IMPLEMENTING SCRAMBLING IN KOREAN: A
PRINCIPLES AND PARAMETERS APPROACH

Franklin S. Cho
MIT Artificial Intelligence Laboratory
NE43-802
MIT, Department of Electrical Engineering and Computer Science
545 Technology Square, Cambridge, MA, 02139, USA
fscho@ai.mit.edu

3 July 1995

Summary

This paper describes how the most complete recent linguistic results on Korean scram-
bling (switching of word order) can be readily incorporated into an existing principles-
and-parameters parser with minimal additional machinery. Out of all 29 sets of exam-
ples in chapters 2.2 and 3.2 of perhaps the most advanced linguistic analysis of Korean
scrambling, (Lee, 1994), 26 sets of examples can be correctly parsed, greatly extending
the variety of scrambling handled by any current parser. This approach is compared
to other current approaches to scrambling, such as PRINCIPAR and Tree Adjoining
Grammar.

Subject Areas: parsing, scrambling, Korean

Word Count:

1. INTRODUCTION

Scrambling is a complex yet common phenomenon in Korean that allows the apparent movement
of a noun phrase over both short and long distances:

e Scrambling of more than one noun phrase that belongs to the same verb’s argument structure,
or “multiple scrambling”. For example, in (1)(ii), “chayk” (book) moves in front of “Youlee”,
or even to the front of the sentence, as in (1)(iv).

(1) (i) Sunhee-ka Youlee-eykey [chayk hankwen]-ul senmwulhayssta
Sunhee-nom Youlee-dat [book one-volume]-acc gave-a-present

“Sunhee gave Youlee a book as a present.”
(ii) sunhee-ka [chayk hankwen]-ul youlee-eykey senmwulhayssta
Sunhee-nom [book one-volume]-acc Youlee-dat gave-a-present

(ili) youlee-eykey sunhee-ka [chayk hankwen]-ul senmwulhayssta

(iv) youlee-eykey [chayk hankwen]-ul sunhee-ka senmwulhayssta

43

(v) [chayk hankwen]-ul sunhee-ka youlee-eykey senmwulhayssta

(vi) [chayk hankwen]-ui youlee-eykey sunhee-ka senmwulhayssta!

e No limit to the number of clauses that a scrambled element can cross, or “unbounded de-
pendency,” For example, in (2)(ii), “chayk” (book) can be arbitrarily far from its canonical

~ argument position:?

(2) (i) John-i [Mary-ka [Sally-ka Bill-eykey chayk-ul cwuessta-ko] malhayssta-ko]
John-nom [Mary-nom [Sally-nom Bill-dat book-acc gave-compl] said-compl]
sayngkakhanta
think L
“John thinks that Mary said that Sally gave Bill a book.”

(ii) chayk-ul; [John-i [Mary-ka [Sally-ka Bill-eykey ¢; cwuessta-ko] malhayssta-ko]
book-acc [John-nom [Mary-nom [Sally-nom Bill-dat gave-compl] said-compl]
sayngkakhanta]
think]

Handling scrambling correctly is very difficult for a parser. The reason is that adding a permuta-
tion component to generate all possible word orders independently of other grammatical constraints
is easy. What is more difficult is to make scrambling interact correctly with all the other components
of the grammar, for instance those that establish the interaction of scrambling with coreference.
Consider these examples: :

(3) (i) *Younghee-ka ku-eykey [Minswu-uy sacin]-ul poyecwuessta
Younghee-nom him-dat Minswu-gen picture-acc showed

“Younghee showed him Minswu’s picture’

(ii) Younghee-ka [Minswu-uy sacin];-ul ku-eykey t; poyecwuessta®
(i) [Minswu-uy sacin];-ul Younghee-ka ku-eykey t; poyecwuessta?

The coreference relation is indicated by bold face, and the filler-gap relation (or, equivalently,
antecedent-trace relation) by coindexation. (3) shows that scrambling interacts with coreference:
the scrambled versions (3)(ii) and (3)(iii) are acceptable, but the canonical version (3)(i) is not.
So, scrambling “saves” a sentence in (3). Now, consider these examples:

(4) (i) [Minswu-uy tongsayng]-i ku-eykey sacin-ul poyecwuessta
Minswu-gen brother-nom him-dat picture-acc showed

‘Minswu’s brother showed him a picture.’
(i) *ku-eykey [Minswu-uy tongsayng]-i sacin-ul poyecwuessta®

Conversely, the canonical version (4)(i) is acceptable but the scrambled version (4)(ii) is not.
So, scrambling “destroys” a sentence in (4). Therefore, scrambling is much more complicated
than simply generating correct word orders. In both (3) and (4), scrambling interacts with a

1(Lee, 1994), example 7. See figure 1 in the text.

%(Lee, 1994), p. 5

*Here, “t;” denotes a link between the canonical argument position for “chayk”(book} and its actual position in
the sentence. At this point, I remain theory-neutral as to the exact nature of “¢;”. It could be implemented in several
ways.

*(Lee, 1994), example 81.

®(Lee, 1994), example 82.

44

/\
iz o
NP1 iz
NP1 NQ NPZ] iz

A g NP 1
chayk hankwen youlee

A vP I(AGR)[3]
sunhee T N
NPt+A-P[2] Vi V{4 I(AGR)3]

NPt+A-P[1] Vt[4] AE¥) ot
senmwulhayssta

Figure 1: A Parsed Korean Example Sentence 1(vi)

coreference constraint referred to as “Condition C” in the linguistic literature. Roughly, Condition
C states that a referring expression e.g., “John,” “the house,” must not be bound anywhere in a
sentence.® (4)(ii) is ruled out by Condition C, since “Minswu,” a referring expression, is bound
by “ku.” Such an interaction must be taken into account when parsing these examples. As far as
it is known, the system presented here is the first that can correctly parse such a wide range of
scrambling examples. Although no good quantitative measures are known to us, scrambling seems
quite common in Korean, and is therefore important for parsing. Figure 1 shows an example of the
parser’s actual output on a scrambled example sentence.

2. IMPLEMENTATION

2.1. A Simple Scrambling Mechanism

Let us see how to parse scrambled sentences using a constraint-based parser, Pappi (Fong,
1991). As a first approximation, here is a simplified description of the scrambling mechanism
(Figure 2), showing only the modules relevant to the scrambling-coreference relations. In subsequent
sections, I will refine this analysis to accomodate new examples. (There are many more filters and
generators in Pappi than the figure shows.)

The key idea behind constraint-based parsing is to reproduce complex surface sentence patterns
by the interaction of separable but linked “modules,” each handling a different kind of constraint.
For instance, our examples (1)-(4) motivate four modules:

1. One to move NP’s from their canonical locations.
2. One to coindex filler NP’s with their gaps and other NP’s.
3. One to check whether this indexing meets Condition C.

4. One to move variables into proper scope (assuming a typed first-order predicate calculus
(FOPC) representation.)

6A node A binds another node B iff A and B are coindexed, and A c-commands B. A c-commands B iff the lowest
branching node which dominates A also dominates B. For example, in [« [...[# 6]...]], @ c-commands § and 8. This
is the canonical definition of binding, and this definition will be modified later, as shown in Figure 4.

45

Sentence

LA(1)-based Parser

Is—slmclure

Free Indexation

IS-slmclure

Conditlon C

Is-slruclure

LF Movement

LF-structure

Output
(Parse Tree)

Figure 2: A Simple Scrambling Mechanism

First, a LR(1)-based bottom-up shift-reduce parser is used to recover the phrase structure.
Note that this parser allows an NP to freely attach to the beginning of a sentence (or, equivalently,
adjoin to an Inflection Phrase(IP)) or to the beginning of a verb phrase (or, equivalently, adjoin to
a verb phrase(VP)), to account for scrambling.”

mechanism such as the “Free Indexation” mechanlsm is called a “generator.” A generator
generates new structures based on the old structure that was passed to it. For example, the
“Free Indexation” generator takes a parse tree without indices, and generates parse trees with
indices assigned to each NP and trace (or, equivalently, gap). This generator generates all possible
coindexations between the NP’s and their gaps and among the NP’s

A mechanism such as the “COI&dlthn * mechanism is called a “filter.” A filter eliminates the
-~ wrong structures that enter it, and pass the correct structures to the next filter or generator. For

example, the “Condition C” filter filters out every parse tree that violates the Condition C.

The “Logical Form (LF) Movement” mechanism performs two operations: first, it raises each
quantifier (e.g., “every boy”, “somebody”) and attaches it to the beginning of the innermost sen-
tence (or, equivalently, adjoins it to the nearest IP.) Then, it raises each wh-word (e.g., “who”,
“where”) to the specifier position of the nearest Complementizer Phrase(CP).!°

To summarize, after the phrase structure is recovered by the LR parser, these structures are
passed through a series of filters and generators, until only the correct parses remain. The imple-
mentations are taken care of by following a generate and test paradigm (but in a more sophisticated

way).

2.2. Subject Binding Generalization

However, this simple first order approximation does not suffice to cover all examples in Korean.
Consider these examples:

(5) (i) *kuka [Minswu-uy emmal-lul coahanta
he-nom Minswu-gen mother-acc like

7 Also, the mechanism used to avoid “string vacuous scrambling” in Japanese, as described in {Fong, 1994) is used
for Korean as well.® A “non-vacuous” or “visible” scrambling is a scrambling that “passes over” one or more overt
elements (Fong, 1994).

®Please refer to (Fong, 1991) for the details on how the free indexation is implemented.

0ynder the Government and Binding framework, the Complementizer Phrase (CP) immediately dominates the
Inflection Phrase (or, equivalently, the Sentence), and wh-words move to the specifier position of a CP at Logical
Form (LF) level. The specifier position is immediately dominated by the CP.

46

‘He likes Minswu’s mother.’
(ii) *[Minswu-uy emma);-lul ku-ka #; coahantal!

(5)(i) is ruled out by Condition C, since “ku” binds “Minswu”, a referring expression. (Please
refer to Figure 3 for the definition of “binding.”'?) However, Condition C alone cannot explain
why (5)(ii) is unacceptable, since nothing seems to bind “Minswu” (it is therefore free, unbound,
and satisfies Condition C.) We can repair this problem by introducing a new definition of binding

(defined in (Frank et al., 1992).) According to Lee, (5)(ii) is ruled out by the Subject Binding
Generalization:

(6) Subject Binding Generalization: If X in subject position binds Y at Deep Structure
(D-structure or, equivalently, canonical predicate-argument structure)'®, then X binds Y at
all levels of representation (i.e., FOPC level and the surface leve]).

In (5)(ii), “ku” binds “Minswu” in D-structure, and therefore “ku” still binds “Minswu” in surface
structure (S-structure.) Therefore, (5)(ii) is ruled out by Condition C, since “Minswu” is bound.
To implement this, I revised the definitions of binding in the parser. The original and the new
definition of binding are shown below as flowcharts.
Here is the original definition of binding (Figure 3):

Does A bind B?

A c—commands B
in S-structure?,

A doas hot -
bind B

Are
AandB
co-indexed?

Abinds B

Figure 3: The Original Definition of Binding

Here is the new definition of binding (Figure 4):

1 (Lee, 1994), example 86

12A node A c-commands another node B iff the lowest branching node which dominates A also dominates B. For
example, in [« [...[8 6]...]], @ c-commands § and 8.

1*Fach scrambled element moves back to its canonical position at D-structure.

47

Does A bind B?

Does .
A c-commands 8
in S-structure?,

recover

D-structure

A c-commands B
in D-structure?

yes
Is A a subject?
yes

Are
AandB
co-indexad?

A does not &

bind B T

A binds B

Figure 4: The New Definition of Binding

Notice that a change in the definition of binding automatically changes the definition of Con-
dition C (since the code implementing Condition C calls the code that implements binding.) Also
noti:s that the “subject” is defined as an NP with an “agent” thematic role (6-role), following Lee’s
analysis.'4

Here is how the D-structure is recovered from the S-structure: (1) recurse down the parse
tree and replace each element by its D-structure element. For example, a head of a chain (or,
equivalently, a filler) would be replaced by an empty element, and a trace (gap) would be replace
by its antecedent (filler). (2) Delete any empty elements introduced by step (1).

2.3. Scrambling and Scope

Korean scrambling (as well as scrambling in other languages) is complicated further by examples
such as these:

(7) (i) ne-nun [Minswu-ka nwukwu-lul coaha-nunci] a-ni
ne-nun Minswu-nom who-acc like-qm know-qm

‘Do you know who Minswu likes?’
(ii) nwukwu;-lul ne-nun minswu-ka ¢; coaha-nunci a-ni

‘Who do you know Minswu likes?’ / ‘Do you know who Minswu likes’!®

In (7), (ii) has a different interpretation than (i). This is because scrambling interacts with
scope interpretation. In (Lee, 1994), Lee claims that a scrambled wh-element (like “who” or
“what”) optionally reconstructs for scope interpretation. Reconstruction means that a scrambled
NP optionally moves back to its unscrambled position.

14 Please refer to (Fong, 1991) for the details on how §-roles are assigned.
15(Lee, 1994), example 160

48

Remember that at Logical Form (LF) interpretation (or, equivalently, scope interpretation at
the FOPC level), the wh-word raises to the specifier position of the nearest CP (or Sentence.)
The sentence is interpreted as a wh-question if a wh-word occupies the specifier position of the
matrix (outer) CP. If a wh-word occupies the specifier position of the embedded (inner) CP, and
the specifier position of the matrix (outer) CP is empty, the sentence is interpreted as a yes/no

uestion. .
! In (7)(i), the wh-word in the embedded (inner) clause “nwukwu” raises to the nearest CP, and
the whole sentence is interpreted as a yes/no question, as shown in (8):

(8) (i) [cp [1p ne-nun [cp [;p Minswu-ka nwukwu coaha-nunci|] a-ni]
“The sentence before wh-raising’
(1) [cp [tp ne-nun [cp nwukwy; [;p Minswu-ka ¢; coaha-nunci|] a-ni]]
‘nwukwu is raised to the specifier position of the nearest CP’

In (8)(ii), wh-word occupies the specifier position of the embedded (inner) CP, and the specifier
position of the matrix (outer) CP is empty, i.e., the sentence is interpreted as a yes/no question.

In (7)(ii), the whole sentence can be interpreted as a wh-question (as shown in (10)) as well
as a yes/no question (as shown in (9).) For the yes/no interpretation (9), the scrambled wh-word
reconstructs to its base position and then raises to the nearest CP.

(9) () [cp [ip nwukwy; ne-nun [cp [;p Minswu-ka ¢; coaha-nunci]] a-ni]]
‘The sentence before wh-raising (nwukwu is scrambled to the front of the sentence.)’
(i) [cp [1p ne-nun [cp [;p Minswu-ka nwukwu coaha-nunci]] a-ni]
‘Scrambled nwukwu reconstructed.’
(ii) [cp [1p ne-nun [cp nwukwy; [p Minswu-ka ¢; coaha-nunci]] a-ni]]
‘nwukwu raised to the nearest CP.’

In (9)(iil), a wh-word occupies the specifier position of the embedded (inner) CP, and the
specifier position of the matrix (outer) CP is empty, i.e., the sentence is interpreted as a yes-no
question.

For the wh-interpretation of (7)(ii), the scrambled wh-word raises to the nearest CP, without
undergoing reconstruction.

(10) (i) [cp [p nwukwu ne-nun [cp [;p Minswu-ka coaha-nunci]] a-ni]
‘The sentence before wh-raising (nwukwu is scrambled to the front of the sentence.)’
(i) [cp nwukwy; [1p t; ne-nun [cp [;p Minswu-ka coaha-nunci]] a-ni]]
‘Scrambled nwukwu is raised to the nearest CP without undergoing reconstruction.’

In (10)(ii), since a wh-word occupies the specifier position of the matrix (outer) CP, the sentence
is interpreted as a wh-question. It is crucial to parse these examples correctly for a Korean Q/A
system.

Here is how reconstruction is implemented: (1) Recurse down the parse tree and replace a scram-
bled wh-word with an empty element, and replace a trace (gap) of a wh-word with its antecedent
(filler.) (2) Delete any empty elements introduced by step (1).

Reconstruction is incorporated into the “LF Movement” generator described in Figure 2. The
original implementation of the “LF Movement” generator can be understood as two smaller gener-
ators serially linked (Figure 5):

49

input TraeslS—structure)

Ganerate Traes with

the Quantifiers Raised

!

Generate Treas with

tha Wh-words Raised

Qutput Trees(LF Structure)

Figure 5: The Original Implementation of the LF Movement Generator

A new definition of the “LF Movement” generator is shown in Figure 6. (This definition will
be revised in the following section).

input Trees(S-structure)

|

Generate Trees with the
Wh-words Optionally
Reconstructed

!

Generate Trees with

the Quantifiers Raised

!

Generate Trees with

-the Wh-words Raised

Qutput Trees(LF Structure)

Figure 6: A New Implementation of the LF Movement Generator

Vacuous Wh-Chain Reconstruction Theimplemented reconstruction algorithm must be more
sophisticated if it is to avoid any redundant parses.’® Here, redundant parses mean that two parses
have the same scope interpretations at LF (typed first order predicate calculus) level. Consider
this example:

(11) (i) nwukwu;-lul [pro chinkwu]-ka ¢; paypanhayss-ni
who-acc pro-gen friend-nom betrayed-Q

“Who did his friend betray”!”
One possibility is to:
1. Reconstruct the chain (nwukwu;,t;), then

2. Raise “nwukwu” to the nearest CP at LF (or, equivalently, FOPC level.), as shown in (12)

16The author would like to acknowledge Dr. Sandiway Fong’s help with implementing the algorithms outlined in
this subsection (Vacuous Wh-Chain Reconstruction) and the next subsection (Reconstruction for Subject Binding.)
17(Lee, 1994), example 78b.

50

(12) (i) [cp [r nwukwu; [pro chinkwu]-ka #; paypanhayss-ni]]
‘The sentence before wh-raising (nwukwu is scrambled to the front of the sentence.)’
(i) [cp [1p [Pro chinkwu]-ka nwukwu paypanhayss-ni]]
‘nwukwu is reconstructed.’
(ii) [cp nwukwu; [;p [pro chinkwu]-ka ¢; paypanhayss-ni|]
‘nwukwu is raised to the nearest CP after reconstruction.’

Compare this with:
1. No reconstruction, then

2. Raise “nwukwu” from the original scrambled position to the nearest CP at LF, as shown
in (13)

(13) (i) [cp [;p nwukwu, [pro chinkwu]-ka ¢; paypanhayss-ni|
‘The sentence before wh-raising (nwukwu is scrambled to the front of the sentence.)’

(ii) [cp nwukwu; [;p t; [pro chinkwu]-ka paypanhayss-ni]]
‘Scrambled nwukwu is raised to the nearest CP without undergoing reconstruction.’

These two parses make no scope distinction, and are therefore redundant. The solution to this
“vacuous wh-chain reconstruction” problem is to reconstruct only long distance wh-chains, i.e. only
if there is some scope distinction to be derived. This eliminates the first possibility above.

The revised reconstruction algorithm is implemented as follows:

1. Mark each element of a long distance wh-chain, then

2. Replace the trace (gap) with the antecedent (filler), and replace the antecedent (filler) with a
null element, for each member of the chain. Mark any null element so introduced for deletion.

3. Delete all elements marked for deletion.

Recall that all reconstruction is optional, so even if the scrambling is long distance, reconstruc-
tion may not occur.

Reconstruction for Subject Binding Consider these examples:

(14) (i) [caki chinkwu];-eykey nwukwuna-ka #; komin-ul thelenohnunta
self’s friend-dat everyone-nom problem-acc tell.

“Everyone tells his/her friend problems”!8

(ii)) [caki uymwu);-lul nwukwuna-ka ¢; chwungsilhi ihaynghayssta
self’s duty-acc everyone-nom faithfully carried-out
“Everyone carried out his/her duty faithfully”!®

When the quantifier “nwukwuna” is raised at LF, it produces a weak cross-over (WCO) violation.?
Therefore, we need to avoid WCO violation by reconstructing the scrambled element which is bound
by the subject (through the Subject Binding Generalization) before raising the quantifier.

18 (Lee, 1994), example 79b. -

19(Lee, 1994), example 80b.

20Weak crossover involves the coindexing of an empty category and a genitive inside an NP, as in *Who; does his;
mother love ¢;? A WCO violation occurs when a wh-word or a quantifier raises from its D-structure position to
the [spec, CP] and it “crosses over” a coindexed genitive inside an NP. The presence of a weak crossover makes the
sentence unacceptable.

51

0

Input Trees(S-structure)

!

Generate Trees with the
Wh-words Qptionally
Reconstructed

WCo
Violation?

no Generate Trees with the
Subject Binding Chains
Reconatructed

I

Generate Tress with

the Quantitiers Raised

!

Generate Tress with
the Wh-words Raized

Output Trees(LF Structure)

Figure 7: The Final Implementation of the LF Movement Generator

Implementation:
1. Mark each element of a Subject Binding chain, then

2. Replace the trace (gap) with the antecedent (filler), and replace the antecedent (filler) with a
null element, for each member of the chain. Mark any null element so introduced for deletion,
then

3. Delete all elements marked for deletion.

4. Check that the reconstructed tree satisfies conditions A?!, B?2, and C. If the tree violates any
of these conditions, then do not reconstruct (The generator outputs the input tree unchanged.)

The tentative solution is to only allow Subject Binding reconstruction as a last resort for WCO
violations.2?

Implementation Here is the algorithm that implements the ideas outlined above (Figure 7):

21Condition A states that an anaphor (e.g., “myself”, “herself”) must be bound within its governing category. The
governing category of an NP is the smallest NP or Inflection Phrase (or, in standard notation, Sentence Phrase)
containing that NP, its governor, and an “accessible” subject.

22Condition B states that a pronominal (e.g., “he”, “they”) must not be bound in its governing category.

23There is some overlap between the coverage of Subject Binding Generalization and reconstruction of the Subject
Binding chain, but they have distinct functions, and both are needed. In the current implementation, Subject Binding
Generalization is relevant when analyzing whether the sentence satisfies conditions A, B, and C in the S-structure.
Subject Binding reconstruction is applied when the LF-structure is derived from the S-structure. So, without Subject
Binding Generalization at the S-structure, reconstruction of the Subject Binding chain may never occur, since the
parse tree may have been eliminated before reaching the LF-movement stage. Also, Subject Binding Generalization
is relevant for both long and short distance scrambling, but reconstruction of the Subject Binding chain is only
(optionally) applicable for long distance chains, as shown above.

52

3. COMPARISONS WITH OTHER SYSTEMS

To implement the scrambling mechanism described above, less than 150 lines of Prolog code
need to be added to the standard Pappi framework. Why is scrambling relatively easy to imple-
ment in this way? Essentially, Pappi can easily handle reconstruction since the code that encodes
principles directly deals with sentence structures. In order to handle reconstruction, Pappi op-
tionally moves the scrambled wh-elements back to their base position, and then raises them to the
nearest CP at logical form interpretation. This is difficult in other systems proposed to handle
Korean. First, consider Lin’s PRINCIPAR ((Dorr et al., 1995)). Since Lin’s PRINCIPAR deals
with the description of structures, it has difficulty dealing with reconstruction (unless the current
design is drastically changed), since the messages it uses only pass up parse trees. In order for
PRINCIPAR to handle reconstruction, the node representing a trace would have to know whether
its antecedent is a wh-word, and decide if it should reconstruct. This would be difficult, since
the trace cannot know its antecedent until a message from the trace and the message from the

antecedent meet at a node which dominat(ﬁ, both the frg(fe and the antecedent. If the scrambled
element 1s going to reconstruct, a message has to travel “down” the tree to the trace, which 1s not

allowed in the current implementation of PRINCIPAR.?*

Currently, neither PRINCIPAR nor the V-TAG formalism proposed to Korean in (Rambow
and Lee, 1994) and (Park, 1994) handle Binding Theory, e.g., Condition C, or Scope Interpreta-
tion. Both systems produce the different possible word orders, for both short and long distance
scrambling, but neither systems capture the interaction between scrambling and binding, or the
interaction between scrambling and scope interpretation.

4. PARSING TIME ANALYSIS
Not surprisingly, scrambling does introduce additional computational complexity into parsing.
A sample excerpt from our analysis is given below, where times are normalized to the unscrambled
base time. It appears as though multiple scrambling beyond one clause results in the same nonlinear
increases observed by Fong (Fong, 1991) for indexing.

sentence i time, s. | ratio | comment
local 1(a) 1.32 1 (no scrambling)
multiple scrambling | 1(b) 2.11 1.60 | (one elem scrambled)
1(c) 1.93 1.46 | (one elem scrambled)
1(d) 3.20 2.42 | (two elem scrambled)
1(e) 2.46 1.86 | (one elem scrambled)
1(f) 3.32 2.52 | (two elem scrambled)
long distance 3(a) 6.61 1 (no scrambling)]
multiple scrambling L3(b) 8.90 1.35 | (one elem scrambled) |
L?)(C) 15.92 2.41 | (two elem scrambled)

5. CONCLUSIONS

This paper describes how one of the most current linguistic analyses of Korean scrambling can
be readily incorporated into an existing parser. The parser can correctly handle 26 out of all 29

?**(Lin, p.c.) proposes implementing a filter after the structure has been built, to handle reconstruction, therefore
abandoning the structure description idea for this part of the parse.

53

sets of examples in chapters 2.2 (excluding 2.2.6 on parasitic gaps) and 3.2 of (Lee, 1994). The
interaction between scrambling and other components of the grammar is easily accommodated, just
as described by Lee. The approach outlined in this paper is compared with other approaches to
scrambling, and surpasses them in coverage. The directness with which Lee’s linguistic theory can
be modeled demonstrates the value of using a “transparent” principles and parameters approach.
We can simply use the theoretical assumptions that Lee makes and then test her results using the
wide range of scrambling data she exhibits.

ACKNOWLEDGEMENTS

This report describes research done within the Center for Biological and Computational Learn-
ing in the Department of Brain and Cognitive Sciences. This research is supported by NSF grant
9217041-ASC and ARPA under the HPCC program.

REFERENCES

Bonnie J. Dorr, Dekang Lin, Jye hoon Lee, and Sungki Suh. 1995. Efficient parsing for korean and
english: A parameterized message passing approach. Computational Linguistics.

Sandiway Fong. 1991. Computational Properties of Principle-Based Grammatical Theories. Ph.D.
thesis, MIT, Cambridge, MA 02139.

Sandiway Fong. 1994. Towards a proper linguistic and computational treatment of scrambling: An
analysis of japanese. In Proceedings of COLING-94.

Robert Frank, Young-Suk Lee, and Owen Rambow. 1992. Scrambling as non-operator movement
and the special status of subjects. In Proceedings of the Third Leiden Conference for Junior
Linguists.

Young-Suk Lee. 1994. Scrambling as Case-Driven Obligatory Movement. Ph.D. thesis, University
of Pennsylvania, Philadelphia, PA 19104-6228.

Hyun Seok Park. 1994. Korean grammar using tags. Master’s thesis, University of Pennsylvania,
Philadelphia, PA.

Owen Rambow and Young-Suk Lee. 1994. Word order variation and tree-adjoining grammar.
Computational Intelligence, 10(4):386-400.

Owen Rambow. 1994. Formal and Computational Aspects of Natural Language Syntaz. Ph.D.
thesis, University of Pennsylvania, 3401 Walnut Street, Suite 400C, Philadelphia, PA 19104-
6228.

54

Optimising Tools for the French Letter-to-Phone Grammar
TOPH With a View to Phonographic Spelling Correction

Nada GHNEIM & Véronique AUBERGE
Institut de la Communication Parlée
INPG/Université Stendhal, URA CNRS n° 386
BP 25, 38040 Grenoble Cedex 9, FRANCE
Phone: (+33) 76 82 43 38 Fax: (+33) 76 8243 35
e-mail: ghneim @icp.grenet.fr, auberge @icp.grenet.fr

Absti'act

The goal ,in the long term, of this work is to give a formal and linguistic description of the text-to-phone
processing, and to use the description in a view to phonographic spelling correction errors. This description can
be formulated, by TOPH language, in a determinist grammar.

The French letter-to-phone exhaustive grammar TOPH is the base of our work in phonographic spelling
correction: the inverse grammar PHOT gives the phone-to-letter correspondences. However, as it was
constructed by human expert, TOPH has many redundant and incoherent rules which affect correction results.
By eliminating these rules we got an optimal grammar to be used in the spelling correction.

We have developed an environment around a French letter-to-phone system, which enables to filter the
redundancies and the incoherences in a lexical grammar written in TOPH language. The result is an optimal
grammar in its logic and linguistic description. Such an environment had never been developed for a French
letter-to-phone system. We use this exhaustive phonetic description to establish the duality between letter-to-
phone processing and phone-to-letter one, with a view to phonographic spelling correction.

I. Introduction

The right use of spelling is a crucial problem in French language: on the one hand, the spelling
presents real difficulties [Catach 89], and on the other hand, a good skill of spelling is an important
social criterion. This is why automatic error correction of French text was the object of many studies
[Pérennou 86, Laporte 89, Strube de Lima 90, Véronis 93].

In this work we are interested in the phonographic spelling correction errors, in which the writer
substitutes a phonetically "close" but orthographically incorrect sequence of letters for the intented

words.

A minimal French letter-to-phone grammar is the core of an actual grammar, extended following a
systematic methodology in exploring a French representative dictionary: the ICP’s! dictionary
"Le 60000", and in referring to the Petit Robert1[90]2 for the phonetic entries [Belrhali 92].

Rules order is an essential parameter in TOPH grammar description: expert expresses his knowledge
naturally with the logic of exception followed by a general case, which means: "If a grapheme (i.e. a
sequence of letters correspondent to an unit of pronunciation) is in a singular context, then it follows a
singular transcription; Else, it follows the usual transcription”

Ynstitut de la Communication Parlée

2Commun French dictionary with 80.000 entries

55

When adding a new rule, the expert must take into account the meaning of this rule induced by the
rules order, and by their syntagmatic concatenation on the word. As the grammar complexity
increases, the control of the implicit logic becomes more difficult. Then it is necessary to treat non
optimal grammars, and overall to detect prospective rules redundancies and incoherences, which do
not affect, or not much, the text-to-phone global results: grammar determinism is ensured by rules
writing order. On the other hand, word treatment time, and necessary memory size are uselessly
increased, and the linguistic description becomes non optimal. Moreover, if we consider the PHOT
phone-to-letter grammars, which is the resuit of the inversion of TOPH grammars, parasite phones
introduction, by redundant or incoherent rules, makes invalid the linguistic formality of PHOT

grammars.

In the next two paragraphs we introduce TOPH and PHOT systems, after that we present different

tools to verify the coherence and the redundancy of language TOPH rules.

2. TOPH system

TOPH (Transcription from Orthograph to PHonetics) is a multilanguage text-to-phone system, which

allows to transliterate a graphic string to a phonetic one.

A TOPH language grammar is constituted of two modules:

1. The first module contains the declaration of the sets, which allows to describe in the same syntax:
 Phonetic class, like the set of nasal consonants: "Nasal Consonants" = (n, m, ...)
* Lexicons of words which correspond to non regular etymological families, for example the
lexicon of words in which the letter "s" is pronounced in final, which is not generally the case in
French where a mute "s" is a plural mark: "Lexicon s final" = (bu, consensu,...), which
corresponds to the set (bus, consensus,...)

2. In the second module transposition rules (partitioned into classes) are described. Rules class is

determined by the first character in the transliterated string. Rule syntax has the following form:

(CtxtG) +Ch_graph+ (CtxtD) {Ens_Ctg} —> [Ch_phon]

where CtxtG, CtxtD are respectively left and right contexts which could be empty, Ch_graph is the

string to transliterate, Ens_Ctg is the set of lexical categories with which this rule should be applied

(could be empty in general when the rule does not treat a morpho-phonologic or morpho-syntactic

ambiguity), Ch_phon is the correspondent phonetic string.

a. Organisation of a class: vertical order
Rules in the same class are not defined independently one of others; rules complete contexts are not
explicitly given, but they are described by a local order relation, which is defined as "vertical”, on the
class of rules. This order is the one given sequentially by the expert, for example:

RI: ("Vowel") +s+ ("Vowel") —> [z]

R2: +s+ —> [s]

56

If R1 is a rule followed by R2 (R1, R2 means that the grapheme "s" in a vocalic context is voiced and
pronounced [z] instead of [s] in the general case),then the explicit description of R2 is R3:
R3: (o) +s+ (B) —> [s]
where o, B = VT\("Vowel"), where VT is the terminal vocabulary of the grammar.
The expert develops rules in each class with the logic "If R1 is applicable then apply R1; else if R2 is

applicable then apply R2; else ...". So, in each class, the grammar is always determinist, even if the

complexity of a class makes the administration of the vertical order (by the expert) very difficult..

b. Organisation of the grammar: horizontal order

We have seen that the grammar determinism is ensured, inside the same class, by rules vertical order.
The determinism of the grammar all over the classes is ensured by another mechanism of order in
rules application, which will be defined as an "horizontal order” on the grammar. To define this order,
let the string "gu” be the input string,:

Extract of ""gu" class

R4: +gu+ —> [g]

RS: +g+ —>[g]
If we explicit R5 according to intra-classes vertical order, R4 and R5 will be independent and stated
as:

R4: +gu+ —> [g]

RS: +g+ (VT\u) —> [g]

The two rules R4 and R6 describe the same transcription window "gu":
R6: (g) +u+ —> [u]

R4 transliterates all "gu”, R6 transliterates "u" in "gu". So, there is an ambiguity. However, input
order is imposed from left to right; which implies that R4 will be applied, and R6 will never be taken
into account (R6 is inaccessible).

Then, input order (from left to right) implies, implicitly, an horizontal order of inter-classes rules
application.

Horizontal order sets the expert the fundamental problem of the choice of graphemes: it is difficult to
maintain the coherence of this choice between classes, because rules are developed class by class
according to the vertical order.

3. PHOT System

PHOT (Transcription from PHonetics to Orthograph) is a description language for spelling grammars.
PHOT grammar rules are obtained by the inversion of TOPH grammar, grouped in phonetic classes.
A PHOT grammar is composed of two modules:

1. The first one contains the declaration of the sets (the same of the initial grammar TOPH)

57

2. The second contains transcription rules which are partitioned in classes of phones. A rule syntax
has the following form: '
(Ch_graph) —> (CtxtG) +[Ch_phon]+ (CtxtD) {Ens_Ctg}

Example:

R7: [s]—> ("#"+tourne) +s+ (0l+"#")

RS: [z — ("Vowel") +s+ ("Vowel")
Then, "s" in a vocalic context, in the word "tournesol” (turnsole) [turnasal], is not pronounced [z] but
[s] to give the oral information of the morphologic structure, which is the agglutination of the two
lexemes "tourne" (to turn) and "sol" (sun). -
This grammar, which describes correspondences between a sequence of phones and the set of
contextual strings which could produce it, will be the base of our model for the phonographic spelling

correction.

4. Preliminary definitions

» Anuleis called redundant if there are other rules in the grammar, which treat all (or a part) of the
same graphic string (with correspondent contexts), and generate the same phonetic transcription.

* Anuleis called incoherent if there are other preceding rules in the grammar, which treat all (or a
part) of the same graphic string (with correspondent contexts), and generate the same phonetic
transcription. '

* The local (or global) study of the redundancy of a given rule consist in looking for the first (or all)
redundant rule(s) in the grammar.

* The local (or global) study of the incoherence of a given rule consist in looking for the first (or
all) incoherent rule(s) in the grammar.

S. Utility of the research and treatment of redundancy and incoherence
The treatment of redundant and incoherent rules is very important to optimise memory and

computation time, and also from a rules linguistic description validity point of view :

5.1. Redundancy and incoherence effect on phonetic transcription execution time
The necessary time to transliterate a word is equal to ZT(gr), where T'(gr) is the necessary time

greword

to find the applicable rule on the graphic string gr in the correspondent class.

The average time necessary to find the rule is: T, .(gr) = z T.(gr)xProp,
i€[l.n]

where n is the number of rules in the class correspondent to the string "gr",‘ T:(gr) is the necessary

time to reach the ih rule (equal to i operations) and Pr op; is the probability of using the ith rule.

58

In TOPH, the last rule of a class is always the general one (supposed to be the most frequently used).

So, in this case:

) n+l)
Everage (gr) = ZZ*PI op; 2 -2—0peratzons
i€[l..n]
Therefore, the time necessary to transliterate a word depends on the number of grammar and on the

position of each rule inside the class.

5.2. Redundancy and incoherence effect on the size of memory

The necessary memory to store rules is;

Me’norylalal = nb * Mernoryrule

rules

where nb

rules

is the number of rules in the grammar, and Memory,,, is the constant memory size

necessary to store one rule.

5.3. Redundancy and incoherence effect in determining the set of phones in PHOT

We have seen that it is difficult, for the expert, to determine, in a single way, the graphic string which
he must choose as string to transliterate in TOPH rules. While TOPH grammar determinism is
ensured by the horizontal and vertical order, this choice could modify the set of phones, which implies

considerable modifications in PHOT.

Example

Considering the following rules in TOPH grammar:
R9 : ("#'+qu) Ha+ ("#") —> [ija] ("quia" —>[kija) (quia))
R10: ("#'+qu) +i+ (¢,a) —> [ij] ("quiétude” —> [kijetyd] (quietude))
R11: +a+ —> [a]

When inversing this grammar, we will have the strings "ija", "ij" and "a" (correspondent to the
graphemic strings “ia", "i" and "a") in the phonetic input group. Then, in eliminating R9, which is
redundant comparing to R10 and R11 in TOPH, the phonetic string "ija" will be, consequently,

eliminated from the set of phones concerning PHOT.

6. Local study of the redundancy and the incoherence

The local check of redundancy and incoherence is applied on a new inserted rule, in an optimal
grammar, in which there is neither rédundancy nor incoherence. In this case the research is stopped
when finding the first rule which can be applied on the string to transliterate of the new rule.

59

6. 1. general method
To test redundancies and incoherences of rules in the grammar, we proceed as follows:
* Remove the studied rule from the grammar to get the new grammar.
* Transliterate the grapheme of the studied rule, considering right and left contexts, using the new
grammar.
« If there was no applicable rule in the new grammar then the studied rule is not redundant neither
incoherent.
* Else, compare the result of the transcription (the phone produced by the applicable rule) with the
phone produced by the studied rule:
— if they were equal then the studied rule is redundant to the applicable one.

— else the studied rule is incoherent to the applicable one.

6.2. Computational time

If we explicit the jth rule under the form:

(Seto, + Set,+...+Set,+...)+ Ch_graph + (L ASetyt Ay j){Ens_ Ctg} — [Ch_ phon]
where Set;; is the set of strings limited by two plus signs, in the jt rule. Then, total execution time is

NbRules NbConcat

of the order: z

j=1 i=1

j

Set,.jl, where |Set,.j‘ is the cardinal of the set i, in the jth rule.

6.3. Memory size ,
Memory size is proportional to the number of rules in the grammar:
Memory,,,, =nb,,,.*Memory,,,
6.4. Examples of local redundémcy
Rules are redundant if :
K They are identical in their expression.
* They can produce the same string | ;
“ R12: ("#'+"EXCEP:00") +00+ —> [u] (e.g. "boolihg" —> [bulig] (booling))
R13: ("#"+igl) +00+ —> [u]
where the set "EXCEP:00" contains the element "igl". ‘
* One string produced by a rule is a -sub-string of a string which is producéd by another one. For
example (the following rules treat etymologically Greek words):
' R14: (spiro, sti, sto, stee, syn, sporotri) +ch+ (a,8,6,i,0) —> [k]
RIS: (tri) +ch+ (i) —> [K]
where "trichi" C "sporotrichi", and "trichi" is a string produced by R15 and "sporotrichi" is an
element of the set of strings produced by R14.

60

= One rule can be replaced by a set of other general rules, for example with the following rules we can
have the same phonetic transcription obtained by the rule R16, in applying successively R17 and R18:

R16: +iu+ (m+"#") —> [jo] (Latin final "-ium", e.g. "atrium" —> [atrijom])
R17: +i+ ("Vowel") —> [j] (general rule, like in "sioux" —> [sju] . (Sioux))
R18: +u+ (m+"#") —> [0] (Latin final "-um", e.g. "quantum" —> [kwdtom])

6.5. Examples of local incoherence
Incoherences occur when:
* The expert puts a rule treating a particular case after the general rule, so the system stops always
before reaching the second, for example :

R19: ("#"+st) +ea+ (k+"#") —> [g]

R20: ("#"+st,str,sw) +ea+ —>1[i] (like in "steamer” —> [stimRr] (steamer))
» The expert treats the same case using graphemes with different length, for example:

R21: ("#"+séqu) +o+ (ia) —> (o] ("séquoia” —> {sekoja] (sequoia))

R22: ("#"+séqu) +oia+ ("#") —> [oja]
» The expert treats the same case in two different ways :

R23: ("#"+m) +oe+ (re) —>[] ("moere" —> [mwer] (polder))

R24: (m) +oe+ (re) —> [we]

7. Global study of the redundancy and the incoherence -

In this -case, the rules of the grammar are written by the expert without local treatment of the
redundancy or the incoherence. To optimise this grammar, the local research method explained before
is incomplete: the research is stopped at the first applicable rule, and this will possibly hides other
redundant or incoherent rules. ‘

A global research method allows to identify all redundant and incoherent rules in the grammar, in

extending the local research algorithm to find all the applicable rules on the string to transliterate.

7.1. Examples of global redundancy ‘ _
* Redundancy global research of the studied rule detects one (or a set) of redundant rule(s), for
example the rule:
R25: ("#"+tr) +ou+ (ée+"#") —>[u] ("trouée” —> [true] (breach))
has the following set of redundant rules:
R26: (tf,c,b,p+"Liquid Cons.") +ou+ —> [u]
R27: ("#"+ encr,tr) +ou+ (¢, er) —> [u]
R28: ("Cons."+"Liquid Cons.") +ou+ ("Vowel") —> [u]
In this case, we could have rules which treat the same case (with contexts of different length), and

then we could unify these rules, if possible, in one general rule.

61

* Detected global redundant rules are parasite: this case is the result of the exhaustive research of
applicable rules, and it happens when a succession of letters implies the application of a general rule
concerning this succession, but not in words in which another (more general) rule must be applied.
For example, the general rule R29 to transliterate the grapheme "a" in the succession ay"Vowel" is:
R29 : +a+ (y+"Vowel") —> [e] (like in "payer” —> [peje] (fo pay))
On the other hand, there are certain words like "pagaye" (disorder) which do not follow this rule but
the general rule R30 of the class " a" :
' R30: +a+ —> [a]
but, because rules in each class are treated by vertical order, the expert must put the rule R31 which
treats this word before R29:
R31: ("#"+pag) +a+ (ye) —> [a] ("pagaye" —> [pagaj] (disorder))

This is why, the application of the research global of R31 redundancy will give R30 as a redundant
rule (parasite redundancy). This result allows to find exception rules treating exception words, to put
them in a set of exceptions "EXCEP:AY", and to replace R29 by R32:

R32: +a+ (y+"Vowel") \ ("EXCEP: AY") —> [€]

where \' means the "except" operation.

7.2. Examples of global incoherence
* Global research detect for thestudled rule a set of incoherent rules, for example the rule:

R33: +o+ (in+"Non Nas.Cons.") —> [w] (like in "lointaine" —> [Iwé&ten] (distant))
has the following set of global incoherent rules:

R34 : -i—oin+ ("#","Cons.") —> [WEg]

R35: +oi+ —>[wa]
* Detected global incoherent rules are parasite: this happens when a graphic string follows a certain
rule, except in words (which must be given in rules situated before this rule, "vertical order” of
applying the rules). Then the global research will detect the exception rules as incoherent to the
studied one. For example, the general rule applied on the grapheme "u" followed by a vowel is R36:;

R36: +u+ ("Vowel") —> [y] (like in "quidam”" —> [kyidam] (person))
but there are exceptions where this rule is not applicable, as in following rules:

R37: +u+(e+"#) —>[y] (ke in "rue" —>[ry] (street)

R38: +u+(y) —> [ui] (like in "tuyauter” —> [tuijote] (to quill))

which must be met before R36, and so detected as incoherent rule.

62

8. Conclusion

Redundant and incoherent rules, which are detected by the algorithm are not automatically filtered: in
treating a TOPH French grammar of 1200 rules, we have established the fact that they reveal more
much deep linguistic incoherence problems (usually in relation with the horizontal order, from which
maximum graphemes are defined).

The list of rules is proposed to the expert, who has the choice to handle the grammar.

After obtaining the new optimal grammar TOPH, we inversed it to produce the correspondent
grammar PHOT. Inthe PHOT system, the graphemic strings are generated under the strong constraint
of right and left phonetic contexts (calculated like the phonetic correspondences of the orthographic
contexts in the TOPH grammar) surrounding the processed phonetic string.

This is not the case of all the phone-to-letter systems developed for French spelling errors
environments, which use correspondences between graphemes and phonetic strings without any
contextual constraints. This is why the number of orthographic solutions produced for one phonetic

string in such systems is very numerous in comparison with that produced using PHOT.

7. References

[Aubergé 91] V. Aubergé, "La syntheése de la parole: des régles aux lexiques”, These de l'université Pierre
Mendes France, Grenoble2, 1991,

[Belrhali 92] R. Belrhali, L. Libert, V. Aubergé, L.J. Bog, "Elaboration des lexiques d'une grammaire de
phonétisation du frangais", 19es JEP-SFA, Bruxelles, 1992,

[Catach 89] N. Catach, "Les délires de 1’orthographe", Plon, 1989.

[Laporte 89] E. Laporte, M. Silberztein, "Vérification et correction orthographique assistées par
ordinateur”, Actes de la 1ere conférence européenne sur les techniques et les applications de
I'Intelligence Artificielle en milien industriel et de service, Hermes, 1989.

[Pérennou 86] G. Pérennou, P. Daubeze et F. Lahens, "Vérification et correction automatique de textes, prise
en compte de fautes orthographiques et typographiques, Un modele VORTEX", TSI, vol. 5,
n°4, juillet-aoiit, 1986.

[Strube de Lima 90] V. L. Strube de Lima, "Contribution 2 1'étude du traitement des erreurs au niveau lexico-
syntaxique dans un texte écrit en frangais”, These de 'Université Joseph Fourier, Grenoble I,
1990.

[Véronis 93] J. Véronis, "Distance entre chaines : extension aux erreurs phono-graphiques”, Travaux de
I'Institut de Phonétique d’ Aix, vol. 15, pp.217-234, 1993,

63

ERROR CORRECTION OF SPEECH RECOGNITION

OUTPUTS USING GENERALIZED LR PARSING
AND CONFUSION MATRIX

Tatsuya Iwasa and Kenji Kita

Faculty of Engineering

Tokushima University
Minami-josanjima, Tokushima 770, JAPAN

e-mail. {iwasa and kita}@is.tokushima-u.ac.jp

Abstract

In this paper, we describe a method for correcting misrecognition results derived from a
speech recognizer. Our method is based on generalized LR parsing and uses a confusion matrix
in order to select the best sentence out of multiple candidates. The proposed method was

applied to the actual speech recognition system developed in our laboratory.

1 Introduction

Recenﬂy, remarkable progress has been made in acoustic modeling research, with hidden
Markov models (HMMs) and a neural network-based approach. However, speech recognition
based on acoustic information alone does not result in good performance for large vocabulary
tasks. Successful speech recognition/understanding requires the use of linguistic information.

There are two approaches using linguistic information:

(1) To directly use linguistic information at recognition time.

(2) To correct recognition outputs using linguistic information.

'This paper is concerned with the second approach. In this paper, we describe a method for

correcting misrecognized utterances using lexical and syntactic information. More precisely, we

101

describe an error-correcting generalized LR parser using candidate scoring based on a confusion
matrix. The use of the confusion matrix provides a good cost calculation scheme and contributes
to select the most likely sentence out of multiple candidates. Saito et al. [1] already proposed an
error-correcting method using generalized LR parsing and a confusion matrix. Their method,
however, assumes that consecutive errors do not occur in the misrecognized utterances. Our
method is based on error-correcting LR parsing introduced in [2], which can handle consecutive

errors, and is enhanced with scoring by the confusion matrix.

2 Speech Recognition System: An Overview
This section describes a speech recognition system developed in our laboratory.

2.1 Acoustic Models

As acoustic models, we adopt hidden Markov models (HMMs for short) [3], which have been
successfully used in recent state-of-the-art speech recognition systems. HMMs are stochastic
models suitable for handling the uncertainty that arises in speech, such as contextual effects

and speaker variabilities.

In our speech recognition system, Japanese syllables are used as the basic HMM unit because
the whole word-based approch is difficult to meet the real-time requirements in case of the large
vocabulary size. There are about 100 phonetically different spoken syllables in all. Each syllable
is represented by a continuous mixture HMM, in which an output probability density function
is characterized by a 39-component diagonal covariance Gaussian mixture. See Table 1 for

speech analysis conditions.

2.2 Recognition Method

As stated above, our system uses hidden Markov models of syllables as the basis for speech
modeling. Word models are built by concatenating syllable models. The speech recognition
module performs a time-synchronous Viterbi beam search, matching syllable models against
the speech input. That is, it maintains a beam of the best scoring candidates and extends these

one frame at a time. Recognition candidates with a low likelihood score are pruned.

102

Table 1: Speech analysis conditions

Sampling frequency and precision | 16 kHz, 16 bit
Pre-emphasis 1-097:71
Hamming window 25 ms
Frame period 10 ms
Acoustic parameters 12 MFCC (mel-frequency cepstral coefficients)
+ 12 A MFCC
+ 12 AA MFCC
+ power
+ A power
+ A A power
(39 dimensions in all)

All candidates cover the utterance from the beginning to the most recently processed frame.
As a recognition path reaches the end of a syllable model, the search transits to the beginning
of syllable models that can follow the current syllable which ends the path. Currently, our
system uses no restrictions concerning syllable connections (i.e. any syllable can follow any

other syllables). In the speaker-dependent condition, the syllable recognition rate is around

90%.

2.3 Examples of Recognition Outputs

Since our speech recognition system does not use any syntactic or semantic knowledge, it
sometimes produces a syllable sequence which include misrecognized syllables. Table 2 shows

some examples of recognition outputs.

Table 2: Speech recognition examples

‘ bf Real sequence 1 bf Recogniged sequence
1 | ha chi ga tsu yo Q ka no yo ru ka ra de su | ha chi ga tsu yo Q ka no yo [ro] ka ra de su
2 | 1tsu ka ra o to ma ri ni na i ma su ka itsu ka ra [] to ma 1i ni na ri ma su ka
3 | wa ka i ma shi ta wa ka 1i [i] ma shi ta

There are three types of errors as follows:

1. Substitution error
A syllable is incorrectly recognized as another syllable. For example, the tenth syllable

/ru/ in example (1) is recognized as /10/.

103

2. Deletion error
A syllable which is actually spoken is not recognized. For example, the fifth syllable /o/
in example (2) is a deleted syllable.

3. Insertion error
A syllable which is not actually spoken is recognized. For example, the fourth syllable

/i/ in example (3) is an inserted syllable.

3 Error-Correcting Method: An Example

S —- NP V
S — Vv
NP —- N
NP - N V
N — ko re
P — o
V — ku re
V — o ku re

Figure 1: Example of Grammar.

action goto

o ko ku re $ |S N V P NP
0 sh 5 shl sh4 7 2 6 3
1 re 8
2 |sh9,red re 3 10
3 sh b sh 4 11
4 sh 12
5 sh 13
6 re 2
7 acc
8 re 5 re 5
9 re 6 re 6
10 re 4 re 4 _
11 re 1
12 re 7
13 sh 14
14 re 8

Figure 2: LR parsing table for Figure 1

104

In this section, we present a sample trace of the error-correcting parser. An error-correcting
method is essentially based on [2]. Nodes indicated by @, © and O are state vertexes. State
vertex © shows a Vca(current active vertex). Parsing actions are performed against all the
current vertexes. State vertex O shows a Vna(next active vertex), that is, it will become an
active vertex in the next step. Our error correcting parser has four kinds of parses. The first
one is a deletion-correcting parse, whose results are included in Vca. The second one is a
matching-parse, whose results are included in Vna. The third one is a substitution-correcting
parse, whose results are included in Vna. The fourth one is an insertion-correcting parse, whose

results are included in Vna.

[4

In our example below, syllable sequence “o re ku re” will be corrected using the grammar

in Figure 1 and the LR parsing table in Figure 2. For simplicity, the following assumptions are
made:

(1) Syllable /a/ may be substituted by /o/.

(2) Syllable /o/ may be deleted.

(3) Syllable /re/ may be inserted.

(4) Two cosecutive syllables cannot be deleted.

Initially, state O is created.

Parsing the first syllable /o/

The assumption (2) creates a deletion-correcting parse in Figure 3. The parser looks for deleted
syllable candidates before the first syllable /o/ in “o re ku re”. By referring to the LR table,
at state 0, /o/ expects the action “shift 5”. The parser creates a new grammar vertex labelled
by “o” containing “1, del”. Here, “1, del” means that we correct the first syllable as a deleted

syllable, and creates a new state vertex 5 which is included in Vca.

For the matching-parse in Figure 4, the parser considers all the state vertexes which is
included in Vca. At state vertex 0, by referring to the LR table, “shift 5” is indicated. The
parser creates a new grammar vertex labelled by “0” and a new state vertex 5 which is included

In Vna. At state vertex 5, no action is attached to syllable /o/.

105

0
© [sh 5] Deletion : Next Input Syllable = //
Candidate Syilable = /o/

Figure 3: Trace of Error Correcting (1)

1 5 1 o[1, del]
0
[sh 5] Match : Next Input Syllable = /o/
s Candidate Syllable = /o/

Figure 4: Trace of Error Correcting (2)

The assumption (1) creates the substitution-correcting parse in Figure 5, At state vertex 0,
by referring to the LR table, “shift 1” is indicated. The parser creates a new grammar vertex
labelled by “a” and a new state vertex 1 which is included in Vna. At sate vertex 5, no action

is attached to syllable /a/.

e N
1
. R 1 of1, del]
0 < 2 o1, mat]
©[sh 1] -
2 5 Substitution : Next Input Syllable = /o/
M Candidate Syllable = /ko/
N J

Figure 5: Trace of Error Correcting (3)

Our assumption tells that /o/ is not inserted.

Parsing the second syllable /re/

The matching-parse in Figure 6 has a current active vertex 1, which expects “shift 8” by syllable
/re/. The parser creates a new grammar vertex labelled by “re” and a new state vertex which

1is included in Vna.

The assumption (3) tells that /re/ is possibly inserted. Thus, we obtain the insertion-
correcting parse in Figure 7. The parser creates a new grammar vertex from each Vca and a

new state vertex which is included in Vna.

106

z 5 1 of1, del]
0 2 o[1, mat]
3 1 3 kol[l, mat]
[sh 8] Match : Next Input Syllable = /re/
Candidate Syllable = /re/
- J

Figure 6: Trace of Error Correcting (4)

7 N
2 > 1 of1, del]
o[1, de
0 [sh 3] 2 o1, mat]
3 1 3 ko[1, mat]
[Sh 1] 4 re[2, mat]
4 8
Insertion : Next Input Syllable = /o/
Candidate Syllable = /@/
N _J

Figure 7: Trace of Error Correcting (5)

Parsing the third syllable /o/

The assumption (2) tells that /o/ is possibly deleted. Thus, we obtain the deletion-correcting
parse in Figure 77. By referring to the LR table, state 8 has action “reduce 5”. A reduce action
will be performed in the same manner as in generalized LR parsing. The parser creates a new

grammar vertex labelled by “N” containg “3 4”. The parser creates a new state vertex 2.

Parsing the end-symbol /$/

State vertex 14 expects “reduce 8” in Figure 8. In reduce action, if the path includes the

insertion-symbol(”@”), our algorithm executes one more pop.

(10[l,del] 12P[7)
18 14 20[1, mat] 13NP[11]
[re 8] 3ko[l, mat] 14NP[712]
4 re[2, mat] 15 ku [4, mat]
20 13 5 @[2,ins] 16 ku [4, mat]
6 @2, ins] 17 ku [4, mat]
TN[34] 18re[5, mat]
8NP[7] 19re[5, mat]
[re 7] 90[3,del] 20 @ [5, ins]
10 0[3, del] 21 @ [5, ins]
IIN[34]

Match : Next Input Syllable = /$/
Candidate Syllable = /$/

Figure 8: Trace of Error Correcting (6)

107

After this action, the stack is as in Figure 9.

lo[l,del] 22V[101518]
20[l,mat] 23 V[251518]
3ko[l, mat]24 V[16 19]
18 14 4re[2,mat] 25V [17 19
5 @[2, ins]
6 @[2, ins]
20 13 IN[34]
8NP [7]
9 o[3, del]
10 o[3, del]
11N[34]
12P[7]
I3NP[11]
14NP[712]
15 ku [4, mat]
16 ku [4, mat]
17 ku [4, mat]
18 re [5, mat]
19 re [S, mat]
20 @ [5, ins]
21 @ [5, ins]

Match : Next Input Syllable = /$/
Candidate Syllable = /$/

Figure 9: Trace of Error Correcting (7)

4 Confusion Matrix

A confusion matrix shows the probability of recognition (syllable by syllable). Figure 10 shows
an example of a confision matrix. The first line shows that if the syllable /a/ is spoken, then
it is recognized correctly 69.5% of the time; misrecognizes it as /i/ 2.4% of the time, as /ka/
2.4% of the time, and so on. The last column shows the deletion probability. Therefore the
probability that syllable /a/ was a deleted syllable is 8.5%. The last line shows insertion
probability. Therefore the probability that syllable /a/ was a inserted syllable is 3.8%.

4.1 Cost Calculation Using Confusion Matrix

We calcurate the cost for the incorrect syllables as following,

1. Deleted syllables
According to a confision matrix, the syllable /o/ is deleted more frequently than any

other syllables. Thus, we parse the syllable /o/ with low cost than any other syllables as
deleted syllable.

108

a i u € 0 ka | ... @

a 695 24 00| 00| 00| 24 8.5
1102 8.6 0207] 02| 0.0 4.5
u | 00 09 8.1 09| 00| 00 7.1
e | 00|19 | 00 840)| 0.0 | 0.0 2.8
o| 00|00 |00]|00/]693]| 0.0 11.6
ka| 0.0 | 0.0 | 0.0 | 0.0 | 0.0 |97.7 0.3
@ |38 [265] 38 | 17| 38|04

Figure 10: An Example of Confusion Matrix

2. Substituted syllables
According to the confusion matrix, not all syllables can be substituted to any other
syllable. If the syllable /a/ is generated from the device, there is a slight chance that
original input was /i/ or /ka/,respectively, but no chance that the original input was
/u/,/e/ or [o/. Thus,we pase the substituted syllable /i/ and /ka/ with lower cost than

any other syllables.

3. Inserted syllables
According to the confision matrix,‘ the probability of the syllable /i/ being extra is higer
than the probability of any other syllables. Thus, we paese the syllable /i/ with lower
. cost than any other syllables as inserted syllable.

4.2 An Error-Correcting Example

We include an error-correcting example in Table 3. The correct sentence is “ka i gi ni sa N ka
shi ta i no de su ga”, which means “I would like to register for the conference” in English. This
sentence was misrecognized as “i1 Q ka i gi ni sa N ka shi ta i no de su ga”, but successfully

corrected.

5 Conclusion

This paper described a method for correcting misrecognition results derived from a speech
recognizer. Qur method is based on generalized LR parsing and uses a confusion matrix in

order to select the best sentence out of multiple candidates.

109

Table 3: An Error-Correcting Example

sentence
correct ka i gi ni sa N ka shi tai no de su ga cost
misrecognized | 1 Q ka i gi ni sa N ka shi ta i no de su ga
1 @ @ kaiginisaN ka shi tainodesuga 0.24
2 @ @ ka1 ginisa N ka o shi taino desu ga 0.29
3 001@kaiginisaN ka shitainodesuga 0.33
4 @ @ kaiginisaN kaoshi Qta@nodesuga 0.36
5 oo0i@kaiginisaN ka o shitaino desuga 0.38
6 @ @ kaiginioosa@ kaoshitainodesuga 0.40
7 @Q@kaiginisaNkaoshitaoooinodesuga |0.42
8 ooi1@kaiginisaNkaoshiQta@nodesuga | 045
9 @ @kaiginioosa@ kaoshiQta@ nodesuga| 047
10 @ @kaiginisaNkaoashitaooinodesuga |0.49
References

[1] H. Saito and M. Tomita: “GLR Parsing for Noisy Input”, Generalized LR Parsing, Kluwer
Academic Publishers (1991).

2] T. Nagaoand E. Tanaka: “An Error-correcting Algorithm for Context-free Languages Based
on a Generalized LR Parser”, IEICE Technical Report, COMP94-66 (1994).

[3] X. D. Huang, Y. Ariki and M. A. Jack, Hidden Markov Models for Speech Recognition,
Edinburgh University Press (1990).

[4] A. V. Aho, R. Sethi and J. D. Ullman: “Compilers, Principles, Techniques, and Tools”,
Addison-Wesley (1986).

[5] M. Tomita (Ed.): Generalized LR Parsing, Kluwer Academic Publishers (1991).

110

THE PHONETIC VARIANTS OF TATWANESE "VOICED" STOPS:
AN AIRFLOW STUDY

Ho-hsien Pan
pan@ling.ohio-state.edu
Department of Linguistics
The Ohio State University, Columbus, OH, 43220
Abstract: As in other languages with "voiced" stops, the phonetic
realization of Taiwanese /b/ andk /g/ is highly variable from one context
to another. Zhang (1983) even claims that they are replaced by
homorganic nasals [m] and [n] when the syllable is closed by a nasal.
The positional variants were examined‘ using oriil and nasal airflow
recordings. Three types of syllable structures were chosen with initial
voiced stbps in CV, CVN, and CVC. The target syllables are placed in
utterance initial posifion and in medial positions after nasals, vowels,
and voiceless stops. Utterance initially, there is a voiceless
prenasalization, although its occurrence is strongly speaker-dependént.
When preceded by nasals, the prenasalized voiced stops alternate with

post-stopped nasals. When preceded by vowels, the prenasalization

was found only in nine out of 630 tokens.

Introduction

As in ’other languages with "voiced" stops, (e.g. Spanish where the voiced
stops show up as spirants) the phonetic realization of Taiwanese /b/ and /g/ is highly
variable from one context to another. For example, in utterance initial positions, they
are said to be "prenasalized" as well as prevoiced, and the prenasalization is voiceless
(Chan, 1987; Zhang, 1983). That is /b/ here is [Mb] (or [¥b]) and /g/ is [9g] (or

[Bg]). // will be included here, because /I/ fill the systematic position where one

191

would expect and /d/. However, the prenasalization is not easily observed in the
acoustic data collected here (e.g. Figure 1), nor could it be noted in the fiber-optical
study done by Iwata et al.(1979), since they looked at glottal width not velo-
pharyngeal opening width. In order to analyze the prenasalization, an air flow study
is necessary. In an airflow study any air flowing out of nose and mouth are recorded
independently, regardless of whether the air causes vocal folds to vibrate or not.
Therefore, an air flow study is most efficient in picking up voiceless nasal articulation
with low amplitude, such as the prenasal segments here.

The airflow data are used to address two issues: first , the precise distribution
of initial (prenasalized) voiced stops and initial nasals with regards to following
segmental environments. The relationship between Taiwanese initial voiced stops and
initial nasals is a controversial one. Historically, Taiwanese initial voiced stops came
fron: initial nasals. Many studies influenced by the diachronic relationship between
the two séries, proposed an all'ophonic relationship between the two. According to
Zhang, Taiwanese voiced stops change into homorganic nasals when the syllables are
closed by nasals. |

/b, 1, g/ ----- > [m, n, n}/ 9, VN.

However a counterexamples such as /gog/ [gon1] 'dizzy' was found by Pan (1994),
as shown in Figure 2. This counterexample raise doubts to the rule. What challenges
the validity of the rule even more is that the rule does not mention anything about /by
4/ [moar] 'door' (Figure 3), If Taiwanese initial voiced stops and nasals are indeed in
an allophonic relationship, then CN syllable structure should definitely be mentioned
in Zhang's rule. Therefore air flow data is brought in to test the phonological rule

Zhang proposed.

192

o i e

AT . .

Lo, | d * . A=

(a) waveform

 100; misec I - Ko

e ~
? i

T L

TR

—(
W

[.‘.liix’]
fiitins
FESN N T

I!

L

(b) Spectrogram

Figure 1 (a)- waveform, (b) spectrogram, Taiwanese /bo+/ [bo-] 'hat’

193

|

(a) waveforms
100 msec
| KHz
; 7
i
¥ 6

(b.) Spectrogram

Figure 2 (a) waveform, (b) spectrogram /gag/ [g:m*i] 'dizzy’

194

(a) Waveform

KHz

(o)}

(%))

]
ie

b 'Hl‘ﬂ 1‘4'{3“

(b.) Spectrogram

i

1, il

Figure 3 (a) waveform, (b) spectrogram /bap/ [mam] 'door’

The second issue addressed is to find out the actual phonetic variants of
Taiwanese voiced stops in utterance initial position and other positions not usually
elicited in field studies such as Zhang's (1983).

Method of Air Flow Study
Instrumentation

An oral and nasal dual channel Rothenberg air flow mask was used to collect
airflow. The airflow signals were recorded by digitizing directly to the hard drive of a
80486 PC. The signals were digitized at 10 kHz using Cspeech version 4.0. There is
a 10 ms delay in the nasal air flow due to the 30 Hz filter used. The response time
and delay of this filter are both about 10 ms.

Subjects

Seven male native Taiwanese speakers from the graduate school of The Ohio
State University participated voluntarily in the experiment. They are all u-i-ﬁngual
speakers of Taiwanese, Mandarin, and English. CF, YF, and BH all grew up in
Tainan (Southern Taiwan). HIJ is the only speaker from Taichung (Central Taiwan).
LK is from Pingtong (Southern Taiwan). WS é.nd CC are from Taipei (North
Tajwan)‘. The dialectal differences of Tajwanese spoken in South, Central, and North
Taiwan are not relevant to the study here.

Corpora

Morphemes with target initial consonants were recorded in three separate
contexts --- citation form, phrase initial position, and phrase medial positions
following vowels, voiceless consonants, and nasals.

Table 1 shows the fifteen Taiwanese morphemes with three different syllable
structures, CV, CVN, and CV+[voiceless stops], in the citation forms. Taiwanese

initial /I/ was also included, since it shows the same distributional pattern relative to

196

Table 1 The fifteen citation form morphemes in the three different syllable structures.

Cv: CVN CV+{[voiceless stops]
labial
/ba1 / ‘numb' /bay/ 'mosquito’ /ba?y/ 'meat’
/band/ ‘slow' /baky/ ‘eye'
dental
flad/ ‘stir' Nlat4/ 'human' Nlaky/ 'six'
flany/ ‘'we, us' Mlapy/ ‘pay’
velar
/gia1/ ‘centipede’ /giam~/ 'strict’ /gety/ evil

/geny /'study’

/giapy/ ‘press'

the nasals as /b/ and /g/ do. Table 2 shows the same fifteen morphemes embedded in

phrase initial position. The 45 phrases with morphemes embedded in phrase-medial

position are shown in Table 3. The segments preceding the chosen morphemes

included vowels, voiceless stops, and nasals. All tokens were randomized. There are

two répetitions for most items in the corpus. Due to copying mistakes in making the

lists, some items were repeated only once, while others were repeated three times.

There are all together six such list-making mistakes. However, this should not affect

the interpretation of the results, since there is large number of samples (154 tokens)

Table 2 The phrases with the target morphemes embedded in initial position.

[AY

/ba-biN/ 'paralysis'
Madton/ 'stir soup'
/gia‘kail/ 'centipede'
CV+voiceless stops
/ba?Nwan1/ ‘'meat ball
[baktciu/ ‘eye’
flakvsiall/ 'six pairs'
NlapsWeyd/ 'pay tax'
/giapNa?y/ 'tong'
/giatdtsuN/ 'disobedient child'

CVN

/banla?y/ 'mosquito’

/bandfun1/ '(train, airplane) delay'
flanita-de1/ ‘we'

flagdba?</ 'human flesh'
/giam-geky/ 'strict’

/genkiuv/ ‘research’

197

Table 3 Examples of phrases with target morphemes embedded in the phrase medial
position after vowels, voiceless stops, or nasals (The preceding context segment and
target voiced stops are in bold face.)

A. Preceded by vowels

-V+CV

/siodzi1ba-piV/ ‘polio’

-V + CVN

/obaniay/ 'black mosquito'

-V + CV[voiceless stops]

/lobaiparH/ 'pork stew on rice
B. Preceded by nasals:

-N+CV

MlagHba-piV/ 'paralyzed person;

-N +CVN

/hun-baniay/ 'kill mosquito with smoke'

-N + CV[voiceless stops]

/kun-baisod/ 'simmer ground meat'
C. Preceded by voiceless stops

-[voiceless stops]+CV

/tau-ikhakqba-lpiql ‘brain paralysis'

-[voiceless stops] + CVN

/pha?‘ibama‘ll 'kill mosquito'

-[voiceless stops]+CV[voiceless stops]

fteiaNba™piay/ ‘eat meat patty'

198

for each subject, and the results are discussed "in terms of percentages, instead of
absolute numbers.
Procedure

Each subject was recorded in a sound booth holding an air flow mask against
his or her own face while reading the corpus. The experimenter was outside of the
booth controlling Cspeech to record the airflow data.

The recording consisted of three sessions. In the first session, subject were
instructed to produce phrases with chosen morphemes embedded in medial position.

In the second session, phrases with chosen morphemes in initial position were
produced. In the third session, subjects were instructed to produce individual
morphemes in citation form.
Data analysis

Data were displayed and analyzed with Cspeech 4.0. See sample displayed in
Figure 4. The oral and nasal airflow were compared to determine the presence of
prenasalization, and the two positions were markéd, as shown in the figure. Cursor A
was placed at the point where the nasal air flow ceases. Cursor B was placed at the
point where the oral air flow of vowel starts, as shown in Figure 4. In utterance initial
position, to avoid including subjects' breathing as the prenasalization of voiced stops,
50 ms is used as the cut-off point. If the duration between A and B is less than 50 ms,
then the token is judged to be prenasalized. Any trace of nasal airflow that are more
than 50 ms prior to the onset of voicing is judged to be breathing. When in phrase
medial position, if the duration between point A and B is less than 10 ms, then the
voiced stop is judged to be fully nasalized. The reason why 10 ms was used here as a
cut off point is because there is a 10 ms delay in the nasal air flow due to the 30 Hz

filter used.

199

(a)

~12Bms

(b)

137 ms

Ly T

/bun-goNe4/ 'distrubute five items'

Figure 4. Example of air flow analysis. (a) /ba4/ 'numb’
(b) Ibumg;Nel/ ‘distribute five items'. The upper channel is oral airflow. The
lower channel is nasal airflow.

200

(c) / m

122

/>+gia-kary/ ‘centipede’
(d)

(e)

/tau-khak<ba-piv/ ‘'brain naralvsi<'

Figure 4 (Continued) (c) />1giaikagV 'black centipede’ (d) /tcindgiam-ked/

'very strict’ (e) /tau-kNakyba-piy/ 'brain paralysis’

201

Results of Adult Air Flow Study

The results of airflow data will be discussed accordihg to the three types of
contexts: (1) citation form (2) phrase-initial position, and (3) phrase-medial position
after (3) vowels, (4) nasals, and (5) voiceless stops.
Citation form

Table 4 and 5 shows the percentage of prenasalized voiced stops in citation
form and phrase-initial position. Although tokens in citation form and phrase-initial
position were recorded in.different sessions, they are essentially in the same utterance
initial position. Therefore the results are discussed together. For voiced stops in
citation form, there does not seem to be any uniform pattern across speakers for the
presence of prenasalization. The occurrence of prenasalization was very speaker-
dependent. While subject CF, WS, and BH had low percentages of prenasalization
for voiced stops in citation forms, YF, LK, HJ, and CC had high percentages of
prenasalization. There was also no consistent pattern of differences across the
syllable types, either. |

The results from morphemes placed in phrase-initial position are also shown in
Table 5. Again, there was no uniform pattern for the presence of prenasalization.
Whether a token shows nasal air flow during the early part of the closure or not
seems to be arbitrary. While some subjects, like YF, LK and HJ, had high percentage
of prenasalization for the voiced stops, others like CF and WS had low percentage of
prenasalization. Again, the occurrence of prenasalization is very speaker-dependent

Phrase medial position

The results of voiced stops embedded in phrase-medial position are shown in
Table 6. For those voiced stops preceded by vowels, prenasalization was found only

in nine tokens and all these cases were due to the existence of alternate

202

Table 4 Percentage of prenasalized voiced stops produced in citation form:

Syllable Structures
Subjects
[voiced stops]+V [voice stops]+V+{stops] [voiced stops] + V+ N
CF 25.00% 16.67% 10.00%
(3/12) (2/12) (1/10)
YF 100.00% 91.67% 100.00%
(12/12) (11/12) (10/10)
LK 100.00% 100.00% 100.00%
(12/12) (12/12) (10/10)
HI 75.00% 75.00% 70.00%
(9/12) (9/12) (7/10)
WS 58.33% 33.33%. 40.00%
(712) (4/12) (4/10)
BH 33.33% 75.00% 70.00%
(4/12) (9/12) (7/10)
CC 100.00% 83.33% 60.00%
(12/12) (10/12) (6/10)

203

Table 5 Percentage of prenasalized voiced stops produced in phrase-initial position:

Syllable Structure
Subjects
[voiced stopsH+V [voiced stops]+V+([stops] [voiced stops] + V+ N
CF 37.5% 76.15% 66.67%
(3/8) (10/13) (6/9)
YF 100.0% 92.31% 100.0%
(8/8) (12/13) (9/9)
LK 87.5% 92.31% 100.0%
(7/8) (12/13) (9/9)
HJ 100.0% 100.0% 88.89%
(8/8) (13/13) (8/9)
WS 62.5% 61.54% 33.33%
(5/8) (8/13) (3/9)
BH 87.5% 92.31% 77.78%
(7/8) (12/13) (7/9)
CC 87.5% 84.62% 77.78%
(7/8) (11/13) (7/9)

204

pronunciations for the preceding or target words. For example, the word 'hair' can be
fthauimo-/ or /thau-{maq-ll.’ The prenasalization occurred when the subjects produced
nasals instead of vowels to precede the voiced stops. For e>tample instead of Alau-m
oigiap¥ay/ CF, YF, and WS produced four tokens of /thauiman-lglapJa‘tl "hair pin’.
In another case, CF and HJ produced three tokens of /s1o1dzmma—1p1~1/ mstead of /sio
1dzitba-piV/ "polio’. That is , they used an altemete form of the target morpheme
with a nasalized vowel and hence produced a nasal fm/ rather than the targeted /b/ for
the initial. CF and YF also produced two tokens of /true1tcia1mén~lhun1/ instead of
/hueTtciatbandhun/ ‘train delay'. In all of these cases, the subjects did not produce a
vowel + voiced stop sequence as directed. After excluding these cases, no other
prenasalized voiced stops preceded by vowels were found.

When the voiced stops are preceded be voiceless stops, the nasalization was
found'in only three cases, as shown in Table 6. In HJ's case, because of alternative
pronunciation in the same dialect, he produced /tau-lkhak‘ibaipN/ as /tau-lkhak‘imaﬂ |
piN/. YF, on the other hand, produced a homorganic nasal mstead of the target stop, ’
e. g. ficia?4mapiaV/, instead of /tcia?4baNpiaV/ 'eat meat patty'. However, in the |
second repetition of the sume item, CF and YF produced voiced stops ‘as iustructed,
aud the voiced stop was not prenésalized. Apparently when preceded by‘voiceles’s
stops, the voiced stops are not prenasalized. | | ;

For the voiced stops preceded by nasal consonants, almost 100% of the
tokens were fully nasalized, as shown in Table 6. According to the mrﬂow data, the
voiced stops changed into nasals when preceded by nasals. However, the
spectrogram. of these voiced stops indicated that the ploswe quality was somehow st111

preserved.

205

When the segment preceding the voiced stops is a nasal, the nasalization of the
preceding nasal extends all the way through the voiced stop closure, as shown in the
air flow data of Figure 5.

From the first glance of the air flow data it seems that the voiced stop is
assimilated to become a nasal when preceded by a nasal. If'this is indeed the case,
then the only distinction between phrases such as, /sanybi¥/ 'send rice' (Figure 6),
which has nasal airflow extending all the way into the voiced stops, and /sarimii4/
'send noodles' (F igure 7) is the nasalization or lack of it on following vowel.
However, acoustic spectrographic data revealed acoustic differences in the closure
portion, as shown in Figure 6.

‘When comparing /sanybi¥/ ' send rice' (Figure 6) with /safyndi+/ 'send
noodles’ (F igure 7) three acoustic characteristics differentiate /b/ from /m/. First is the
gap in low-frequency energy at the end of the /b/, immediate preceding the vowel;
second is a strong burst release found at the onset of vowel following /b/; third is the
strong attack and immediate rise in energy in the oral flow at the onset of vowel
following /b/ ksuggested for a post-stopped nasal. This strong burst of energy is
similar to the oral release of the Zhongshan post-stopped nasal (Chan & Ren, 1987).
Post-stopped nasals are composed of a nasal segment with a strong burst release at
the end. Zhongshan is one of several other Chinese dialects that has been reported to
have nasal+stop segments, but instead of prenasalized stops, Zhongshan is said to
have post-stopped nasals. Of the Chinese dialects with complex nasal+stop segments,
Taiwanese represents an unique case of a prenasalized stop in which the stop is the
more dominant element than the nasal (Chan & Ren, 1987). Most of other nasal +
stop segments of Chinese dialects are post-stopped nasals, in which the nasals are

more prominent than the stop components. However, judging from the result of

206

acoustic and air flow data, it is likely that Taiwanese prenasalized stops change into
post-stopped nasals when preceded by nasals.

Table 6. Percentage of prenasalized voiced stops produced in phi'ase-medial position:

Preceding Segments
Subjects
v ol kL2 N
CF 9.375% 0.0% 100.0%
(3/32) (0/27) (31/31)
YF 9.375% 3.70% 100.0%
(3/32) (1/27) (31/31)
LK ‘ OO% 0.0% ' 96.78%
(0/32) (0/27) - (30/31)
HJ 6.25% 3.70% 100.0%
(2/32) (1/27) (31/31)
WS 3.125% 0.0% 96.78%
(1/32) (0/27) (30/31)
BH 0.0% 0.0% 100.0%
(0/32) (0/27) (31/31)
CC 0.0% 0.0% 100.0%
(0/32) 0/27) (31/31)

207

100 msec

20 ms

Figure S. Air flow data of Taiwanese voiced stop preceded by a nasal.
(a) /bunigve/ 'distribute five items’ (b) zoom in of the 100 ms in (a) The
upper channel is the oral air flow. The lower channel is the nasal air flow.

208

b

,..-/ — 1 T <N

(a) Air flow: the upper channel is oral air flow, the lower channel is nasal air

flow

[»)

ﬁ_
=

(b.) Acoustic data: spectrogram

Figure 6. (a) Air-flow and (b) acoustic data of a Taiwanese voiced stop
preceded by a nasal /sagybiV 'send rice’. The tokens in (a) and (b) are not the
same, but the speaker is the same. The release gap in low frequency energy by
the lower arrow, and the strong burst by the higher arrow.

209

SeC

(a) Air flow: the upper channel is oral air flow, the lower channel is nasal air
flow

X4z

T

W :';,:;) ’!',n) tforhish .

(b.) Acoustic data: spectrogram

Figure 7 (a) Air-flow and (b) acoustic data of a Taiwanese nasal preceded
by a nasal /sag¥mi+/ 'send noodles’. The speaker is the same as for Figure 3.11.
The tokens in (a) and (b) are not the same, but the speaker is the same. Note
the lack of a gap or strong burst at the arrow.

210

Summary

The phonetic variants of Taiwanese prenasalized voiced stops are not only
influenced by the following segments, as proposed by Zhang's (1983) allophonic rule.
They are also influenced by preceding segments. The prenasalization is lost when
preceded by vowels, or voiceless stops. When preceded by nasals the prenasalized
voiced stops change into post-stopped nasals. Only in utterance-initial positions do
prenasalized voiced stops occur, but their occurrence varies in an speaker-dependent
manner.
CONCLUSION
Relationship Between Initial Voiced Stops and Nasal

Zhang (1983) proposed a phonological rule relating Taiwanese initial voiced
stops in forms such as /be¥/ ' horse' with initial nasals in forms such as /mé&-4/" scold'
(Figure 8). That is, noting a complementary distribution between voiced stops and
nasals in ipitial position and citation form, he categorized the two types of sounds
together as voiced stop phonemes claiming that Taiwanese initial voiced stops change
into homorganic nasals when the syllable is closed by a final nasal or a nasalized
vowel. In other words, he claims initial [m] is an allophone of /b/ and initial [g] an
allophone of /g/ before nasalized vowels and rhymes closed with nasals. However,
the subjects in this study produced /b/ in /ban/ 'slow' as [b], not [m] as Zhang (1983)
predicted (Figure 9). There are no extra nasal formants above 100 kHz in the initial
consonants portion. The segmental environment proposed in Zhang's (1983)
allophonic rule does not describe what happen here.

It is unclear whether the two series are indeed in an allophonic relationship, or
whether there is a natural gap such that initial voiced stops occur before unnasalized

vowel, while nasals occur before nasalized vowels, and nasals. Since there are no

211

100 imsec

st h-\...-——-—-“""“"“*‘

(a) Air flow: the upper channel is oral air flow, the lower channel is nasal air

flow

1:00 msec s s e YHz
N PR Ty AT TR PR LLT
RELE : L

e

(b.) Acoustic data: spectrogram

Figure 8. (a) air flow and (b) acoustic data of Taiwanese voiced stops
followed by nasalized vowels /mé&3/ [mé+] 'scold’. The time scales of (a) and (b)
are different. The tokens in (a) and (b) are not the same, but the speaker is the

same.

212

100 msec

—— gt TN e dere, -
et
wpoae

(a) Air flow: the upper channel is oral air flow, the lower channel is nasal air
flow

g

R

()

(b.) Acoustic data: spectrogram

Figure 9. (a)Air-flow and (b) acoustic data of Taiwanese voiced stops
followed by a vowel and a final nasal /ban-/ ["ban+] 'slow'. The time scales of
(a) and (b) are different. The tokens in (a) and (b) are not the same, but the
speaker is the same.

213

morphological alternations supporting the identification of the two sets of initials as
coming from a common underlying form. Further psychological studies, such as a
perception test, are necessary to investigate native speakers' intuitions.
complementary distribution alone is not merely enough to support for an allophonic
relationship. Therefore, before any further psychological studies are done, no further
claim will be made as to the relationship between the two series.

Phonetic Variants of Taiwanese Voiced Stops.

The results of the previous airflow study showed that when the voiced stops
are in citation forms or other phrase-initial position, the presence of prenasalization
was highly speaker-dependent. Some speakers tend to prenasalize utterance initial
voiced stops more than others.

The only consistent phonetic patterns observed across subjects were in the
three phrase-medial positions, when the voiced stops were preceded by segments such
as vowels, nasals, and voiceless stops. It was discovered that when preceded by
vowels or voiceless stops, no prenasalization occurred and the sounds are simply
voiced stops. When preceded by nasals, the voiced stops change into post-stopped
nasals.

Summarizing from the results of the airflow and acoustic measurement we can
conclude that the so-called Taiwanese prenasalized voiced stop only appears in
utterance-initial position, but its appearance is very speaker-dependent. This
prenasalization is lost when the stop is preceded by vowels or voiceless stops. When
preceded by a nasal, the prenasalized voiced stop changes into a post-stopped nasals,

phonetically.

214

REFERENCES
Chan, M., & Ren, H. (1987) "Post-stopped nasals in Chinese: An areal study," UCLA
Working Papers in Phonefics, 68, 73-120.
Chan, M. (1987) "Post-stopped nasals in Chinese: An acoustical investigation,"
UCLA Working Papers in phonetics, 68, 121-131.
Iwata, R. et al., (1979):"Laryngeal adjustments of Fukienese stops, initial plosives and
final applosives,". Annual. Bulletin. Research Institute Logopedics Phoniatircs 13,
61-81.
Pan, H. (1994) "The voicing contrasts of Taiwanese (Amoy) initial stops: Data from
adults and children," The Ohio State University, Ph. D. dissertation.
Zhang, Z. (1983). Taiwan Minnan Fangyan Jilue, [A brief description of the
Southern Min dialects in Taiwan]. Taipei: Wen Shi Tse Chubanshe.

215

Maintenance of Machine-Readable Dictionary

Yasuhito TANAKA
Hyogo University

2301 Shinzaike Hiraoka, Kakogawa, Hyogo
675-01 JAPAN »
TEL : +81—794—-27—5111 FAX: +81-794—-27-5112

Abstract

This article discusses various problems related to machine-readable dictionaries. The author focused our
attention on the corpus as a means of finding entries. Furthermore, we discusses these problems from the
standpoint of users and also from the standpoint of system development. At the same time, the questions
of verification of conversion accuracy and overall evaluation of developed dictionaries were studied.

0) Introduction

Machine-readable dictionaries have beeu compiled
by companies, institutes, software houses, and
others. No machine-readable dictionary maintains
its usefulness without revision. Unless it 1is

continuously renewed or maintained, it quickly
" becomes outdated. Here we will cite various
problems related to the maintenance of dictionaries
and introduce the results of tests regarding the
solution of the above-mentioned problems.

1) Problems related to maintenance of dictionaries
i) Dictionaries become dated year by year.
Although a machine-readable dictionary
may be up-to-date when it is completed, it
becomes progressively more outdated year by
year. For instance, one can easily recognize
that sentences written 10, 20 or 50 years ago
are old in content, concepts, diction, etc.
Similarly, dictionaries get old.
ii) Assurance and maintenance of personnel
for renewal
Personnel must be secured for the
maintenance of a machine-readable dictionary.
Such personnel must be experienced in the
processing of natural language and have an
adequate knowledge of linguistics. Furthermore,
they must continuously be able to complete
a fixed amount of work within a given period.
This is a very difficult task.
iii) How to obtain data for maintenance
If a product using a machine-readable
dictionary is offered on the market, it is
possible to obtain data for renewal just by

217

gathering complaints from users.

‘Another way is to extract words from the
corpus, and refer such words to a machine-
readable dictionary. If there are words that
are not found in the dictionary, new words
that appear with high frequency may be added
to the dictionary. This positive method is
important.

2) How can data for maintenance of a machine-
readable dictionary be obtained, and how
should unknown words be handled?

In developing a system for processing natural
language, it is necessary to perform the following
three types of maintenance for a machine-readable
dictionary.
{1} Maintenance for solving problems
If 2 new word (unknown word) is found,
its meaning should be determined based on
“1ts outward characteristics. It is impossible
to deal with new words in the course of
sentence processing.
{2) Maintenance according to users’ demands
New words are added to a machine-readable
dictionary according to users’ demands.
1t 1s possible to have users make proposals.
For instance, an electronic bulletin board can
be provided in a communication network
system to collect data. The degree of success
of this method depends greatly on whether
the information receive rewards or some kind
of privilege.
If the consent of users can be obtained,
words, compound nouns, idiomatic expressions,

techni~~' term=, coincidental relations, :* .,
that t1+ -tsers us¢ d add to their macl - -
readable dictionaries, may b “‘rcted so ! L,
words, etc., of common use can be selected
and incorporated in a dictionary for a natural
language procéssing system,

(3) Preventive maintenance

There is also a method of continuously

extracting new words from a large corpus

. and registering them in a machine-readable
dictionary. By this method, it is possible to
analyze a number of words according to the
frequency with which they appear. It is also
possible to use corpuses devoted to different
areas. This is a positive and important task
in the maintenance of machine-readable
‘dictionaries.

It is necessary to find and eliminate as
many detects as possible before a product is
put on the market. The correction of defects
after shipment of the product requires
tremendous costs.

Here we will focus on {3) Preventive maintenance.

3) Extraction of words from a corpus

3-1)

In extracting words from a corpus, it is .

possible to analyze sentences and extract
words. However, this would require a great

" deal of time and effort for processing, and a
completed machine-readable dictionary would
be needed. Unfortunately, a dictionary will
never be complete.

Another way is to mechanically separate
text into words and then to select words.
Words can be extracted incorrectly when this
method 1s used, so care should be taken in
incorporating them into a dictionary. It is
possible to refer words extracted from a
corpus to those already registered in a
‘dictionary and to consider adding unmatched
words as candidate words to be newly
incorporated in a dictionary.

This method is advantageous in that it
depends to a considerable extent on mechanical

218

processing, and a large number of candidate
words can be found in t"is way.

Thus, we extracted three-Chinese-character
words from a data file containing the full
text of the Asahi Shimbun over a period of
a year.

Code Na of different Total number Code

words of words

10 35,623 406,827 10-+-common nouns

80 10,427 96,946 80---proper nouns
(names of persons)

90 3,312 24,536 90-+-proper nouns
(place names)

95 763 3,292 95-+-numerals

99 17,941 112,711 99-+-others

Total 78,066 644,312

3-2) Checking of words (examples)

One way to check words 1s to check words
extracted by a mechanical method. Here we
will introduce another method. A large number
of four-Chinese-character words are divisible
into combinations of two two-character
conceptual words. These two-character words
should be included in a dictionary. We examined
whether such two-character words are included
1n a machine-readable dictionary.

Machine-readable dictionary

No. of different Total number of different
2-character words of 2-character words

Yes 10,512 794,649
No 3,336 17,740
Total 13,848 812,389

The above table shows that since two-
character words are basic words, the machine-
readable dictionary covered 97.8 percent of
the total number of different two-character
words.

We conducted a similar analysis of the
data provided by the Japan Scientific and
Technical Information Center, and obtained
the following results.

Machine-readable dictionary

No. of different Total number of different
2-character words of 2-character words

Yes 8,3711 519,820
No 9,3821 11,889
Total 17,753 1,631,709

It is clear that there are more unmatched
words for the data obtained from the Japan
Scientific and Technical Information Center.

This means that the evaluation of machine-
readable dictionaries differs depending on the
main areas for which they are developed.

Five-character words were extracted and
divided into two-character and three-character
words. Of these, three-character words were
checked with a machine-readable dictionary.

Machine-readable dictionary (3-character words
contained within strings of five characters)

No. of different Total number of
3-character words of 3-character words

Yes 11,034 109,051
No 2,492 8,311
Total 13,526 117,362

The above figure shows that the machine-
readable dictionary covered 92.9 percent of
the total data.

Similarly, two-character words contained
within strings of five characters found in the
Asahi Shimbun file were checked with a
machine-readable dictionary.

A very good result was obtained, as the
machine-readable dictionary covered 96.1
percent of the total data.

Machine-readable dictionary (2-character words
contained within strings of five characters)

No. of different Total number of
2-character words of 2-character words

Yes 5,573 113,947
No 843 3,415
Total 6,416 117,362 -

Machine-readable dictionaries are maintaine
d by analyzing data obtained in this way.

219

4) Four-character and five-character words with
furigana
An attempt was made to determine how
many of the four-character words that can be
“divided into two two-character words can have
furigana (phonetic transcriptions in kana written
at the side). The following table shows the
number of four-character words which can have
furigana entirely.

Four-character words with furigana

No of different Total number of
four-character words four-character words

Yes 68,465 377,062
No 11,212 29,133
Total 79,677 406,195

A similar attempt was made for five-character
words that can be divided into two-character
and three-character words, or vice versa, and
the number that can have furigana was determined.

Five-character words (2+3)

No. of different Total number of
five-character words five-character words
with furigana with furigana

Yes 14,385 49,390
No 3,320 7,881
Total 17,705 57,271

Five-character words with furigana (3+2)

No. of different Total number of
five-character words five-character words
with furigana with furigana

Yes 18,181 52,043
No 3,895 8,050
Total 22,076 60,093

When providing furigana to Chinese characters
it should be remembered that the first consonants
in the latter parts of four-character and five-
character words tend to be voiced by liaison
after the first parts. Ex. Kabushiki Kaisha
(Gaisha) Data obtained in this way can be
excellent material for addition to machine-
readable dictionaries.

3-3) Checking with a new file
Three-character words were extracted from
the file containing one year of the full text

of the Yomiuri Shimbun and were added to
those extracted from the Asahi Shimbun file.

Three-character words from the one-year

Yomiuri Shimbun file

Code No. of different Total No. of
3-character words 3-character words
10 19,960 432,426
80 3,571 91,261
90 1,837 31,221
95 443 6,948
99 6,969 57,219
None 66,121 234,208
Total 98,901 853,283

This table shows that about 66,000 different
three-character words out of the total of
about 99,000 are codeless. This means that
about 67 percent of the total different words
and 27.4 percent of the total number of words
are unmatched data. This increase in unmat
ched data is probably due to the mechanical
method of extraction and also to the fact
that a large number of the words contain
numerals. It 1s also a fact, however, that
there aré more words that are required to be
registered. So far as common nouns {Code
10) are concerned, about 20,000 words are
matching words, and the total number of
such words is about 432,000. Furthermore,
66,000 different words are code-less, and
they appear a total of about 234,000 times,
or an average of 3.5 times per each words.
It will be necessary in the future to analyze
these words one by one and register them in
the dictionary. About 66,000 different word
s are now being analyzed.

3—4) Method of analysis

Checking with existing files is the first step
in analysis. In this analysis, only about 30
percent are matching words. Therefore, the
following empirical method should better be
followed.

However, it should be remembered that
there are exceptions to any rule.

{1) Three-character words containing one
of the following characters are place names

- 220

(90).
B, . X, 2. B AL T & and
three-character words of which the last
character is following M. BR. . .
w. B, BB, B, B B, R, .
L. &, 1. . |\ 70 ML B IS
By B R, B . B R B,
g, BB, B

{(2) Three-character words containing one
of the following characters are numerical
expressions (95).
— 2. = B BN, By AL .
+. B B F A B K

{(3) Three-character words containing one of
the following characters as the last character
are names of persons or proper nouns (80).
~E. ~F

(4) Words beginning with the following code
are “other nouns” (99).
4. LT B BLEL Bl BLFI
Pk, &R, —IG. —#E. —R. —&.
—m. —F, —B. —4£. —P. —B.
—k, —E. —Bl. —. —#, —F,
—E. —#. —m\m. —HBH. —8. A,
., @x. B, &H. AR, HE.
K. 5%, SE. 5%. §H. §%.
B, 5. 4H. 4. B=, BE.
. B BA. RE. B5. FEE,
(Characters at the beginning of words)
Reifr. B, BT B, & B, AR,
EAR. 4o, R JER. 5K, B4,
W, BESY. BB, HE. e, HE,
M, e H. el £H. ER. EEL.
HiEl, Rk, BIE. HiE. BIKR. 2E.
25, 2K, 2. £@. BHE. HY.
Bzl £4, 8. HIG. R, B,
BE. BE, M. 49, BR. L.
YH, H@E. BFE, AFE. ZR

There are also other words with various

o

characteristics, and we are now analyzing
them. When the two files are integrated, we
obtain the following table.

Code No of different

Three-character words in the files of Asahi
Shimbun and Yomiuri Shimbun Files

Total No of

3-character words 3-character words

10 35,623 839,253
80 10,427 188,207
90 3,312 55,757
95 763 10,240
99 27,940 169,930
None 66,121 234,208
Total 144,186 1,497,595

4)

“None” denotes that code numbers are now
being added.

When the analysis of 66,000 different words
has been completed, a better file of analysis
will be obtained. Furthermore, 60-70 percent
of the different three-character words can
be automatically coded.

We have discussed various problems related
to dictionary maintenance from the standpoint
of compilers and managers of machine-readable
dictionaries. However, it is also necessary
to view these problems from the standpoint
of users.

Satisfaction of users
Experiences of people engaged directly or

indirectly in the development of machine-readable

dictionaries show that the demands of their

users are satisfied in different degrees.

(1

(2)

When no machine-readable dictionary was
available and different organizations had to
compile their dictionaries, the existence of
a machine-readable dictionary itself was highly
/ appreciated. Even a small-scale dictionary
was welcomed.

A dictionary with 500,000-100,000 entries
was appraised by users.

However, as the number of users increased
and as the utilization areas of machine-readable
dictionaries expanded, users became more
demanding.

They wanted an increase in the number of
entries. Furthermore, they wanted to have
conditions for their usage clarified so that

221

(3)

they could select suitable words more easily.
Thus, they wanted a dictionary with 200,000-
300,000 entries.

We are now at this stage of development
of machine-readable dictionaries.

In addition to the demand for a largerscale
dictionary, there will also be a demand for
more detailed descriptions of each entry,
semantic contents, origins and related information
on words, as well as for clarification of usage
of words. Machine-readable dictionary will
come to be questioned as to their scale and ¢
ontents, and a dictionary with about 1 million
entries will be desired.

5) Viewpoint of system development

Before there was a machine-readable dictionary,
or when there was one of only a limited scale,
system development was processed only by
rules, and exceptions were also dealt with by
rules. It soon became clear, however, that
there were many problems in this method,

and systems development got nowhere.

(2) Expansion of scale of dictionary and grouping

of entries
The method of expanding a machine-readable
dictionary to a certain extent for word-processing
proved to be more efficient, and it became
clear that there was no need to deal with
exceptional entries by rules one by one.
However, there was concern about the extent
to which dictionaries could be expanded.
Against this background, attempts to group
similar entries began. ‘
Active studies were made on markers and
their expansion, and also on a thesaurus.
Development of a large-scale dictionary
In order to develop a large-scale diclionary,
1t 1s necessary to collect entries for it from
a corpus. It has become possible to obtain
a large corpus in the form of newspaper files
thanks to the electronic photocomposing
systems which have been extensively adopted
by newspaper publishers. Furthermore, systems
for electronically processing manuscripts
have been developed for book and magazine

publishing houses, and as a result, electronic
books and magazines have made their debuts.
However, these developments also copyright
problems.

Furthermore, the method of dictionary
development is changing from a method based
on personal work to machine compilation,
or a combination of machine compilation and
review by personnel. Development of a large-
scale dictionary depends to a large extent on
computers, and for this purpose, methods of
data extraction by statistical processing, the
n gram system, and other methods have been
developed. However, since the extraction of
entries and contents for a dictionary by these
methods is mechanical, it should ultimately
depend to a great extent on human judgment.

It has become possible to compile a large-scale

dictionary thanks to the following three factors.

(1) Research and development efforts have been
made to resolve ambiguities, and medium-
scale machine-readable dictionaries have been
developed. These developments have helped
to automate the compilation of machine-
readable dictionaries.

{2) Large-scale corpuses have been made available.

(8) Various statistical methods have been
developed.

6) Verification of contents of dictionaries
While it is important to compile a large-scale
dictionary, it is also necessary to take note of the
fact that errors are accumulated. In this context,
1t 1s important to consider how to verify the content
of each entry in the dictionary.
{1} Verification by personnel
This requires a many people, and the ability
of verifiers should be examined.
{2) Method of mechanical inspection
Various dictionaries are compared partially,
do to find errors.
(3) To. evolve an experimental system for
verification
It takes time to evolve such a system, and
a lot of time is needed before a dictionary is
actually tested.

222

{(4) A large-scale dictionary is partially completed,
and entries in the partially completed part
are classified and verified.

(5) Others

It is necessary to study the systems to
inspect machine-readable dictionaries.

7) Overall evaluation of dictionaries

According to the author’s experience in a project
carried out around 1972 to convert kana characters
to Chinese characters for the names of persons,
the development costs required for conversions
with accuracy rates of 80, 90, 95 and 99 percent
rose from are to two, three and for times, respectively.
Although these differences in conversion rates
were not so large relative to the costs, they were
of great significance. In connection with this, we
made the following conversion calculations. The
overall evaluation of 90 and 95 percent appears to
be a good evaluation result. However, by multiplying
the overall evaluation rates by large negative
numbers, we can change evaluation points substantially.

(1) 70+@30x(-5))=-80

(20 80+(20x(1—-5))=-20

3) 90+(10x(—=5))= 40

4 95+(5x(=5))= 170

5 99+(1xX(—=5))= 9%

The above shows that tremendous costs (amount
of work) are needed to correct wrong conversion
results. Therefore, the above evaluation equation
appears to assume reality.

In actual fact, development costs doubled when
the conversion accuracy rate was raised from 90
to 99 percent. This is what this writer actually
experienced around 1972 in developing a kana-
Chinese character conversion system for names
of persons.

The evaluation of a machine-readable dictionary
differs according to whether a conversion accuracy
rate is based on the examination of discrete words
or of compound words, and also according to
whether a discrete system (only form element
analysis) or a system as a whole is evaluated.

An adequate evaluation method of a natural
language processing system has yet to be evolved.

We should be strict in evaluating the present

state of affairs, but optimistic about the future.
Furthermore, it will be necessary not only to
turn our attention to the number of entries and
coverage, but also to continue our efforts to
upgrade the quality of entries and their contents.

8) Future tasks

In the above we have made a proposal concerning
a policy on data to be added to dictionaries.

Together with an increase in the number of
entries in a dictionary, the improvement of the
quality of entries (expansion of contents) is desired.
It is also desired to clarify the usage of words
and word associations, and further expand contents
concerning upper-ranking and lower-ranking words,
antonyms, associated words, technical terms,
idiomatic expressions, etc.

9) References

Yasuhito TANAKA : Maintenance of Machine-
Readable Dictionary, 48th
(for the first half of 1994)
National Conference of the

Information Processing
Society, 3Q-1, March 23,
1994

Yasuhito TANAKA : Maintenance of Machine-
Readable Dictionary (Part 2),
49th (for the first half of
1995) National Conference
of the Information Processing
Society, March 15, 1995:

223

