A Computational Syntax and Its Application to Parsing
Hsin-1 Hsieh

Department of East Asian Languages & Literatures
University of Hawaii
Honolulu, Hawaii, U.S.A. 96822
e-mail: hhsieh@uhunix.uhcc.hawaii.edu

Abstract

We propose a theory of syntax in which grammatical sentences are generated by
binary composition from lexical frames and syntactic types are computed from lexical
types. This theory of computational syntax has an immediate application to the parsing of
grammatical sentences. We discuss in detail our theory and briefly demonstrate its
applicability to parsing, using Mandarin sentences as examples.

0. Introduction

We propose a theory of syntax in which grammatical sentences are generated by
repeatedly composing two elements, each of which belongs to a specific type. At
every stage of the binary composition, the type of an element is either specified in the
lexicon or is computed by rules based on the types of its two co-composing elements.
Thus the syntax is not merely compositional but computational. Grammaticality is
precisely characterized: a sentence is grammatical if it belongs to a specific type and
also fulfills additional grammaticality conditions.

Our theory of syntax can be applied to the parsing of sentences, especially
grammatical sentences. The linguistic part of a parsing system using our syntactic
theory can be relatively uncomplicated owing to the internal computation of syntax.

The bulk of this paper is an explication of this computational syntax. We only
briefly discuss the applicability of our theory to parsing without actually proposing a
full parsing system. : .

1. Compositional Cognitive Grammar

Our computational syntax is part of a more comprehensive theory of grammar
called Compositional Cognitive Grammar (CCG) (Hsieh 1992b). This grammar 'starts'
with a component called Imagery Structure (IS) whose elements are called Imagery
Structure representations (ISrr). IS maps onto Semantic Structure (SS) whose
elements are called Semantic Structure representations (SSrr). SS maps onto
Thematic Structure (TS) which contains as its elements Thematic Structure
representations (TSrr). TS maps onto Functional Structure (FS) which contains as its
members Functional Structure representations (FSrr). FS maps onto Constituent
Structure (CS) whose members are Constituent Structure representations (CSrr).
Thus the chain of interconnecting mappings is: IS --> SS --> TS --> FS --> CS. At
the present stage of our research we are only able to fully articulate the SS and CS
components. The TS and FS are lacking but would be similar in purpose to those
proposed in LFG (Bresnan 1982). The IS is necessary if the meaning of a sentence is
ultimately rooted in its related image, as the cognitive grammarians (Langacker 1987,

Talmy 1985, Jackendoff 1990, Tai 1985, 1989) have suggested or implied. SS is the
component where syntax and semantics enter into a systematic interface or interaction
(Hsieh 1992a, Chang 1991, Her 1991, M. Hsieh 1992). CS is similar to standard
phrase structure. Lacking TS and FS, we map SS onto CS directly. We generate an
SSr by repeatedly composing two elements, each one of which is either (i) drawn from
a finite set of basic elements listed in the lexicon, or (ii) is a 'persistent' binary
composition whose ultimate composing elements are all basic elements. In this sense
an SSr is compositional. Each element, basic or non-basic, has a specific pattern or
type. If an element is basic, its type is determined in the lexicon, and if non-basic its
type is determined by a set of rules of computation applied to its two co-composing
elements. In this sense SSr is computational. Hence, as a theory of syntax, SS is both
compositional and computational.

" 1.1. The Lexicon

A sentence or clause in conventional grammar is represented as an Action (AC) in
its SSr. An AC may be either a simple Action (sim-AC) or a complex Action (com-
AC). Simple Actions compose in a binary way into complex Actions of increasing
complexity.

Those simple Actions that are 'legitimate' or well-formed are called Action Frames
(ACFs). Each ACF is composed of an Initiator (I) and a complex Act (A'"), which in
turn is composed of an Act (A) and a Receiver (R). The A is represented by an
Abstract Verb (AV) and the I and R may be represented by an indexed variable vy or a

simple constant ¢ or a complex constant f{c), or by an empty symbol 0, which may be
indexed by k to express a syntactically empty but pragmatically inferrable NP,,. We say

that an ACF 'accepts' a-particular AV and an AV 'selects’ a particular ACF. An ACF
with a particular AV is a particular ACF, or, PACF. Thus an ACF is a type and its
associated PACFs are its tokens. For convenience, we sometimes disregard this
distinction in our discussion unless it is necessary to maintain it.

The lexicon contains two types of entries: logical-type entries and grammatical-
type entries. Logical(-type) entries are divided into three sub-types: (i) indexed
variables v;'s; (i) simple constants c's; (iii) complex constants f{c)'s; (iv) empty
symbols without indices, 0's, or empty symbols with indices, Oy's. An indexed variable
v is a place-holder for a co-indexed NPy, which, when suitably attached to the SSr
tree, will 'instantiate' vi_ by replacing all copies of it. The instantiation operation is
based primarily on the concept of instantiation proposed by McCawley (1971) and the
notion of controlled empty categories suggested by Huang (1992). A simple constant
c indicates the actual site of embedding for an exterior AC indexed by c.. A complex
constant f{(c) refers to a special semantic feature of the AC indexed by c, such as
‘aspect’, 'tense', 'degree’, 'manner’, etc. A simple constant ¢ and a complex constant f(c)
. differ in meaning but behave in the same way syntactically. For convenience, we
sometimes write 'c' for both ¢ and f{c) whenever it is convenient to do so. A constant
c or f(c) in an ACF is 'saturated' if there is an exterior AC indexed by ¢ which
composes with this ACF to supply the content of ¢. Otherwise, the constant is
'unsaturated'.

Grammatical entries in the lexicon are either abstract verbs (AVs) or nouns (Ns).
AVs are divided into three subtypes: (i) full verb (FV); (ii) half verb (HV); and (jii)

244

grammatical verb (GV). A word (more precisely a morpheme) may function as one or
more of these three subtypes. Each AV has a concrete shape in CSr. Roughly, a full
verb corrésponds to a verb or an adjective; a half verb results in a preposition,
conjunction, adverb, auxiliary, tense (marker), aspect (marker), negation (word);, and a
grammatical verb ends up as a demonstrative, determiner, or a grammatical particle
such as the infinitive particle to or gerund affix -ing in English. Exactly which one of
these various concrete forms will an AV produce is determined generally by the ACF
which the AV selects and occasionally by considering both this ACF and the crucial
ACF in its co-composing AC.

A noun may serve as an NP} to 1mmed1ate1y mstantlate a co-indexed variable vy,

or may combine with an NP-generating ACF to become the 'core' of an NP that
instantiates vy.

ACFs may be classified in two complementary ways: by considering what kind of
A (Act) they contain and what kind of T (Initiator) and R (Receiver) they possess. The
former consideration yields three v-types and the latter three n-types. The three v-
types are: (i) Full Verb AC (FAC); (ii) Half Verb AC (HAC); (iii) Grammatical Verb
AC (GAC). AnFAC has a full verb for its Act, an HAC a half verb, and a GAC a
grammatical verb. The three n-types are: (i) Solitary AC (SAC); (ii) Receptive AC
(RAQ); and (iii)) Warm AC (WAC). An SAC has no unsaturated constants; an RAC
contains only one unsaturated constant; and a WAC possesses two unsaturated
constants.

As shown in Table I, there are a total of 27 (twenty-seven) ACFs which fall into 9
(nine) compound types. Within each type, the ACFs are further distinguished

Table I. Action Frames Classified.

<I, <A, R>>

A
H
~
A
“Dﬁ
o
\4
\%

<I, <A, R>>

(1) 3 FVys | (10) x3 HV y5 | (19) x5 GV yj5
| (2) %3 FV O | (11) x; HV 0 | (20) x5 GV 0

SAC |(3) 0 FVuys | (12) 0 HV yy | (21) O GV yj
| (4) 0 FV 0 | (13) 0 HV 0 | (22) 0 GV 0
(&) h Fvy; | (14 h HV y5 | (23) h GV ;5
|(6) h FV O | (15 h HV 0 | (24) h GV 0

RAC | (7) %; FV k | (16) x; HV k | (25) x; GV k
|(8) 0 FV k | (17) 0 "HV k | (26) 0 GV k

WAC |(9) h FV k | (18) h HV k | (27) h GV k
| FAC | HAC [GAC

FV =Full Verb (verb, adjective).
HYV = Half Verb (preposition, conjunction, adverb, auxiliary, aspect, tense, negation).
GV = Grammatical Verb (demonstrative, determiner and grammatical particles).

SAC = Solitary AC, containing no unsaturated constants.
RAC = Receptive AC, containing one unsaturated constant.
WAC = Warm AC, containing two unsaturated constants.

k =k or f(k); h = h or f(h).

245

according to the kind of logical symbols that represent their I and R, namely, v, 0, c.
For convenience, a vy is written x, if it represents I and yy if it represents R. Also for

convenience, a constant ¢ is written h if it represents I and k if it represents R.
A lexical entry is then just a variable v, a constant ¢ or f{c), an empty symbol 0,

an N, or an AV. This treatment is a technical realization of an insight originated with
James H-Y. Tai, who has on many occasions told me that we need to recognize only
nouns and verbs in the 'deep' structure of a Chinese sentence. If an entry is an AV, it
will select one or more of the 27 ACFs. Each selected ACF, sometimes together with
a co-occurring ACF, will determine the concrete form of this AV in that ACF. Each
AV in an ACF thus has an abstract category as full, half, or grammatical verb, and a
matching concrete category as verb, preposition, demonstrative, etc.

Figure 1 illustrates the composition of ACFs into a com-AC. There we see that
ACF <1> and ACF <19> combine to form a com-AC denoted as AC <1,19>, which in
turn combines with ACF <16> to form a com-AC denoted as AC <16, <1,19>>. AC
<19> is an NP-generating ACF and here it has the effect of creating the NP;, Li3-si4

deO chel, which instantiates the Y in ACF <1>. AC <1,19>, marked as equal to the
constant k by the sign '=k, saturates the constant k, which lexicalizes the R in ACF

<16>. Within each ACF, the AV is prefixed by F-, H-, or G- to indicate its status in
terms of being full, half, or grammatical. In the CSr the variables x;, y;, x, and yy, will
be properly instantiated by co-indexed NPs, the AVs given their concrete forms, and
the tree will be compressed into a conventional phrase structure by a host of
transformations. The result of these operations will yield the CSr for sentence (1).

<16, <1,19>>

AC

I |

| <1,19>

| AC, =

I

! I I

<1l6> <1> <19>

AC AC AC, =NPy
I I I [I |
| Al | Al | Al
| I l S
I I I I I | | I I
I A R I A R I A R
x4 H-xiang3 k X4 F-mai3 Y5 Xy G-deO0 Yh

want buy Genitive

(1) Zhang1-sanl xiang3 mai3 Li3-si4 de0 chel.
'Zhang-san wants to buy Li-si's car.'

(Note: The prefix F-, H-, or G- to an AV indicates the full, half, or
grammatical status of the AV.)

Figure 1. (partial) SSr for (1).

246

AC <16, <1,19>> illustrates the notion that in the SSr every com-AC is ultimately
composed of a finite number of ACFs. In other words, every sentence is
compositionally derived and not 'generatively' derived via a set of rewriting rules
whose initial symbol is S, as is practiced in most current theories including GB.

1.2. Computation

Although we are free to compose ACFs of various kinds to form a complex AC,

not all ACs so formed will have a CSr that yields a grammatical sentence. In other
words, only some ACs are well-formed. There are syntactic, semantic, and pragmatic
types of well-formedness conditions for an AC. An AC satisfying all these types of
well-formedness conditions would be a 'maximally well- formed' AC. Such maximally
well-formed ACs are beyond the scope of our discussion, since our focus here is on
syntax. Nevertheless, we can identify a syntactic well-formedness condition, based on
compound types, which a 'minimally well-formed AC' must meet. A grammatical
sentence in a language that requires a compulsory marking for both aspect and tense
can be analyzed into three parts: a 'core' content, an aspect, and a tense. To translate
this arrangement into a composition in terms of ACs, we can first combine the core
content with the aspect, and then combine the result with the tense. Suppose that the
core is of the type FAC-SAC, and the aspect is of the type HAC-RAC. Then the
composition of the core and the aspect could have the type FAC-SAC. Now suppose
that the tense is also of the type HAC-RAC, then composing the core-aspect
combination with tense would yield also the type FAC-SAC, to which all grammatical
sentences could belong. Thus we have a clear idea of what the syntactic well-
formedness condition for a minimally well-formed AC would be. It would be this:
every minimally well- formed AC must have the type structure stated in (wf); <<FAC-
SAC (core), HAC- RAC (aspect)>, HAC-RAC (tense)>. For example, sentence (2)
John has seen Mary will have the SSr in (2'): <<<x;, <F-see, ¥yP> =k, <aspect (k), <H-
perfect, 0>>> =h, <tense (h), <H-present, 0>>>. The 'compound-type structure' of (2')
is (2'(a)) <<FAC-SAC, HAC-RAC>, HAC-RAC> and its 'compositional structure' in
terms of ACFs, or, 'ACFs structure' is (2'(b)) <<1,15>, 15>, (2'(a)) as a compound-
type structure can be computed to yield the type FAC-SAC, and for this reason it is the
computational part of (2'). (2'(b)) as an ACFs structure is a composition not subject to
any computation and so it is the compositional part of (2'). We combine (2'(a)) and
(2'(b)) into (2'(ab)) <<FAC-SAC (1), HAC-RAC (15)>, HAC-RAC (15)>, and we
obtain the 'compositional- computational complex' (ccc) of (2') and eventually of (2).

Clearly, we want to set up our computational scheme in such a way as to ensure
that every grammatical sentence will end up having the (wf) as its compound-type
structure. To achieve this, we make sure that when FAC-SAC is combined with a
regular compound-type, it will yield FAC-SAC, but when combined with an
exceptional type, it will yield the same exceptional type. In other words, we need two
guiding principles: (i) FAC-SAC combined with x will yield FAC-SAC, and (ii) FAC-
SAC combined with y will yield y. Apart from ensuring that every grammatical
sentence has the (wf) as its type structure, we also want to prohibit incompatible ACFs
from entering into composition. Specifically, (iii) we need to rule out the composition
of two RACs or two WACs or one RAC with one WAC. By considering all these
three needs, we decide that the computation of v-types should follow rules as

247

Table II. Computation of v-types.

| FAC | HAC I GAC
FAC | (i) FAC | (ii) FAC | {(iii) (a) FAC, if GAC is an SAC

[| | (b) GAC, if GAC is an RAC or WAC
HAC | | (iv) HAC | (v) (a) HAC, if GAC is an SAC

| | | (b) GAC, if GAC is an RAC or WAC
GAC | | | (vi) GAC

Table III. Computation of n-types.

| SAC | RAC | WAC
SAC | (i) SAC | (ii) SAC | (iii) RAC
RAC | | (iv) Goof | (v) Goof
WAC | | | (vi) Goof

Goof: A complex AC which is not allowed to combine with any AC of the type
SAC, RAC, WAC. :

<16, <1,19>>

FAC-SAC
| ' I
| <1,19>
| FAC-SAC, =k
I
I I g
<16> - ' <1> <19>
HAC-RAC FAC-SAC GAC-SAC, ==>NPj
I I I | | |
| Al | Al | Al
I I I
| I [I I | | I I
I A R I A R I A R
X3 H-xiang3 k Xi F-mai3 Yy Xk G-de0 Yh
want buy : Genitive

(1) Zhangl-sanl xiang3 mai3 Li3-si4 deO chel.
'Zhang-san wants/intends to buy Li-si's car.'

‘Figure 2. Computation of Compound Types for (1).

248

stipulated in Table II and the computation of n-types should obey rules as prescribed in
Table III. These two tables are self-explanatory and require no comments except that
the computation is commutative as is obvious from the fact that only the upper- right
halves of the tables are shown. The two tables work jointly to assign to a composition
of any degree of complexity its combination of v-type and n- type, that is, its
compound type.

In Figure 2 we illustrate this operation by showing how to derive the compound
type for the SSr of sentence (1). Here we see that FAC in (ACF) <1> combines with
GAC in <19> to become FAC in <1,19>, following rule (iii)(a) (since the GAC is also
an SAC) in Table II. On the other hand, SAC in <1> combines with SAC in <19> to
become SAC in <1,19>, following rule (i) in Table III. Combining these two results,
we obtain the compound type FAC-SAC for <1,19>. Subsequently, the HAC of <16>
combines with the FAC of <1,19> to form FAC, according to rule (ii) in Table II.
Simultaneously, RAC of <16> combines with SAC of <1,19> to form SAC, according
to rule (ii) in Table ITI. Putting these two results together, we obtain FAC-SAC for
<16, <1,19>>.

1.3. Word Order

The SSr for sentence (1) shown in Figure 2 is explicit about the hierarchical order
of the elements (of various complexity) in composition but it still needs information
that would determine the linear order of these elements. Linear orders are determined
by the 'primacy relation' which holds between a 'primary' ('p') ranked element and a
'secondary’ ('s') ranked element in a composition. Each element alone has a 'p' rank,
but when two elements are composed, one of them retains its 'p' rank and the other is
demoted to an 's' rank. Within an ACF the primacy relation is predetermined and has
the configuration AC(p) = <I(s), <A(p), R(s)> = A'(p)>. Across two ACs, the 'p' and
's' ranks are assigned by comparing their degrees of primacy. If one has a higher
degree than the other, it is ranked 'p' and the other is ranked 's'. If both have the same
degrees of primacy, then semantic and other non-syntactic criteria apply to determine
their 'p' and 's' ranks. ‘

The generally distinct degrees of primacy for a pair of co-composing elements are
obtained by combining the result of computation based on the v- types with that based
on the n-types. The laws of computation for the v-types are set forth in Table IV and
those for the n-types are stated in Table V. These two tables are self-explanatory.
Two compound types under comparison may be represented as the ordered pair <v;n;,

vony> (e.g. <FAC-SAC, GAC-SAC>). The v-type computation will yield an ordered
pair <d(vy), d(v,)>, with d(v,) and d(v,) representing the degrees of primacy for v;
and v,, respectively. Similarly, the n-type computation will produce an ordered pair
<d(n;), d(ny)>, with d(n;) and d(n,) denoting the degrees of primacy for n; and n,,
respectively. We then compute the sum of the two ordered pairs by adding up their
coordinates and we obtain the sum <d(v;) + d(n;), d(v,) + d(n,)>, which is simply the
ordered pair <m,n>, with m and n being positive integers. This pair <m,n> indicates
the degrees of primacy for <v;n;, von,>, the two compound types under comparison.
In other words, <m,n> = <d(v;n;), d(v,n,)>, where d(v;n;) is the primacy degree of
type viny, and d(vyn,) is the primacy degree of type von,. If m> n, then m is

249

interpreted as 'p' ('primary') and n as 's' ('secondary'). If m <n, then m is interpreted as
's' ('secondary') and n as 'p' (‘primary’). If m = n, then other criteria must apply to
interpret one of m and n as 'p' and the other as's'. Figure 3 illustrates this method of
primacy ranking using sentence (1) as example. Here we see that elements within each
ACF are assigned their 'p' and 's' through predetermination. Across ACF <1> and ACF
<19>, a computation shows that the pair <m,n> representing the primacy degrees of
ACF <1> and ACF <19> has the actual value of <2+1=3,0+1=1> with3>1,
hence ACF <1> is ranked 'p' and ACF <19> is ranked 's'. Across ACF <16> and AC
<1,19>, the value for <m,n>is <0+ 1 =1, 2 + 0 =2> with 1 <2, hence ACF <16> is
's'and AC <1,19>is'p". Finally, <16, <1,19>> is assigned 'p' since it stands alone.
Were it to enter into a composition, its primacy rank may be adjusted.

Once we have obtained the 'p' and 's' ranks for the pair of composing elements in
each composition, we can interpret the 'p'-to-'s' relation in a particular language as

Table IV. Computing the Primacy Degrees in v-types.

[FAC | ~ HAC | GAC
FAC | (1) <2,2> | (ii) <2,0> | (iii) <2,0>
HAC | (iv) <0,2> | (v) <2,2> | (vi) <2,0>
GAC | (vii) <0,2> | (viii) <0,2> | (ix) <2,2>

Table V. Computing the Primacy Degrees in n-types.

« SAC | RAC | WAC

|
SAC | (i) <1,1> | (ii) <0,1> | (iii) <0,1>
RAC | (iv) <1,0> | (v) none | (vi) none
WAC | (vii) <1,0> | (viii) none | (ix) none
<16, <1,1%9>>, p
FAC-SAC
I |
[(2 +0=2), p
I <1,19>
[FAC-SAC, =k
| .
| | |
(0 +1=1), s (2+1=23),p (0 +1=1), s
<16> <1> <19>
HAC-RAC FAC-SAC GAC~SAC, ==> NPj
| | [| | [
I A' (p) [A' (p) ! A' (p)
I f I)
| I | I | [| | |
I(s) A(p) R(s) I(s) A(p) " Ris) I(s) A(p) R(s)
-3 H-xiang3 k Xq F-mai3 Yy Xy G-de0 Yh

(1) Zhangl-sanl xiang3 mai3 Li3-si4 de0 chel
'Zhang-san wants to buy Li-si's car.'

Figure 3. Computation of Primacy Degrees for (1).

250

either a 'p'-preceding-'s' or an 's'-preceding-'p' relation in word order. Although the
picture is somewhat complicated, in Mandarin Chinese the general rule of word order
is an 's'-preceding-'p' order, as Huang (1982, 1993), Li (1985, 1990), and Tai (1973)
have shown, using a head versus modifier distinction, which is roughly parallel to our
'p' versus 's' distinction. Notable exceptions include VO order and prepositions.

The SSr for (1) as given in Figure 3 contains all the specifications needed for an
SSr and as such it is a 'complete' SSr, ready to turn into a CSr through a series of
transformations involving movement, concretization, instantiation, pruning, and
rebuilding. We now describe these transformations using as example sentence (3)
whose SSr is shown in Figure (4a).

2. Application to Parsing

By making use of the SSr, we can parse a grammatical sentence with relative ease.
For each semantic interpretation of a surface grammatical sentence, there is exactly one
SSr. This SSr is determined by its ultimate composing ACFs, or, more precisely
PACFs. Once we successfully identify these ACFs and their compositional structures,
the generation of the final SSr is automatic, since the compound-type formation rules
and the primacy-rank determination rules will apply in a computational manner. After
the grammatical sentence under parsing is successfully divided into a number of k
segments, each containing (the concrete form of) an AV, our task is to search for the
ACF that accepts each such AV, and to determine how these ACFs are composed
together. Although each AV can select from a small range of ACFs, we can stipulate a
set of ACF acceptance rules (ACFARs) which will assist us to decide on a unique
~ correct ACF. We need also a set of ACFs composition rules (ACFCRs) that determine
the composition of ACFs based on their compound types and perhaps also on the AVs
they accept. The central linguistic problem in parsing with SSrr then is reduced to the
formulation of the ACFARs and ACFCRs. These rules are specific to the language
under parsing and are finite in number and 50 in principle can be exhaustively
discovered. Thus the potential application of CCG, with its SSrr, to the parsing of
grammatical sentences is in principle an uncomplicated and accomplishable job.

References

Bresnan, Joan. (ed.) 1982. The mental representation of grammatical relations.
Cambridge, MA: MIT Press.

Chang, Claire Hsun-huei. 1990. Complex verb and argument structure: interaction
between syntax and morphology. Paper presented at the Second Northeast
Conference on Chinese Linguistics, The University of Pennsylvania, Philadelphia,
May 4-6, 1990.

. 1991. Verb copying: Towards a balance between formalism and
functionalism. Journal of Chinese Language Teachers Association 26.1:1- 32.

Her, One-soon. 1991. Topic as a grammatical function in Chinese. Lingua 84.1-23.

Hsieh, Hsin-1. 1992a. In search of a grammatical foundation for dialect subgrouping.
Symposium series of the Institute of History and Philology, Academia Sinica, no.
2: Chinese languages and linguistics, vol. 1: Chinese dialects, 333-377. Taipei:
Academia Sinica.

251

. 1992b. Lexicon and morphology in a compositional cogmtlve grammar.
Proceedings of IsCLL-3, 38-61.

Hsieh, Miao-ling. 1992. Analogy as a type of interaction. Journal of Chinese
Language Teachers Association 28.3:75-92. -

Huang, C.-T. James. 1982. Logical relations in Chinese and the theory of grammar.
Doctoral dissertation, MIT.

. 1992, Complex predicates in control Control and grammar, ed. by R.
K. Larson, S. Iatridou, U. Lahiri and J. nggmbotham 109-147. Dodrecht:
Kluwer Academic Publishers.

. 1993. More on Chinese word order and parametric theory. MS.

Jackendoff, Ray. 1990. Semantic structure. Cambridge, MA: MIT Press.

Langacker, Ronald W. 1987. Foundation of cognitive grammar, vol. 1: Theoretical
prerequisites. Stanford: Stanford University Press.

Li, Y.-H. Audrey. 1990. Order and constituenicy in Mandarin Chinese. Dordrecht:
Kluwer Academic Publishers.

McCawley, James. 1971. Where do noun phrases come from? Semantlcs ed. by D
- D. Steinberg and L. A. Jakobovits, 217-231. Cambridge: Cambridge Umver51ty
Press.

Tai, James H-Y. 1973. Chinese as a SOV language. Papers from the 9th Chlcago
Linguistic Society meeting, 659-71. Chicago: Chicago Linguistic Society.

. 1985. Temporal sequence and Chinese word order. Iconicity in syntax,
ed. by John Haiman, 49-72. Amsterdam: John Benjamins Publishing Co.

. 1989. Toward a cognition-based functional grammar in Chinese.
Functionalism and Chinese grammar, ed. by James H-Y. Tai and Frank F. S.
Hsueh, 187-226. Chinese Language Teachers Association Monograph Series No.
1.

Talmy, Leonard. 1985. Lexicalization patterns: semantic structure in lexical forms.
Language typology and syntactic description, vol. 3: grammatical categories and
the lexicon, ed. by Tlmothy Shopen, 57-149. Cambridge: Cambridge University
Press.

252

