as a result 
of the smaller feature dimension. In general, selecting features by hand is costly, and often the 
features selected in an intuitive way cannot optimize the system performance. Hence, a 
procedure for automatically selecting features is highly desirable. 

3.5.1 Sequential Forward Selection (SFS) [Devijver 82] 
SFS is a simple bottom-up searching procedure which finds the best feature sequence 
sequentially [Devijver 82]. The same technique can also be used to find the best rule order for 
a set of rules. The selection method adds one new feature to the feature set in each iteration. 
Initially, there is no feature in the feature set. At each iteration, a new feature is selected from 
the remaining features not in the feature set so that the newly formed feature set yields the 
maximum value according to a criterion function. The SFS algorithm can be outlined as 
follows: 

1. Suppose that { }1 2 D, , ,Φ = λ λ λ…  is the feature set containing D features, and that k 
features have been selected to form the feature set kΛ . Initially, k=0 and 0 { }Λ = ϕ  
is empty. 

2. Find the feature mλ  from the available set, kΦ −Λ , so that 

( ) ( )arg max ; { } ,m k i m kX
ιλ

λ = Γ Λ ∪ λ λ ∉Λ ,  

where ( )Γ ⋅  is a pre-defined characteristic function. 

3. Add the feature mλ  to form the new feature set 1k k m+Λ = Λ ∪λ . 

4. Go to step 2 until the desired criterion is satisfied. 
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For instance, in the grammar checker application [Liu 93], 127 pattern rules are used to 
detect ungrammatical errors. At the first iteration, each of the 127 rules is applied 
independently to detect errors. The rule which maximizes a pre-defined score (corresponding 
to the number of detected errors minus the number of false alarms) is selected to be in the rule 
set Λ , and the other 126 rules are left in the original rule set Φ . At the second iteration, 
each rule in set Φ  (which now consists of 126 rules) is combined with all the rules in Λ  
(which contains only one rule in this case); the score of each combination is examined. Again, 
the rule with the highest score in combination with rule set Λ  is added to rule set Λ . This 
procedure is repeated until a pre-defined number of rules in Φ  are selected or when the 
score begins to decrease as new rules are incorporated. 

It has been found that the score is not always increased by adding rules to Λ , which 
means that there is redundancy and conflict among rules or that there are rules which 
introduce many false alarms. This trend is shown in the following figure. For instance, region 
I of figure 1 shows that the overall score is increased initially when complementary rules are 
included. However, as more and more rules are included, redundancy or conflict among rules 
might prevent the score from increasing, as shown in flattened region II of the figure, and the 
score even decreases when more rules are applied, as shown in region III of the figure. 
Removal of redundant and conflicting rules is, generally, not an easy job for non-experts, or 
even for the linguistic experts. Nevertheless, rules of this kind can be detected easily by using 
the SFS algorithm. 

 
Figure 1. Number of Rules vs Overall Score in SFS [Liu 93] 
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With the SFS algorithm, the statistical dependency between different features or rules is 
considered because this algorithm selects successive features or rules with reference to the 
current rule or feature set. However, SFS is a suboptimal search method because it does not 
jointly take all the feature combinations into consideration. Readers who are interested in 
other more advanced and complicated procedures for feature selection are referred to 
[Devijver 82]. 

3.5.2 Classification and Regression Trees (CART) [Breiman 84] 
CART is basically a binary decision tree constructed by repeatedly splitting the tree nodes. 
The data of a node are split according to the most significant feature which minimizes a 
criterion function, usually referred to as an impurity measure. The tree grows until all the 
terminal nodes are either pure or contain the tokens which cannot be differentiated into 
different classes using the current available feature set; the former case means that the tokens 
associated with the terminal nodes are all correctly classified with the set of features along the 
branches of the classification tree; and the later case means that the data cannot be classified 
into correct classes using the currently available feature set. In the later case, the class 
associated with the node is determined by the majority-vote policy. 

Taking the part-of-speech tagging model in [Lin 96] as an example, the features listed in 
the following are considered as potentially useful features for choosing the part-of-speech of a 
word: 

• the left-2, left-1, right-1, and right-2 parts-of-speech of the current word; 

• the left-1 and right-1 words of the current word; 

• the distance (number of words) from the beginning of the sentence to the current word; 

• the distance from the current word to the end of the sentence; 

• the distance to the nearest right-hand side noun from the current word; 

• the distance from the nearest left-hand side verb to the current word; 

• the distance to the nearest right-hand side verb from the current word. 

The impurity measure used to split the tree nodes is usually defined as i(t)=M(t)+E(t), where 
M(t) is the number of misclassified tokens in node t, and E(t) is the entropy of node t. 

Once the initial classification tree is constructed, the tree is usually pruned to an optimal 
classification tree, which minimizes the number of errors of the validation data in a 
cross-validation set. This pruning step can often prevent the classification tree from being 
over-tuned by the training data. 

The pruned classification tree for the word "out" is shown in figure 2 [Lin 95]. In this 
example, only four questions are asked along the branches to determine whether the part of 
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speech of "out" is IN ("general preposition") or RP ("prepositional adverb which is also 
particle"). 

(Q1) Is the next word "of "? 

(Q2) Is the part of speech of the previous word "VBN"? 

(Q3) Is the distance to the nearest verb on the right-hand side less than or equal to 8? 

(Q4) Is the distance from the nearest verb on the left-hand side less than or equal to 8? 

Figure 2. Example: the pruned classification tree for the word "out" [Lin 95] 

3.6 Clustering 
An effective way to improve the sparse data problem is to reduce the number of parameters by 
clustering events into classes. The members in the same class possess similar characteristics. 
For example, the words in, on, and at can be clustered into the class designated as 
'prepositions'; the words Sunday, Monday, Wednesday, ..., Saturday can be assigned to the 
class designated as 'the days of a week.' Many classes are well defined in traditional linguistics. 
For instance, parts of speech correspond to syntactic classes, which have been proved to be 
useful in many NLP applications. In many applications, however, the required class 
information may not be available. In the following sections, two automatic clustering 
techniques, namely dynamic clustering and hierarchical clustering [Devijver 82], are 
introduced. 
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3.6.1 Dynamic Clustering 
The dynamic clustering approach is an iterative algorithm employed to optimize a clustering 
criterion function. In the dynamic clustering algorithm, the number of clusters K is usually 
specified beforehand. At each iteration of the dynamic clustering algorithm, data are assigned 
to one of the clusters according to a distance (similarity) function. A new partition is thus 
formed. Afterwards, the representative of each cluster, which is usually defined as the mean of 
the data in the cluster, are updated based on the new partition. The new cluster model is then 
used successively in the next interation to reclassify the data. The iterative procedure 
continues until a desired criterion is satisfied. A typical example of dynamic clustering is the 
K-means clustering method [Devijver 82; Schalkoff 92], which is described as follows: 

 

Initialization: Arbitrarily partition the data set Y ={y1 , y2 , ... , yn} into K clusters, C1 , 
C2 , ..., CK , where Cj is represented by its mean vector jµ  over nj data, j=1, 2, ..., K, and 

1

1µ ,
jn

j ji ji j
ij

y y C
n =

= ∈∑ , 

where yji is the i-th token of class j, and jµ  is the mean of class j. 

(One way to do this is to randomly pick out K tokens as the initial centroids of the K 
clusters and then use the K centroids to classify the data.) 

Step1: Assign each data yi, i=1, 2, ..., n, to cluster Cj if 
arg min ( ,µ )i k

k
j D y= , 

where D(yi,µk) is the distance between data yi and the mean of cluster k. 

(Note: the minimum distance criterion can be replaced by other criteria.) 

Step2: Recalculate the mean vectors jµ , as in the Initialization step, j=1, 2, ..., K. 

Step3: Terminate the clustering procedure if the mean vectors remain unchanged or the 
convergence criterion is satisfied. Otherwise, go to step 1. 

A few variants of the K-mean algorithm are possible. For instance, we can start with one 
cluster and generate a new cluster in each iteration by splitting one existing cluster until K 
clusters are obtained. In each iteration, one cluster is selected based on a selection criterion. 
The mean vector µ of the selected cluster is replaced by two vectors, µ1 and µ2 , that are 
slightly shifted from the original mean by a small vector δ in two opposite directions, i.e., 

1

2

µ µ δ
µ µ δ

= +

= −
. 

Then, all the tokens in the selected cluster are re-classified with respect to the two new means. 



 

 

       An Overview of Corpus-Based Statistics-Oriented(CBSO) Techniques for       117   

Natural Language Processing 

 

3.6.2 Hierarchical Clustering 

In contrast to the dynamic clustering procedure, the hierarchical clustering is noniterative. The 
hierarchical clustering algorithm is performed in a bottom-up fashion, where two of the most 
similar clusters are merged to form a new cluster at each stage. Since each merging action will 
reduce the number of clusters by one, this algorithm terminates after n-1 steps, where n is the 
number of data. In addition, the number of clusters in the hierarchical clustering algorithm 
need not be known a priori. The algorithm of the hierarchical clustering algorithm is shown as 
follows: 

 

Initialization: Each data point in Y ={y1 , y2 , ..., yn} represents an individual cluster, i.e., 

Cj={yj}, j=1, 2, ..., n. 
Step1: Find Cp and Cr such that 

( , ),
( , ) arg min ( , )j k

j k j k
p r D C C

∀ ≠
= , where D(Cp, Cr) is the  

distance measure between clusters p and r. 

Step2: Merge Cp into Cr , and then delete Cp. 

Step3: Go to step 1 until the number of clusters is equal to 1. 

3.7 Supervised Learning and Unsupervised Learning 

When estimating the system parameters, the maximum likelihood criterion is often used so 
that the joint likelihood of the training data, as calculated using the MLE-estimated values, is 
maximal among all the estimates. Estimated values which maximize the likelihood of the 
training data, however, do not necessarily maximize the system performance (e.g., minimal 
error rate) when they are applied for classification by the classifiers. The major goal of an 
NLP system, however, is to maximize system performance. Therefore, it is desirable to adjust 
the initial estimates to achieve the best system performance. This can be done by adjusting the 
parameters according to the scores given to a misclassified instance when an input is 
misclassified. Such parameters are then adjusted so as to reduce the number of errors. 

Parameter learning can be conducted in two different modes: supervised and 
unsupervised. The major difference between supervised learning and unsupervised learning 
depends on whether there is a pre-labeled corpus available for learning the system parameters. 
With a pre-labeled corpus, the parameters can be trained (adapted) in supervision of correct 
labels. Otherwise, unsupervised learning must be adopted, which usually performs a labeling 
step and a re-estimation step iteratively. At each iteration, re-estimation is realized according 
to the labels produced in the labeling stage, which, in turn, is based on the current estimates of 
the parameters. These two kinds of learning algorithms are described as follows. 
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3.7.1 Supervised Adaptive Learning 
Although MLE possesses many nice properties [Kendall 79], the criterion for maximizing the 
likelihood value is not equivalent to that for minimizing the error rate in the training set. This 
is because correct classification (disambiguation) only depends on the ranks, rather than on 
the likelihood values, of the competing candidates. Therefore, adaptive learning algorithms 
aimed at enhancing the model's discrimination power or minimizing the training set error rate 
have been widely used [Su 94b; Chiang 92a]. A general adaptive learning procedure is used to 
iteratively adjust model parameters so as to minimize the risk, i.e., the average loss, according 
to the following steps: 

 

Initialization: Initialize the parameters using maximum likelihood estimation and some 
parameter smoothing methods. 

Step1: Calculate the mis-classification distance d for each training token and then 
determine the corresponding loss function l(d), which is a function of the distance 
d . An example of the miss-classification distance and loss function is shown 
below [Amari 67]: 
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where 1SC  and cSC  denote the scores of the top and correct candidates, 
respectively. 

Step2: Adjust the parameters such that the expected risk function [ ( )]R E l= d decreases. 
Adjustment of parameters t( )∇Λ  at the t-th iteration can be expressed as follows: 
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Λ = Λ + ∆Λ

∆Λ = − ∇

≈ ∑

∪ , 

where ε(t) is a learning constant which is a decreasing function of t; U is a positive 
definite matrix for controlling the speed of convergence, which is usually set to a 
unity matrix in most applications; and R  is approximated as the statistical mean of 
the loss for all the N misclassified instances. 

Step3: Terminate if a predefined criterion is satisfied. 

By adjusting the parameters of the misclassified instances, the performance over the 
training set can be maximized. However, such parameters do not guarantee satisfactory 
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performance for unseen testing data due to possible statistical variation between the training 
set and the testing set. In order to maintain good performance in the testing set, robustness 
issues need be considered [Su 94b]. In [Su 94b], the learning procedure is modified such that 
the parameters are adapted not only for misclassification cases, but also for correct 
classification cases when the score difference between the top-two candidates is less than a 
preset margin. This will ensure that the correct candidate has a score that is larger than the 
score of the most competitive candidate (i.e., the one having the second highest score) by a 
sufficiently large safety margin in the training set. With such a safety margin, the correct 
candidates, even in the unseen testing set, are likely to have the highest scores among all the 
competitors. The robustness of the system can thus be improved. 

3.7.2 Unsupervised Learning 
Since supervised learning needs a pre-labeled corpus, it may not be affordable for certain 
applications in which the cost of pre-labeling is quite expensive. In this case, an unsupervised 
learning procedure, which adopts the re-estimation procedure to self-label the corpus, is 
preferred. Two commonly used re-estimation procedures, namely the EM algorithm and 
Viterbi-training algorithm, are discussed in the following sections. 

Expectation and Maximization (EM) Algorithm [Dempster 77] 

An EM algorithm is an unsupervised learning process which iteratively conducts an 
expectation step, followed by a maximization step until a predefined criterion is satisfied. 
Formally, suppose that X and Y are two random vectors whose density functions are f (x| Λ) 
and g(y| Λ) , respectively, where Λ is the parameter set under consideration. The random 
vector X cannot be observed directly unless through the random vector Y. The mapping from 
X to Y is a many-to-one mapping. The major goal of an EM algorithm is to find the values of 
Λ which maximize g(y| Λ) given y by making use of the associated density f (x| Λ), under 
which a refined model can be made or the modeling work is easier. Furthermore, let t(x) 
denote sufficient statistics [Papoulis 90] of x, which contains sufficient information for 
estimating Λ , and let ( )pΛ  denote the parameter values after p iterations. The next iteration 
can be expressed in the following two steps: 

 

Expectation step: Estimate the sufficient statistics t(x) by finding 

( )( ) ( )( ) | ,p pt E t x y= Λ . 

Maximization step: Determine pΛ( +1)  by using maximum likelihood estimation for 
maximizing h(t(x)| Λ) ⋅ h(⋅) . is the density function of the model from which t(x) is 
generated, which can be easily obtained from f (x| Λ) . 
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The EM procedure continues iteratively until the parameters  Λ converges. An example 
of automatic part-of-speech tagging using the EM procedure is given as follows. The tagging 
task can be formulated as determining the parts-of-speech T (= t1 t2... tn ) given the input word 
sequence W of n words w1 w2 ... wn such that the probability P(T|W), or equivalently P(T,W), is 
maximized. Using the commonly adopted bigram tagging model, the tagging formula can be 
represented as follows [Church 88]: 

1
1

( , ) ( | ) ( | )
n

i i i i
i

P T W P w t P t t −
=

≈ ∏ . 

The parameters which need to be specified are the probabilities P(Wi|Ti)and P(ti|ti-1), which 
are assumed to be uniformly distributed initially. 

The EM algorithm computes the following two statistics in the expection step: 

(1) the expected number of transitions from tag ti-1 to tag ti (which may not be an integer), 
and 

(2) the expected number of occurrences for wi given that the word is assigned a tag ti. 

In the EM algorithm, this expectation is taken over all the possible tagging sequences. In the 
maximization step of the EM algorithm, the new values of parameters P(ti|tj ) are reestimated 
using the following equation: 

expected number of transitions from tag to 
( | )

expected number of tag 
j i

EM i j
j

t t
P t t

t
= . 

Viterbi Training Algorithm [Rabiner 86] 

The Viterbi training procedure for the model parameters can be summarized in the following 
steps: 

 

Initial step: Determine the initial values of the parameters according to some a priori 
information. Usually, the initial parameters are assumed to be uniformly distributed if 
there is no a priori knowledge. 

Decoding step: Search for the optimal path using the current parameters. Generally, the 
optimal path is found by using a decoding procedure travelling through the underlying 
states, such as the parts-of-speech sequences with respect to the input words for an 
automatic part-of-speech tagging task. 

Reestimation step: Re-estimate new values of the parameters based on the decoded states 
by MLE. 

Repeat: Repeat the decoding and reestimation steps until stable parameter values are 
obtained or until the decoded states do not change any more. 
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For instance, in the above tagging problem, the Viterbi algorithmwill utilize the dynamic 
programming method to find the best tag sequence T̂  based on the current parameter values, 
i.e., 

1 2

1
1{ ... }

ˆ arg max ( | ) ( | )
n

n
i i i i

iT t t t
T P w t P t t −

==
= ∏ . 

After all the sentences in the training corpus have been decoded via the Viterbi algorithm, the 
corpus can be viewed as if it is annotated with the "correct" parts-of-speech. Then, the typical 
MLE procedure can be followed. 

In contrast to the EM method, in the Viterbi training algorithm, the probabilities P(ti|tj ) 
are reestimated from the training corpus, which is annotated in the previous decoding step by 
using the following equation: 

total number of transitions from tag  to
( | )

total number of transitions from tag  
j i

VT i j
j

t t
P t t

t
= . 

Similar methods are employed to reestimate the values of P(wi|ti ). 

4. Some Applications 

The CBSO techniques have been applied to a variety of natural language tasks. Some of these 
tasks are discussed in the following sections. 

• Class-based Modeling — The class-based models use automatic clustering procedures to 
classify data into categories based on given characteristic functions and similarity metrics. 
The class-based models need a smaller number of parameters; therefore, these parameters can 
be estimated more reliably using the same training data, compared to models which do not 
identify underlying classes in advance. Therefore, systems with class-based approaches are 
more robust. In addition, the classes formed using automatic clustering procedures usually 
represent some kinds of regularity in language behavior. In such cases, the classes can be 
helpful for enhancing lexicon features. 

• Detection — The applications of CBSO techniques in detection include compound word 
detection, unknown word detection and grammar checking. 

• Disambiguation — The ambiguities encountered in natural language processing arise at the 
lexical level, syntactic level and semantic level. The resolution of the ambiguities at these 
levels using statistical approaches has been investigated for several years. The CBSO 
techniques are especially useful for disambiguation tasks. 

• Error Recovery — Natural language texts contain not only ambiguous sentences, but also 
ill-formed constructs. Robust parsers, which are capable of tolerating ill-formed sentences and 
even of recovering errors, are therefore very important for a system that must handle real 
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world texts. 

• Alignment of parallel bilingual corpora — The related tasks include sentence alignment, 
word correspondence finding, finding collocation correspondence, and structure mapping. The 
aligned materials are useful for bilingual lexicography, word sense disambiguation, and 
machine translation. 

• Machine Translation — Statistical machine translation with CBSO techniques has become 
more and more popular, including target lexicon selection and transfer-based translation. 
Constructing a CBSO MT, however, is very challenging in terms of its complexity. A two 
way training method will be reviewed later. 

4.1 Class-based Modeling 
Word n-gram models have been used extensively as language models both in speech 
recognition and in natural language processing applications. However, the number of 
parameters is usually too large to be estimated reliably if the number of words is large. To 
reduce the number of parameters, the word n-gram probability ( )1

1| k
k k nP w w −

− +  is 
approximated to an n-gram class model [Brown 92] as follows: 

( ) ( )
( ) ( )
( ) ( )

1 1 1
1 1 1

1 1 1 1
1 1 1 1

1
1

| , | ,

                        | , , | ,

                        | |

k k k
k k n k k k n k n

k k k k
k k k n k n k k n k n

k
k k k k n

P w w P w c w c

P w c w c P c w c

P w c P c c

− − −
− + − + − +

− − − −
− + − + − + − +

−
− +

=

=

≈

, 

where ci denotes the class to which wi belongs ((k-n+1)≤ i ≤ k). Suppose that there are V 
words in the lexicon, which are categorized into C classes, and C is much smaller than V, then 
the number of parameters will be reduced drastically from V n with the word n-gram model to 
C n+ CV using the class-based n-gram model. For example, considering a vocabulary of 
100,000 words that are categorized into 100 classes, i.e., V= 100,000, C=100 and n=3, the 
number of parameters for the word trigram model is V3 = 1015 while the number of parameters 
for the class-based trigram model is only (C n+ CV) = 1.1× 107; the number of parameters will 
be different by 8 orders of magnitude. Therefore, class-based models greatly reduce the 
parameter space in comparison with the word n-gram model. 

The success of a class-based language model depends heavily on the classes being used. 
In most class-based approaches, classes are either pre-defined in terms of syntactic categories 
and semantic categories or determined automatically using some clustering methods, such as 
the vector quantization technique [Rabiner 93] or the clustering methods described in Section 
3. For instance, parts of speech are the most commonly used classes in NLP applications. 
They are widely used in part-of-speech tagging [Church 89; Merialdo 91; Kupiec 92; Lin 95]. 
Classes of higher level have also been applied in NLP tasks. For instance, semantic scores for 
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disambiguating syntactic ambiguities have been exploited based on certain semantic classes 
[Su 88; Chang 92; Chiang 96], where classes are defined in terms of semantic categories. 

Automatic clustering is also of great interest in many frameworks [Ney 91; Brown 92; 
Chang 93]. In those approaches, automatic clustering has been carried out to optimize a 
characteristic function, such as mutual information or perplexity. The automatic clustering 
mechanisms used in these frameworks can be viewed as variants of the hierarchical clustering 
and dynamic clustering mechanisms described in Section 3. [Brown 92], for instance, 
automatically acquires a few classes examplified as follows before the model is used: 

 

Friday Monday ThursdayWednesday ... 

June March July ... 

people guys folks fellows ... 

water gas coal liquid acid ... 

down backwards ashore ... 

 

In addition, clustering researches on Chinese words have also been investigated in 
several works [Chang 93b; 張 94]. In [張 94], for instance, the vector quantization technique 
was adopted in clustering 5000 frequently used Chinese words into classes, and these classes 
were used to improve the performance of a speech recognition system. A few examples of the 
results are given here: 

 

        密集 低迷 老舊 激烈 .... 熱烈 

        六月 十月 三月 四月 ... 

        元月凌晨 清晨 深夜 上午 ... 

 

In the vector quantization process, the ‘vector’ for a word consists of a number of frequencies, 
each frequency being the co-occurrence frequency between this word and a particular left 
hand side neighbor of this word in all word bigram pairs; two words which have similar 
distribution in their co-occurrence frequencies with their left neighbors are considered similar 
to each other. This similarity is then used in clustering 

4.2 Detection 
CBSO techniques have been applied to detection problems for years. Some detection 
applications, including compound noun detection, unknown word detection and grammar 
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checkers, will be reviewed in this section. 

Compound Noun Detection 

In [Su 94a], the compound detection problem was formulated as a two class classification 
problem in which a word n-gram is classified as either a compound or a non-compound based 
on the normalized frequency of occurrence of the n-gram, the mutual information among the 
constituents of the n-gram and the parts of speech associated with the constituents. (See [Su 
94a] for the definition of the normalized frequency and mutual information for trigrams.) 

First, a list of bigram and trigram compound noun candidates are extracted from the input 
text. Then, the relative frequency count and the mutual information of these candidates are 
calculated. Next, the parts-of-speech of the words in the corpora are assigned by a 
probabilistic part-of-speech tagger. Given the statistics of the mutual information I, relative 
frequency count r, and parts of speech T, the classifier regards a candidate as a compound if 
the likelihood ratio, 

( , , | ) ( )
( , , | ) ( )

c c

nc nc

P I r T M P M
P I r T M P M

×
λ =

×
, 

is greater than 1 (or a threshold 0λ ). The probabilities P(I, r, T |Mc) and P(I, r, T |Mnc) 
represent how likely the candidate, having mutual information I, relative frequency count r, 
and parts of speech T, is to belong to the compound noun class and the non-compound class, 
respectively; P(Mc) and P(Mnc) stand for the prior proabilities for a candidate to be generated 
from the compound model, Mc, and non-compound model, Mnc, respectively. 

To make the computation feasible, P(I, r, T |Mc) is simplified as follows: 
P(I, r, T |Mc) ≈ P(I, r, |Mc)P (T |Mc) 

where P(I, r, |Mc) is assumed to have bi-variate normal distribution, and P(T |Mc) is simplified 
as 

P (T |Mc) ≈ P (c0)P (c1 |c0 )P (c2 |c1 )P (c3 |c2 ) 

for any bigram whose parts of speech are [c1 , c2] and whose left/right neighbors have the parts 
of speech c0 / c3, respectively. (Similar simplification is adopted for trigrams.) The recall is 
96.2%, and the precision is 48.2% for bigrams using the above formulation. Trigrams are 
identified with a recall rate of 96.6% and a precision of 39.6%. With this formulation, 
compound words can be identified with small cost. 

Unknown Word Detection 

Unknown words in the input text have been important error sources in many research works 
[Chen 92; Chiang 92; Lin 93]; the performance of an NLP system may deteriorate seriously if 
unknown words exist. For example, the Chinese word segmentation problem can be resolved 
with an accuracy rate of nearly 99% if there is no unknown words in the text [Chiang 92]; 
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however, only 90-95% accuracy rate can be achieved in the case where there are unknown 
words [Lin 93]. To enumerate all the words in a dictionary is often impossible in real 
applications because new words and compound words are created every day. Therefore, it is 
important to develop a mechanism for detecting unknown words. 

In [Lin 93], unknown words were detected by way of morphological analysis and using 
an unknown word detection model. A set of morphological rules were ordered and selected via 
the SFS algorithm to detect unknown words having regular forms, such as derived words. To 
identify the irregular unknown words, a two-cluster classifier, which is similar to the 
compound detection model, was used. Such a probabilistic model was shown to be useful in 
identifying irregular unknown words in the input text. Using the unknown word identification 
model in the Chinese word segmentation task, the number of segmentation errors was reduced 
by 78.34% in words and 81.87% in sentences for technical manuals. In the newspaper domain, 
the error reduction rates for words and for sentences were 40.15% and 34.78%, respectively. 
In [Tung 94], the entropy of neighboring words of an n-word chunk was used to extract 
potential unknown words. Manual editing was then conducted to acquire a list of unknown 
words. With this approach, 5366 unknown words were identified from a corpus of 178,027 
sentences in about 3 hours through three identification/editing passes. 

Automatic Rule Selection in Grammar Checker 

Pattern matching methods are widely used in most grammar checkers because they can be 
implemented easily. However, the patterns used in most such approaches are usually 
hand-tuned. Therefore, it is hard for such approaches to maintain consistency among the 
patterns when the system is scaled up. 

In addition, new patterns tend to be added whenever a specific type of error occurs. 
Adding new patterns sometimes introduces too many false alarms. Furthermore, bad rules 
cannot be effectively discarded unless a good objective measure of rule-preference is provided. 
Considering the above-mentioned problems, the SFS algorithm, as described in Section 3.5.1, 
was used in [Liu 93] to automatically select a subset of patterns according to an objective 
function, e.g., error count. The system with the selected patterns was shown to have a better 
score (corresponding to the number of detected errors minus the number of false alarms) 
compared with the system using the whole set of patterns. 

4.3 Disambiguation 
CBSO techniques are particularly useful in handling NLP tasks which have nondeterministic 
characteristics. Therefore, they have been used extensively for ambiguity resolution in lexical 
[Church 89; Merialdo 91; Kupiec 92; Lin 95], syntactic [Chiang 92, 95] and semantic [Chang 
93; Chiang 96] levels. The following sections describe how CBSO techniques are employed to 
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the disambiguation applications in some frameworks. 

Part-of-Speech Tagging 

Let ( )1 1 2, ,...K
KW w w w w= =  represents an input sentence of K words; the tagging score of 

the part-of-speech sequence, ( )1 1 2, ,...K
KT t t t t= = , with respect to the input sentence is 

defined as the conditional probability P(T|W), where ti denotes the part-of-speech of the i-th 
word wi. The best part-of-speech sequence T̂  can be selected among all possible sequences 
according to the following equation to maximize the likelihood function: 

ˆ arg max ( | ) arg max ( , ) arg max ( | ) ( )
T T T

T P T W P T W P W T P T= = = . 

For an n-gram model, the probabilities P(T|W) and P(T) can be simplified as follows, 
resulting in the well-known POS tagging model widely used in the baseline systems of many 
taggers [Church 89; Merialdo 91; Kupiec 92; Lin 95]: 

( )1 1
1

( | ) | ( | )
KK K

i i
i

P W T P w t P w t
=

= ≈ ∏ , 

and 

( ) ( )1
1 1

1
( ) |

KK i
i i n

i
P T P t P t t −

− +
=

= ≈ ∏ . 

The above formulation assumes that the part-of-speech ti of the word wi depends only on the 
word itself and the part-of-speech of the preceding n words. By using this simplification and 
by using the log-likelihood, the baseline model for part of speech tagging can be formulated as 
follows: 

( )1
1

1
ˆ arg max ( | ) arg max ( | ) |

K i
i i i i n

iT T
T P T W logP w t logP t t −− +

=

⎡ ⎤= = +⎢ ⎥⎣ ⎦∑ . 

A systematic analysis of part-of-speech tagging, including the effects of parameter 
smoothing, adaptive learning, CART, was given in [Lin 95]. A parameter tying procedure was 
also proposed in that approach to tie together unreliably estimated parameters using correlated 
parameters that are reliably estimated. [Lin 95] reported that the tying approach greatly 
reduced the number of parameters from578,759 to 27,947 and reduces the error rate of 
ambiguous words by 10.4% in tagging the Brown Corpus. Readers interested in details are 
referred to [Lin 95]. 

In the case where no annotated corpus is available, part-of-speech tagging can be carried 
out by using the Viterbi training method or the EM algorithm as in [Merialdo 91; Kupiec 92]. 
The tagging performance with respect to different sizes of the seed corpus used for estimating 
initial parameter values was discussed in [Merialdo 91]. Especially, in [Kupiec 92], the 
Hidden Markov Model (HMM) [Rabiner 92], which is widely used for speech recognition, 
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was used to model the tagging process. 

Syntax Disambiguation 

Syntax disambiguation has been accomplished in various approaches, including stochastic 
grammars [Wright 91], probabilistic context free models [Briscoe 93] and probabilistic 
context sensitive models [Su 88, 91b; Chiang 92, 95]. Conventional probabilistic context free 
grammar relies on the following scoring function for selecting the best syntax tree: 

( )1
1

( ) ( )
KK

i
i

P T P r P r
=

= ≈ ∏ , 

where T is a syntax tree which is generated by applying K production rules r1 , r2 ,...rK . This 
formulation does not take context into account. Therefore, it may not be appropriate for 
processing natural language. In [Su 88, 91b; Chiang 92, 95], a context sensitive formulation 
was proposed. In this formulation, the disambiguation model is formulated as the process of 
finding the most likely syntactic structure L given the input word sequence W, i.e., 

m arg max ( | )
L

Syn P L W= . 

The probability P(L|W) is further simplified as 

P( L| W) = P( L , T| W )≈ P( L| T)× P( T|W) , 

where T stands for the parts-of-speech associated with the syntactic structure L. The lexical 
score, P(T|W), is defined in the same way as the standard part-of-speech tagging formula 
described in the previous section; and the syntactic score, P(L|T), can be estimated according 
to the following model. 

Any syntactic structure can be uniquely defined by the sequence of rewriting rules 
applied to the input words; the rewriting sequence, in turn, can be expressed in terms of the 
sets of intermediate phrases (i.e., terminal or nonterminal nodes) derived in the rewriting 
process. Each set of such intermediate phrases, referred to as a phrase level [Su 88], can thus 
be used in representing the syntactic structure of the input sentence. 

To compute the syntactic score of the following syntax tree, for instance, the syntactic 
structure can be decomposed into the phrase levels L1 , L2 , ..., L8 shown in figure 3, in which 
L1 to L8 simulate the actions of an LR parser. The transitions between the phrase levels can be 
formulated as context-sensitive rewriting processes, and the transition probability corresponds 
to the probability of applying a particular phrase structure rule conditioned on a particular 
context. For example, the transition from L6 to L7 corresponds to applying the rule C→ F G 
when the left context of [F G] is the phrase [B] and the right context is the sentence stop. 
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Figure 3. The decomposition of a syntactic tree into different phrase levels 

Let Li be the i-th phrase level and the label ti in the figure be the time index for the i-th 
state transition corresponding to a reduce action. The syntactic score of the tree in the above 
figure is defined as [Su 88, 89, 91; Chiang 92, 95]: 

( ) ( ) ( ) ( ) ( )
( ) ( ) ( ) ( )

8
2 1 8 7 6 5 5 4 4 3 2 2 1

8 5 5 4 4 2 2 1

( | ) | , , | | , | |

             | | | |

P L T P L L P L L L L P L L P L L L P L L

P L L P L L P L L P L L

≡ ≈

≈
. 

Each pair of phrase levels in the formula corresponds to a change in the LR parser's stack 
before and after an input word is consumed by a shift operation. Because the total number of 
shift actions is the same for all alternative syntax structures with respect to the same input 
sentence, the normalization problem, which is introduced due to the different numbers of 
branches in the parse trees, is resolved in such a formulation. In addition, the formulation also 
provides a way for considering both the intra-level context-sensitiveity and inter-level 
correlation of the underlying context-free grammar. With this formulation, the capability of 
context-sensitive parsing (in probabilistic sense) can be achieved using a context-free 
grammar. 

In [Chiang 95], the effects of using the technologies of parameter smoothing, tying and 
robust learning on syntactic ambiguity resolution were investigated. After these technologies 
were applied, 70.3% parse tree accuracy was obtained, resulting in 36.6% error reduction 
compared with the baseline system which used the ML estimated parameters and attained only 
53.1% parse tree accuracy. 
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Semantics Disambiguation 

Ambiguities encountered in semantics comprise the thematic roles (cases) of constituents and 
meanings (senses) of words. Statistical approaches for these two topics are numerous, e.g., Liu 
et al. [1990] on the PP-attachment problem; Chang [1992] on semantic modeling; Brown et al. 
[1991b], Dagan [1991], Gale et al. [1992], Yarowsky [1992, 1994] on word sense 
disambiguation. In [Chiang 96], a probabilistic model was proposed to resolve the ambiguities 
of both case assignment and word-sense assignment. A score function P(NFi ,PTj ,POSk |W) is 
defined to find the best combination of the semantic interpretation (or normal form) mNF , the 
parse tree mPT  and the parts-of-speech nPOS  for a given input sentence, W, using the 
following decision rule: 
m m n

{ }
, ,

, ,

, ,

( , , ) arg max ( , , | )

                         = arg max ( , , | ) ( | , ) ( | )

                         = arg max ( ) ( )

i j k

i j k

i j k

i j k
NF PT POS

i j k j k k
NF PT POS

sem i syn j lex
NF PT POS

NF PT POS P NF PT POS W

P NF PT POS W P PT POS W P POS W

S NF S PT S

=

× ×

× ×{ }( )kPOS

, 

where Ssyn( . ) and Slex( . ) denote the syntactic score and the lexical score, respectively, which 
were discussed in previous sections. Figure 4 shows an example of a normal form which 
represents the semantic relationship between sentence constructs. 

 
Figure 4. An Example of a Normal Form (NF) Tree 
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The semantic score, Ssem( . ), on the other hand, can be estimated as follows 

( )
( ) ( )

, ,,
,1 ,1 ,1

, , , ,,
,1 ,1 ,1 ,1 ,1

( ) ( | , , )

                ( , | , , ) , |

                 = | , |

i i

i i

i i i i

i

sem i i j k

i M i Mi n
i i j k i i i

I I

i M i M i M i Mi n
i i i i i

I

S NF P NF PT POS W

P NF I PT POS W s L

P s L P L

=

= ≈ Γ

Γ × Γ

∑ ∑

∑

, 

where ,1 ,,...
ii i i MI L L=  denotes a normalized structure of the corresponding parse tree, which 

is introduced to reduce the number of parameters; ,
,1 ,,1 ,...,i

i

i M
i i MiΓ = Γ Γ denotes the Mi case 

subtrees, which define the structure of the normal form; ,
,1 ,,1 ,...,i n

i i nis s s= stands for the word 
senses of the input sentence W. ( ), ,,

,1 ,1 ,1| ,i ii M i Mi n
i i iP s LΓ , thus, defines the sense score, and 

( ), ,
,1 ,1|i ii M i M

i iP LΓ  represents the case score for a particular case and sense assignment. Based 
on the integrated score function, the candidate with the best score value is then picked using 
the dynamic programming technique. When this model was tested on a testing set of 800 
sentences, the MLE-based baseline system achieved accuracy rates of 56.3% for parse trees, 
77.5% for case and 86.2% for word sense. After Good-Turing's parameter smoothing and the 
robust learning procedure were applied, the accuracy rates were improved to 77% for parse 
trees, 88.9% for case and 88.6%for word sense. Interested readers are referred to [Chiang 96] 
for details. 

4.4 Error Recovery 
Error recovery has been considered in NLP tasks for two areas, spelling correction and parsing 
error recovery. Spelling correction aims at correcting spelling errors of three kinds: (1) words 
that cannot be found in the lexicon of a given language, (2) valid but unintended words, such 
as peace and piece, and (3) improper usage of words, such as among and between. The 
conventional spelling checkers, such as Unix spell, are concerned only with the first type of 
error, and the other types of errors remain undetected. Some statistics- oriented approaches 
have been exploited including word-trigram methods [Mays 91], Bayesian classifiers [Gale 
93], decision lists [Yarowsky 94] and a hybrid method [Golding 95, 96]. In [Golding 96], the 
part-of-speech trigram model was combined with the Bayesian classifier for context-sensitive 
spelling correction, using which substantially higher performance was reported compared with 
the grammar checker in Microsoft Word. 

CBSO approaches are also applicable to robust parsing and error recovery. If the input 
sentences are grammatical with respect to the grammar defined by an NLP system, then the 
best parse can be selected using the syntax disambiguation mechanism as mentioned in 
previous sections. However, not all real world sentences strictly follow the grammar of a 
particular NLP system. Therefore, the syntax analysis module of a system should be able to 
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recover the complete parse when the input sentence does not fit the grammar of the system. 
When there are errors in a parse, it is desirable to recover from the errors so that proper 
interpretation can be given to the parse for better processing in the subsequent processing 
steps (such as lexical transfer and structure transfer in an MT system.) 

Two types of errors are commonly encountered in real text. The first type is called an 
isolated error, which means that such an error will not prevent other parts from being 
constructed except at the root node (i.e., sentence) level. For example, if an ill-formed input 
sentence " ?? are made by DRAM" is encountered (where '??' is the missing part), then we are 
able to produce a verb phrase V2 as shown in figure 5. In this case, it is possible to insert a 
nonterminal node such as N3 (i.e., a Noun Phrase, such as "Printer buffers") so that we have a 
complete parse (S). In this case, recovery is not too difficult since the lack of N3 does not 
prevent other parts (up to V2, the Verb Phrase) from being generated until S is to be 
constructed. Another type of error is called an non-isolated error whose occurrence will 
prevent other parts frombeing constructed correctly. For instance, if the ill-formed sentence is 
"Printer buffers are ?? by DRAM", then recovering the complete parse is much more difficult 
since the word and hence the parts of speech is missing, which may prevent other parts (such 
as V1, V2 and S) from being generated correctly. 

 
Figure 5. Examples of parsing errors. 

To recover such errors, the error recovery process was modeled in [Lin 96] as follows. 
The system assumes that there are several possible modification actions which can be used to 
patch an incomplete parse into a parse that fits the grammar of the system; the modification 
actions include insertion, deletion, and substitution of a node (terminal node or non-terminal 
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node) during the parsing process. The recovery process include two stages. In the first stage, 
attempts are made to correct non-terminal nodes. In the second stage, part of speech (terminal 
node) errors are recovered using proper modification actions. The various modification actions 
will result in different patched parse trees. The best patch will be determined by the following 
scoring function, which estimates how likely a patched parse tree is to be generated in a real 
world text due to insertion/deletion/substitution errors made by writers: 

1 1 1 1 1 1 1

1 1
21
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N N N N
NN

i i i
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where Ri and iR�  refer to the normal reduction and modification action by which the phrase 
level Li is reduced and patched into Li+1. 

Note that the score is governed by the `rules' (i.e., phrase structure rules and the 
modification actions, if any) applied to each phrase level. In addition, the factor P(LN ), which 
stands for the probability of the topmost phrase level, i.e., the probability of producing the 
particular set of root nodes, assigns a preference to the set of subtrees if they can not be 
reduced to a complete parse tree. 

The above formulation makes it possible to recover certain types of errors in a real world 
written text. Hence, it provides a useful mechanism for robustly parsing ill-formed sentences 
as well as recovering the errors. It was reported that when errors are recovered by fitting 
partial parses and modifying the part of speech errors, 35% of the ill-formed inputs could be 
parsed to the correct full parse trees. The recall rate of brackets, measured on full trees, was 
increased from 68.49% to 76.6%. 

4.5 Alignment of Parallel Bilingual Corpora 
Parallel corpora, such as the Hansards corpus [Brown 91a; Gale 91a], are very useful 
knowledge sources for automatic acquisition of bilingual (and monolingual) knowledge. A 
variety of researches have investigated the use of bilingual corpora, including sentence 
alignment [Brown 91a; Gale 91a; Wu 94], word correspondence [Brown 91b; Gale 91b; 
Dagan 93], collocation correspondence [Smadja 92; Kupiec 93], word sense disambiguation 
[Brown 91b; Dagan 91; Gale 92] and machine translation [Brown 93; Su 95; Wu 95]. In 
particular, the aligned bilingual corpora at the word level are valuable for bilingual 
lexicography [Smadja 96] and translation. For example, the Termight system [Dagan 94] uses 
part-of-speech tagging and word-alignment technologies to extract potential candidate terms 
and translations, providing users with a semi-automatic way to construct a terminology 
glossary. In such a way, users can identify and translate technical terminology easily. 

For alignment of sentences in parallel bilingual texts, sentence length was used as a 
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feature in [Gale 91a; Brown 91a] for English-French bilingual corpora and in [Wu 93] for 
English-Chinese bilingual corpora. In [Gale 91a; Wu 93], sentence length was defined as the 
number of characters in the sentence, while in [Brown 91a], sentence length was defined as 
the number of words in the sentence. 

Intuitively, short source sentences tend to be translated into short sentences, and long 
sentences tend to be translated into long sentences or a combination of several short sentences. 
Therefore, most current research works use two factors to estimate the likelihood of a 
particular alignment. The first factor is the matching type of the aligned passages, which is a 
tuple consisting of the number of source sentences and the number of target sentences in 
matching pairs (such as 1-2 matching); the second factor is the length of the aligned 
source-target passages (say, 20 words in the source passage vs 24 words in the target passage). 
The alignment which has the maximum likelihood of being aligned according to these two 
factors is then considered as the best alignment. 

Formally, the sentence alignment problem can be regarded as an optimization problem, 
which tries to find the best alignment A* between two texts T1 and T2 from all possible 
alignments. That is, to choose 
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where A is a typical alignment consisting of aligned passages {L1i⇔L2i}, the i-th source 
passage L1i is zero, one, or two (or more) sentences in T1, and L2i is the corresponding 
sentence(s) in T2. (Passages that are more than two sentences in length are not considered in 
most current alignment research works.) In the above formulation, X (L1i⇔ L2i) is a set of 
random variables, i.e., a random vector, for the aligned passages which is used to define the 
likelihood of a particular alignment. Moreover, in the above formulation, the passage pairs are 
considered as being independently aligned with one another. In [Gale 91] and [Wu 94], the 
random vector, X, consisted of the type of match, M, and a length function d defined 
according to the length, l1i , of the source passage and the length, l2i , of the corresponding 
target passages. The maximum likelihood selection then is equivalent to 
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where P(M(L1i⇔ L2i)) is the probability associated with the type of match between L1i and L2i ; 
and P(δ(l1i , l2i))|M( ⋅)) is the likelihood of observing the value δ((l1i , l2i ) if the particular type 
of match is known. 

Although the above formulation produces encouraging alignment performance based on 
the length information and the matching type information, we remind readers that there are 
other useful features which can be included in defining the random vector X so as to achieve 
better alignment performance. Such information may include bilingual lexicon information 
(such as the translations of the words within the passages), syntactic information (such as parts 
of speech and parse trees of the sentences) and semantic information (such as case information 
and word sense information). Depending on the information available, various alignment 
models can be developed based on the above general score function for alignment. 

The argmin operation implies that the maximum likelihood selection problem can be 
regarded, alternatively, as a minimum distance problem if the negative of the log-scaled 
likelihood function is regarded as a distance measure between two aligned passages. Such a 
minimum distance searching problem is actually resolved very efficiently by using the 
dynamic programming technique given in [Gale 91a] with the distance function defined as 
follows: 

{ }log ( | _ ) ( _ )d P match type P match typeδ= − × , 

where P(match_type) (corresponding to P(M(L1i⇔ L2i))) is the prior probability of a particular 
type of match (e.g., 1-1 match, 1-0 match) and P(δ | match_type) (i.e., P(δ(l1i, l2i )|M( ⋅)) ) is 
the likelihood of the difference in lengths between the source-target sentences for a particular 
type of match. More precisely, δ is defined as 2 1

2
1

( )l l c

l s

− ⋅

⋅
, where l1 denotes the total length of the 

source sentence(s) in a matched pair, and l2 denotes the total length of the corresponding 
sentence(s); c and s2 stand for the mean and the variance of ( )2

1

l
l , respectively. With such a 

formulation, the minimum distance path and, hence, the best aligned passages, can be easily 
identified using the dynamic programming techniques. 

The method used in [Gale 91a] produced 36 errors out of 621 total alignments (5.8%) for 
English-French texts, and 19 errors out of 695 (2.7%) alignments for English-German texts. 
Overall, there were 55 errors out of a total of 1316 alignments (4.2%). For the 
English-Chinese alignment case in [Wu 94], 86.4% accuracy was reported (and 95.2% could 
be achieved if the introductory session headers were discarded.) For word correspondence, 
Gale and Church [1991b] used the 2φ  statistic, a 2χ -like statistic [Hoel 71], as the measure 
of association of pairs of words. The statistic is derived from a two by two contingency table 
shown as follows: 
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S: the word in the source language 

T: the word in the target language 

a: the number of aligned regions that contain both S and T 

b: the number of aligned regions that contain S but not T 

c: the number of aligned regions that contains T but not S 

d: the number of aligned regions that contain neither T nor S. 

N (=a+b+c+d) is the number of aligned regions. 

The problem of testing whether the two words S and T are statistically independent is 
formulated as the problem of testing the hypothesis: H0: pij = pi pj, where pij is the probability 
that an (S,T) word pair will fall into the category corresponding to the i-th row and j-th 
column of the table; j ij

j
P p= ∑  denotes the probability of the events corresponding to the 

i-th row; j ij
i

P p= ∑  is the probability of the events corresponding to the j-th column. This 
test can be conducted based on the counts in the contegency table using the 2φ  statistic 
defined as follows: 

2( )
( )( )( )( )

ad bc
a b a c b d c d

2 −
φ =

+ + + +
. 

In this way, 2φ  is bounded between 0 and 1, and a high 2φ  value indicates that the words S 
and T are strongly associated and, thus, may be translations of each other. 

Once a set of word pairs which have high 2φ  are selected, a matching procedure is 
conducted to match English and French words within the aligned regions using the selected 
pairs. When there are several possibilities for matching one source word with a target word at 
different target word positions, the matching procedure will select the best correspondence 
based on a correspondence score. Intuitively, the correspondence score prefers a 
correspondence which has less change in the word order of the target words when the target 
words are re-sorted according to their corresponding source word indices; this change in word 
order is defined in terms of the difference between the word index of the current target word 
and the word index of the preceding target word in the re-sorted list, referred to as the slope of 
the current target word. The correspondence score for J source-target pairs is, thus, defined as 

1
log ( | )P( )

J
j

i
P slope match match

=
∑ , 

where J is the number of source words which have non-null correspondence in the target side, 
P(match) is the prior probability of the number of source words which can be matched with a 
target word (the number of matching source words is classified into three cases: match= 1, 2 
or 'many' ), and P(slopej|match) indicates how likely it is that the j-th target word will have a 
slope of slopej if the number of source words which can be mapped to the j-th target word is 
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known. The best correspondence is obtained by using the dynamic programming technique 
over all possible correspondences. The performance was evaluated on a sample of 800 
sentences, where 61% of the English words were matched with some French words, and about 
95% of these pairs were judged as being correctly matched. Readers who are interested in the 
details are referred to [Gale 91b]. 

Besides single word correspondences, collocational correspondences have also been 
explored in [Smadja 92; Kupiec 93]. In these approaches, mutual information is used as a 
measure of correspondence, and an iterative or EM-based re-estimation procedure is used to 
find the best correspondences. Such aligned bilingual materials are applicable to a variety of 
applications, such as word sense disambiguation [Gale 92b] and lexicography [Smadja 96]. 
The most complicated system for full alignment at various levels will be a system which 
allows two-way training for acquiring the translation knowledge of a machine translation 
system. Such issues will be addressed in the following sections. 

4.6 Machine Translation and Translation Knowledge Acquisition 
Another important application for CBSO techniques is statistical machine translation [Chen 91; 
Brown 92; Su 92, 93; Chen 95]. Since the success of a CBSO MT system relies heavily on the 
translation knowledge acquired, the training issues for automatically acquiring such 
knowledge are particularly important for a large practical system. In particular, Su et al. [1995] 
proposed a two-way design method for automatically acquiring the translation knowledge of a 
parameterized MT system from a bilingual corpus. The two-way design can also prevent 
literal translations from being produced as occurs with the conventional one-way design 
scheme [Su 95]. In [Su 95], the training process was characterized as a two-end constraint 
optimization problem to reflect its attempts at two-way training from a bilingual corpus. 
Under such an optimization approach, the system designer can concentrate on the acquisition 
or compilation of lexicon knowledge and the tagging of shallow syntactic and semantic 
features of the lexicons. Only a brief overview of the two-way MT design will be given in the 
following; readers should refer to [Su 95] for details. 

In [Su 95], it was assumed that a sentence is analyzed into a parse tree; the parse tree is 
normalized into a level-1 normal form, denoted as NF1, which is acquired by compacting 
excessive nodes in the parse tree; NF1 is then further normalized into a second level normal 
form, referred to as NF2, by labeling each constituent with case information. An example of 
such a normal form is shown in Section 4.3. The analysis and normalization processes are 
governed by the phrase structure grammar G and two sets of normalization rules, NR1s and 
NR2s, as shown in figure 6, where the source sentence is denoted by S, and the parse tree is 
denoted by PTs. (We shall use 's' and 't' in the subscripts of the symbols to refer to the `source' 
and `target' languages, respectively, unless there is no confusion. ) In addition, the generation 
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operations, which are the inverse operations of the normalization operations of the target 
language, are directed by sets of generation rules of the various levels (GR2, GR1, and GR0); 
the output of such operations are the target normal forms, NF2t and NF1t, target parse tree, PTt, 
and target sentence T's that can be enumerated in the reverse direction of the analysis 
processes. 

 
Figure 6. Translation Model for a Parameterized MT System 

(The bold arrows indicate the flow for training the  
required parameters of the two languages.) 

The best translation will be selected based on the transition probabilities as shown in the 
above translation flow. Such transition probabilities can be mapped to the analysis, transfer 
and generation phases of a conventional transfer based MT [Chen 91]. To acquire the 
translation knowledge with special emphasis on producing target sentences that fall within the 
target grammar, Gt, a two-way training method was proposed as follows [Su 95]. 

The bold arrow symbols in Figure 6 indicate that the PT's, NF1's and NF2's for both the 
source and target sentences are directly derived from the source and target sentences, 
respectively, based on their own phrase structure grammars and normalization rules. (The 
normalization rules for the target language are the reverse of the respective generation rules in 
Figure 6.) Therefore, all such intermediate representations will fall within the range of the 
sentences that will be produced by native speakers of the source and target languages; the 
transfer phase only selects the preferred candidates among such constructs. In addition, the 
transfer parameters are estimated based on such intermediate representations, which are 
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derived from both the source and the target sentences of an aligned bilingual corpus. A 
mathematical formulation for translation and translation knowledge acquisition can be 
described as follows [Su 95]. 

According to the previously mentioned optimal classifier, the Bayesian decision to get 
the best target sentence , Topt, corresponds to finding the target sentence such that 

( )1
1arg max | ,

i

i
opt i i

T
T P T S I −= , 

where 1
1
iI −  represents the sets of normal forms I1 , I2 , ..., Ii-1 acquired earlier for the previous 

sentence pairs, which represent the discourse information around the current sentence, and 
where 

{ }( ), 1 ( ), 2 ( ), 2 ( ), 1 ( ), ( )i t t t s s sI PT i NF i NF i NF i NF i PT i=  

represents one possible combination of the intermediate normal forms for the i-th sentence 
pair, which are derivable from the source and target sentences. 

When the discourse information, namely 1
1
iI − , is ignored, we can find the translation Ti 

that maximizes the following translation score [Chang 93]: 
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To reduce the computation load, the target translation, Ti , which has the highest 
maximum path score (i.e., 

i iT ,I
max ( , | )i i iP T I S ) is chosen as the most preferred output instead of 

choosing the one whose sum of path scores over all possible paths (i.e., ( , | )
i

i i i
I

P T I S∑ ) is the 
highest. In other words, we would prefer translation iT∗ of Si, 
where arg max max[ ( , | )]

ii

i i i i
IT

T P T I S∗ ⎧ ⎫
= ⎨ ⎬

⎩ ⎭
. 

To further make the computation feasible, it is assumed that the intermediate form of the 
current processing phase only depends on the information acquired in the previous processing 
step, and that the information from other earlier processing steps can be ignored. Thus, the 
above formula can be further approximated as follows: 

ii
IT

arg max {max[ ( | ( )) ( ( ) | 1 ( ) ( 1 ( ) | 2 ( ))i i t t t t tT P T PT i P PT i NF i P NF i NF i∗ = = × ×   ...(1) 

( 2 ( ) | 2 ( ))t sP NF i NF i×                                            ...(2) 
( 2 ( ) | 1 ( )) ( 1 ( ) | ( ) ( ( ) | )]}s s s s s iP NF i NF i P NF i PT i P PT i S× × × ,            ...(3) 

where the first three factors in (1) correspond to the generation score, the factor in (2) 
corresponds to the transfer score and the three factors in (3) correspond to the analysis score 
for one particular path (i.e., the particular set of intermediate normal forms); the individual 
factors (from the last factor to the first one), on the other hand, correspond to the preference 
for syntactic parsing, syntactic normalization, semantic normalization, semantic tree selection, 
normalized structure generation, surface structure generation and morphological generation, 
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respectively. Under such circumstances, all the translation output will fall within the range of 
those sentences that will be produced by native post-editors; therefore, source dependency is 
removed. 

If we have annotated the corpora with the most preferred Ii for each sentence pair, then 
the parameters can simply be estimated by counting the number of occurrences of the various 
intermediate forms. A practical problem is that such annotated corpora may not exist due to 
the high construction cost or because the amount of annotated corpora is too small, which may 
induce large estimation errors. Since an unannotated bilingual corpus is usually much easier to 
set up than is a fully annotated corpus, one promising solution to such a problem is to train the 
parameters using only a bare bilingual corpus, and to consider such an optimization procedure 
as a two-end constrain optimization problem. By two-end constrain, we mean that we are 
given only a parallel corpus of the source sentence (Si) and the preferred target translation (Ti), 
including the preferred lexicon information, the functional forms of the syntax structures 
(defined by a phrase structure grammar) and the functional forms of the semantic trees. Here, 
there are only the two-end constraints on the given (S,T) pairs; the other intermediate 
representations are left unspecified. 

To estimate the parameters from an untagged bilingual corpus, the Viterbi training 
approach [Rabiner 86], an unsupervised learning method, is adopted. The estimation 
procedure is described as follows: 

1. Initial Selection: For each (Si, Ti) pair, we derive all possible parse trees, NF1 trees and NF2 
trees for Si and Ti, respectively, and we randomly choose a path corresponding to the analysis 
processes from the sentences to the NF2 trees. The source and target NF2 trees randomly 
selected in this way are considered to be a transfer pair for the translation. 

2. Estimation: The parameters estimated using the Maximum Likelihood Estimator (MLE) for 
the system are estimated from the corresponding transfer pairs, parse trees and normal forms 
along the selected translation path. The parameters are uniquely determined once the 
translation paths are specified. 

3. Re-selection: Compute the translation scores for the various possible paths (each path 
corresponding to a combination of parse tree, NF1 and NF2 ) with the new parameters 
acquired in step 2, and select the path with the largest score. 

4. Re-estimation: Go to step 2, unless the parameters converge or satisfy a given stopping 
criterion. 

To make the above procedure better, the Initial Selection step starts with a small 
annotated bilingual corpus as the seed [Su 94b]. This annotated seed corpus is then mixed with 
the other untagged corpus for estimation. In addition, to eliminate the large search space in the 
above process, some of the low-score combinations can be eliminated from consideration as 
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the process proceeds; the number of truncated candidates becomes a time increasing function 
as the parameters are estimated better and better. 

5. Concluding Remarks 

In this paper, a brief review on the various CBSO approaches and applications in natural 
language processing has been given. We had identified the knowledge acquisition problem as 
the most challenging task in building a large scale NLP system. Hence, corpus-based 
statistics-oriented approaches, which are good at automatically extracting inductive 
knowledge, are preferred. To avoid having a large parameter space, which may not be 
affordable for most practical system, special emphasis has been placed on the use of 
probabilistic language models over high level linguistic constructs. 

The central problem in designing a system based on the CBSO philosophy is to develop a 
language model that can optimize some performance criteria such as the minimum error rate, 
based on features observed in a training set. The features must be discriminative so that they 
can be used for better decision making. However, it is not easy to identify discriminative 
features; therefore, automatic feature selection approaches are desirable. The parameters to be 
used in the language model must be estimated from the training corpus based on an optimal 
estimation criterion, such as the maximum likelihood criterion, over the training set. 
Parameters estimated using this criterion, however, may assign zero probabilities to unseen 
events and, thus, may have unsatisfactory results when they are used for unseen testing set 
data. To resolve this problem, smoothing over the parameter values is necessary. In some 
cases, class information, which is required to reduce the number of parameters of a language 
model, is not available; automatic feature clustering techniques have, thus, been addressed in 
the paper. When estimating the system parameters, the training corpus may or may not be 
annotated using associated features. If the corpus has been annotated, robust adaptive learning, 
which attempts to adjust the system parameters based on misclassified instances, can be 
adopted to adjust the MLE estimated parameter, so that the adjusted parameters can minimize 
the error rate instead of maximizing the likelihood. Without an annotated corpus, unsupervised 
learning techniques can be applied to estimate the parameters iteratively. All such techniques 
form the basis for building a large scale NLP system. 

CBSO approaches have been widely used and are becoming popular in research 
communities. Their applications range from part-of-speech tagging, syntax analysis, semantic 
analysis, machine translation, lexicon acquisition, corpus annotation, error recovery and more. 
Since large training corpora are becoming more and more available, computing power can be 
accessed at very low cost, and statistical optimization techniques are now well developed, it is 
expected that the CBSO paradigm will be one of the most promising approaches for future 
natural language processing development. 
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