* A PARALLEL AUGMENTED CONTEXT-FREE PARSING SYSTEM
-~ FOR NATURAL LANGUAGE ANALYSIS

-Hsin-Hsi Chen Jiunn-Liang Leu Yue-Shi Lee

- Department of Computer Science and Information Engineering
| National Taiwan University
Taipei, Taiwan, R.O.C.
" hh_chen@nlg.csie.ntu.edu.tw

Abstract

Parsing efficiency is one of the important issues in building practical natural langilage
processing systems. This paper proposes a design and an implementation of a parallel
augmented context-free parsing system for natural language analysis. Natural language
grammars are more than context-free, so that unification formalisms are adopted to
enforce the linguistic constraints and to transfer the linguistic information. Lexical and
structural ambiguities are the famous problems in parsing natural language sentences.
Traditional LR approaches to deal with these problems are pseudo parallelism or blind
parallelism. They fork many processes to take care of parsing. Appé.rently, it results in
the scheduling problem in shared-memory model or the communication problem in
distributed-memory model. This paper presents a merge mechanism to compose the
same jobs into one. It can not only eliminate the duplications, but also reduce the
number of forked processes to the great extent. The gapping problems are also treated
in this parallel parsing system. Currently, it is implemented in Prolog and in Strand,
and running on Sun-series workstations. ' |

1. Introduction

There is a growing interest in applying parallel computation techniques to natural
language processing (NLP) [1-2]. Two approaches may be adopted: massively parallel
systems and non-massively parallel systems [3]. These papers [4-8] show the typical
examples for the former systems. They try to map natural language grammars into
connectionist networks. Because the functionality of the nodes in the network is very
primitive, they are involved in the following problems: (1) Is the network independent
of the length of input sentence? (2) Does the network accept recursive grammar rules?
(3) What threshold values and weights are assigned to nodes and links in the network?
On the other side, these papers [9-15] deal with the design of non-massively parallel
parsing systems. Most of the papers touch on parallelizing CYK Parsing algorithm,
LR Parsing algorithm, Chart Parsing algorithm, ezc., however, only few presented

289 -

methods to capture the specific linguistic phenomena. To evaluate these types of
parallel parsing systems, besides the performance criteria, i.e., scheduling of the
processes in the shared-memory model [16] or the communication cost among
processes in the distributed-memory model [17], the expressive capability is also an
important issue. This paper will propose a parallel augmented context-free parsing
system for natural language analysis. The linguistic phenomena are considered in depth
in our design, gapping problem in particular. From the comparisons among different
parsing strategies [18], Tomita's extended LR parser [19] is a better selection in
computational linguistics. This paper will also follow the concept to design the parallel
parsing system. ' '

2. LR Parsing)

Shift and reduce are two. basic operations in LR parsing. LR parser uses two tables
(Action and Goto tables) and one stack to control the parsing procedure. The Action
table shows when to shift, to reduce, to terminate successfully, or to signal a syntactic
error. The Goto table defines the next state after a nonterminal is matched and shifted.
The stack contains a sequence of parse states. The following is a sample grammar:

(1) S-->NPVP

2) S->SPP
(3) NP-->n
- (4) NP-->detn

(5). NP-->NPPP
(6) VP-->t1NP
(7 VP->828
8) VP-->iv
(9) PP -->prep NP

290

Table 1 shows its corresponding Action and Goto tables.

 Table 1. The Parsin

Table for the Sample Grammar

det n t1 t2 iv lprep] $ S NP | VP | PP
-0 | s2] s1 S | 4"
1 13| 13 13 .| 3
2 s5 v
3 s6 | acc 7
4 s10 | s11 | s12 | s6 13 9
5 4 4 4 | 4 4
6 s2 sl o ' 8
T _ 1. 2.l 2 .
8 19 9 | 9 |s69] 19 9
9 | 15 | 15 5 r5 | 5
10 s2 | sl . 1] 14
11 s2 sl 15 4
12 ' 8 1
13 r1 | 1l :
14 s6/16 9
15 s6/r7 | 17 7

Table 2 demonstrates the parsing steps for the sentence "I saw her duck”.

Table 2. The Detailed Steps for Parsing the Sentence "I saw her duck"

step stack comment input string -
1 |[.,0]" initial state {n}{t1,22}{n,det}{n,iv]$
2 1101 [n 1] . - | action(Q,n)=s1 . {0122} {ndet} {n,iv]$
3.1 L,O] [NP4] [t1, 10] action(1,t1)=r13, goto(0,NP)=4 (n,det} {n,iv}$
- action(4,t1)=s10 -
3.2 | 0] [NP,4] [t2,11] action(1,t2)=r3, goto(0,NP)=4 {n,det} {n,iv}$
e action(4,12)=s11
4.1 | [L,0]1 [NP4] (t1,10] [n,1] “ | action(10,n)=s1 - - [n,iv}$
4.2 | L,0] [NP4] [t1,10] [det,2] action(10,det)=s2 {n,iv}$
4.3 | [L,0] [NP4][t2,11] [n,1] action(11,n)=s1 {n,iv}$
4.4 |.[0] [NP4].[12,11] [det2] - - -] action(11,det)=s2 .- [n,iv}$
5.1 | [,0] [NP4] [t1,10] [n,1] 7 action(1,n)=fail
5.2°| 0] [NP4] [t1,10] [NP,14] action(1;iv)=r3, goto(lO,NP)-14 '
_ L - .| action(14,iv)=fail . .
5.3] .01 INP,4] [t1,10] [det,2] [n,5] action(2,n)=s5 $
54 | [,0] [NP4] [t1,10] [det,2] . - . |action(2,iv)=fail =
5.5 | L,0] [NP4] [t2,11] [n,1] | action(1,n)=fail
5.6 | [,0] [INP4] [t2,11] [NP4] [iv,12] | action(1,iv)=r3, goto(ll,NP)-4 $
action(4,iv)=s12
5.7 | L,0] [NP,4] [t2,11] {det,2] [n,5] action(2,n)=s5 $
5.8} [.,0]1 INPA4] [12,11] [det,2] action(2,det)=fail : '
6.1 | [,0] [NP,4] [t1,10] [NP,14] action(5,$)=r4, goto(10NP)=14 | $
6.2 | [L,0] [NPA4] [t2,11] [NP,4] [VP,13] | action(4,$)=r8, goto(4,VP)=13 $
6.3 | [0] [NP4] [t2,11] [NP 4] action(5,9)=r4, goto(11NP)=4 | $
7.1 | L,0] [NPA4] [VP,13] action(14,$)=16, goto(4,VP)=13. |$
7.2 | L,0] [NP4] [2,11] [S,15] action(13,$)=r1, goto(ll s)-15 B
7.3 | [O] [NP 4] [t2,11] [NP,4] action(4,$)=fail .- . ,
8.1 {L.01[S,3] action(13,$)=r1, goto(0,S)=3 . $
8.2 | [,0] INP4][VP,13] action(15.%)=r7, goto(4 VP)=1'3‘ $
9.1 | [,0]1[8,3] action(3,$)=acc = - - .
9.2 | [,0][S.3] action(13,$)=rl, goto(O S)=3 $
10 1 [.01]S.,3] action(3,$)=acc .- ‘ '

291

The words "I", "saw", "her" and "duck" have categories {n}, {t1,t2}, {det,n} and
{n,iv} respectively. The last three have more than one category. The effect is
multiplicative rather than additive. Four stacks are generated at steps (4.1) - “4.4).
Besides multi-category problem, the conflict entry in the action table also introduces
nondeterminism. For example, parse the sentence "I saw her duck with a telescope”.
When the preposition "with" is inspected, a conflict entry (shift 6/reduce 6) will be met.
The knowledge to resolve PP-attachment problem is originated from diverse resources
[20]. Even if the knowledge is encoded, which action is selected correctly must be
deferred to the later stage(s). Conventional approach to deal with these problems is
pseudo parallelism or blind parallelism. The former explores the alternatives in a
special sequence, e.g. breadth-first in our example. The latter forks many processes to
take care of the subsequent actions. These processes may spend much time doing the
same jobs. That decreases the significance of the parallelism. Synchronizing by shift
operation [12] or data availability [13] was proposed to avoid the duplications. They
tried to merge the stacks generated by different processes into tree-structured stacks
(TSSs). Subsequently, Tanaka and Suresh [21] took another view on the interpretation
of the elements in the pushdown stacks. These elements are called dot reverse items
(drits). A drit is a dotted rule {A -> X1 X2 ... Xk @ Xk+I ... Xm, i], which is similar to
the Earley's item. waever, its meaning is reverse. In Earley parsing [22], we plan to -
construct a sequence of item lists, I1, 12, ..., In such that a dotted rule [A -> 0t o _B, i]
€ iff S * YA $, Yy =" 01 2 ... i, and o0 = Wi+ 0i+2 ... ®j. The item drit
means [A -> 0 e B, jle Liff S =>*YA 3, p =" 0i+] wi+2 ... wj, and 3 =" wj+1
Wj+2 ... ®n. A sentence is recognizable l;y a grammar iff [s -> e ¥, n] € I0.

Such an interpretation matches the direction of reduction, so that the merge can be
done to the most depth. Consider the following two stacks pOSSessed by two
processes respectively. Each eleinent_in the"'stacks has two arguments. The first ’-
denotes a set of position numbers and the second is a state. | '

(@) ++« [{a},S1] [{b},52] [{c},S3] [{e}.S4]

(b) * [{a},S1] [{d},S2] {{c}.S3] [{e},S4] _
If the next action is a "reduce x" whcfe X1is "A-> B CD", we will gét six dirts shown
as follows: - _ '

(D[A->BCeD,e]le L. .

2)[A->BCeD,ele I

B3 [A>BeCD,ele]y

4 [A->BeCD,ele Iy

(5)[A->eBCD,ele I,

6 [A->eBCD,ele Il

292

We can observe that (1) and (2), (5) and (6) have the same drits, i.e, the two processes
do the same jobs. If we merge these two stacks into a TSS with the principle "merging
the positioh numbers of those items with the same state from top of stacks", we can get
a TSS like: "sos [{a},S1] [{b,d},S2] [{c},S3] [{e},S4]". Reducing the TSS by the
same rule generates the same drits as before, however, it avoids the redundancy and
decreases the number of processes to the great extent . Thus, the scheme can not only
achieve the effects of chart parsing [23], but also is suitable to develop a new parallel
parsing model.

3. A Parallel Parsing System
3.1 Parallel Recognizer _
The fundamental concept of the recognizer is like the convent10na1 LR algorithm except
that the position numbers are used in the stacks. The following describes the basic
recognizer:
(1) Initialize the stack to [{0},0], where the ﬁrst 0 represents the word position
and the next O denotes the initial state. ‘ _
(2) Look up the first word of the remaining sentence in the dictionary, and return
the feature structure(s)! of the word.
(3) Look up LR table by word category and the current state, and return a list of
actions.
4 Perform each action in the list.
(@) accept: Terminate with success.
(b) error: Terminate with failure. , _
(c) shift: The position number is increased by 1 and go to step (5).
(d) reduce: Do the reduce operation without changing the position number,
and and try step (3) again. ‘ | ‘
(5) Merge the stacks with the same shift operation.
(6) Consume this word. -
(7) If there are words left then go to step (2) else halt
There are several places to enforce the parallelism:
(1) The table look-up at step (2) can be done in parallel.
| (2) The actions in the action list can be performed in parallel. ,
(3). The merge operation at step (5) can be performed in parallel with the reduce
- ‘operatlon atstep (4.d).
(@) The new state created by the shift operatlon can be forwarded beforehand
- (5) The parse tree generation is overlapped with other actions (see next section). . .
Flgure 1 demonstrates the architecture of the new parallel recognizer.

1 Unification is adopted. The unification-based fortnalisxh refets to. .[20].

293

({030

Figure 1. System Architecture of a Parallel Recognizer

A word process is initiated for each word to control all of its operations, i.e. shift
and/or reduce operations. These processes are linked in a pipeline and communicate
with each other by channels. The channel can transfer two kinds of information:
merged stacks and a global table (see next section). When a word process receives the
information (not necessary complete information) from its left neighbor word process,
it begins its parsing steps immediately. Current system is developed by the language
Strand88 [24], which is a parallel programming language. It can be run on parallel
environments like transputers or be simulated on Unix systems. Strand provides a
concise notation to describe process interactions. If a word process receives an
- incomplete information, it proceeds the parsing as possible as it can until it meets a
variable. Itis the characteristics of Strand language. The following shows the setup of
the pipeline mechanism:
pglr(Sentence) :-
pglr(0,Sentence,[[elt([0],0)]1,_).
pglr(Pos,[],_,).
- pglr(Pos,[WordIWords],InStream,OutStream) :-

dict:word(Word,WordStream),

Pos1 is Pos + 1,

goal(Pos1,Word,WordStream,InStream,MidStream),

pglr(Pos1,Words,MidStream,OutStream).

A sequence of TSSs is transmitted from the left hand side to the right hand side
via the special communication channel stream. The sequence is generated by the word
prdcess i (1 <£i<n). We adopt the data structure for the stream: [TSSil, TSSi2, ...,
TSSim]. Each stack TSSij (1 <j <m) is represented as a list of elements of the form
elt(a list of position numbers,state number). Initially, the stream is: [[elt([0],0)]].
Because a word process may generate more than one TSS, a merger is used to merge m
TSSs into a stream, and send them in sequence to its right neighbor. Figure 2
demonstrates a sample communication channel.

294

word(i-1)

word(i+1)

streami stream(i+1) '

.. TSSi,j+1 TSSi,j

reduce shift s1 -
TSSi,j TSSi,j |
reduce shift s2
TSS'i,j TSS',j
merge
' operation
reduce shift sl
TSS"i,j TSS"i,j
shift s3
TSS"i,j

Figure 2. Communication Channel

The following shows the detailed Step:
(@) s1: Keep {<sl, stackij, Tail(i+1)1>} and Stream(i+1)1, and
send out [[elt([i],s1)ITail¢i+1)1]IStream(i+1)1].
That is, Stream(i+1) := [[elt([i],s1)ITail(i+1)1]IStream+1)1].
(b)' s2: Keep {<sl, stackij, Tail(i+1)1>, <s2, stack'ij, Tail(i+1)2>} and
‘ Stream(1+1)2 and send out [[elt([i],s2)I Tail(i+1)2]IS treamgi+ 1)2] |
That i is, Stpeam(1+1)1 = [[elt([i],s2)I Tail(i+1)2]IStream(i+1)2].
(c) s1: Merge stackij and stack™jj into nstack. Keep {<sl1, nstack, Tail(i+1')1>,
<82, stack'ij, Tail(i+1)2>} and Stream((i+l)2.
(d) s3: Keep {<si,‘nstéck; Tail(i+1)1>; <s2, Stack'ij, Tail(i+1)2>,
<s3, stack™ij, Tail(i+1)3>} and Stream(i+1)3, and
send out [[elt([i], s3)|Ta11(1+1)3]ISt1eam(1+1)3]
That is, Stream(i+1)2 := [[elt([i], s3)ITa11(1+1)3JIStpeam(1+1)3]
If the left stream is exhausted, let
Tail(i+1)1 := nstack, Tail(i+1)2 := stack'u, Ta11(1+1)3 = stack"'q and
Stream(1+l)3 =1l
Otherwise, do the same JOb agam Strand language prov1des a predeﬁned process
merger. It allows many processes to write on a single stream. This approach has an
adyantage. the different shift message can be forwarded to next process before the
reduce operation is terminated. It results in a better performance. - The definition of .

295

goal for a word process is given below. The process pathval retrieves the category
information from a feature structure. - The process subgoal transforms the TSSs in
InStream into a merge list according to the LR parsing table. The list MergeList is a
communication channel between processes subgoal and dispatcher. The process
dispatcher sends the merged TSS into the right hand side neighbor one at a time via the
channel OutStream.
goal(Pos,Word,[H],InStream,OutStream) :-
pathval(H,[cat],Cat),
subgoal(Pos,Cat,InStream,MergeList),
dispatcher(OutStream,MergeList).
goal(Pos,Word,[HIT],InStream,OutStream) :-
T =2=[]!
pathval(H,[cat],Cat),
subgoal(Pos,Cat,InStream,MergeList),
dispatcher(OutStream1,MergeList),
goal(Pos,Word,T,InStream,OutStream?2),
merger([merge(OutStream1),merge(0utStream2)],OutStream).
In natural languages, a word may have more than one category. This problem can be
treated easily in the parallel parsing. Assume a word has N categories. The system can
fork N processes and copy TSSs to each process to deal with those N categories.
Theory 1 tell us: "Given any two stacks, no matter what states of their top of stacks are,
if they receive different categories, they will not shift to the same state." That is, the
new stacks cannot be merged. Based on the theory, the TSSs generated by any process
can be sent to the next word process immediately without waiting for the generation of
other TSSs. This can reduce the merge time. Table 3 lists the TSSs generated by word
processes for the sentence "I saw her duck."

Table 3. TSSs Produced by Word Processes for the Sentence "I saw her duck”

node tree-structured stacks (TSSs) : input string
1 [,0][n,1] {n}
2 [_.0] [NP4] [t1,10] {t1,22}
[.0] [NPA4] [2,11]
3 | LL,0] [NP4] [t1,10]---[n,1] {ndet}

[L.0] [NP4] [t2,11]4

[_.0] [NP.4] [t1,10]---[det,2]
[,0] [NPA] [t2,11]4

4 [_.0] [NP4] [t2,11] [NP4] [iv,12] {n,iv}
[_.0] [NPA4] [t1,10]---[det,2] [n,5]
[,0] [NPA] [t2,11]4

Theorem 1. Given two stacks in a word process, no matter what states of their top of
stacks are, they will not shift to the same state if they receive different t:ategoﬁes.

296

Proof:

When the LR parser reads a word, it may execute reduce actions successively. At
the end, it will meet a shift action, an accept action or an unacceptable signal. Assume
the states of the top of two stacks are S1 and S2 respectively. Two cases are shown as
follows. ' ‘

(1) S1=9S2. Itis trivial that the two stacks will not go into the same state.

(2) S1#8S2. Assume the state S1 receives category cl and the state S2 receives
category c2. The configuration set of S1 can be divided into two groups:
those configurations have the form "Pn -> Rn e c1 Un" and those do not.
The configuration set of S2 can also be divided into "Pm -> Rm e ¢2 Um" and
those do not. According to S1, the next state which receives c1 can be
divided into two groups: "Pn -> Rn c1 @ Un" and the prediction set of Un.
According to S2, the next state which receives c2 can be divided into two
groups: "Pm -> Rm c2 ¢ Um" and prediction set of Um. Because {Pn -> Rn
cl e Un} # {Pm ->Rm c2 ¢ U2} and {Pn ->Rn cl e Un} # the prediction set

- of Um, the next states after receiving c1 and c2 cannot be the same. m

3.2 Parsing Tree Generator

The conventional LR parsing algorithm keeps partial parse trees in the stacks. In the
current implementation, only position numbers are recorded. This is because the
interpretation of drits is from right to left, and it avoids the overheads during the merge
and split operations. Under such a situation, if there does not exist an efficient parsing
tree generation algorithm, the benefits from merge operation are lost. This section
presents a parsing tree generator. It is active when any reduce action is performed. It
will lookup tables, extract the Rhs of the production rule, apply_' the unification formulas
and produce Lhs. There are two tables used: one is a global table received from the
previous word process and the other is a delta table produced from its parent action
process. The global table is the union of delta tables prodilced by the left-hand side
word processes. Given a sentence "I saw her duck”, Table 4 lists the delta tables

generated by the word processes.

Table 4. The Delta Tables Produced by Word Processes for ,"_I saw her duck"

node word partial trees produced by the node global table
1 1 Al={1.<n0,1>) I : : 1 '
2 - saw . | A2={2.<t1,1,2>,3.<12,1,2>.4.<NP(1).0,1>} Al
3 her A3={5.<n,2,3>,6.<det,2,3>}) A1UA2
4 dck | A4={7.<n,3,4>8.<iv,3,4>9<NP(5),23>} - = - A1UA2UA3
5 ~.$ - | A5={10.<NP(6,7),2,4>,11.<VP(8),3.4>,12.<VP(2,10),1,4>, . ATUA2UA3UA
13.<§(9,11),2,4>,14.<5(4,12),0,4>,15.<VP(3,13),1.4>,

16.<8(4,15).,04>}

297

Each entry with a unique index has three arguments: the first is a partial tree, and the
last two denote the left and the right positions respectively. For the performance issue,
all the two tables are sorted and packed. The system uses the merge sort to arrange the
partial trees. The right position is regarded as a primary key, and the left is a secondary
key. The primary key is in descendant order and the secondary key is in ascendant
order. This is the most efficient arrangement. Observe the delta tables in Table 4. The
delta table created by each word process has a very interesting feature: "The right
positions of all partial trees equal to the node number minus one except the leaf node."
This is because the action process performs the reduce action until it meets a shift
action, and each reduction will promote a partial tree up one level. Under the
arrangement, we just append the global table to the delta table without applying the
merge sort to these two tables. There is an important result in sorting the delta table: to
keep the table entries unredundant. Because the system records the partial trees by a
global table, it cannot distinguish which partial trees were produced by which processes
when reduce action occurs. In fact, the distinction is not necessary. If the system
cannot manage the tables efficiently, it will take a lot of time to search tables and will
also have redundant solutions. Thus, we put an ambiguous forest [19] in the same
table item and keep only one copy of subtrees that have the same structure and range.
Figure 3 summarizes the flow of table constructions.

global merge new
table sort —®| append |—> gt::;:;:l

Figure 3. Table Management

4. Resolving Gapping Problem

Gapping is a common phenomenon in natural language sentences. Topicalization and
relativization are two famous examples. In the sentence "The apples, I like", the
constituent "The apples"” is displaced from the object position to the topic position.
These phenomena are regarded as movement transformations. To capture them, these
papers [25-26] extended the conventional augmcntcd context-free grammar formalism
with two extra symbols ">>>" and "<<<" shown as follows:

298

(1) C-->Cl, C2, ..., C(i-1), Ci <<< trace, C(i+1), ..., Cn.

This rule can be interpreted as "C is composed of C1, C2, ..., Ci, ..., Cn,
where Ci is moved from the position dominated by C(i+1), ...,or Cnand a
trace is left at that position”. The position of Ci is called a landing site.

2 C-->0QC1,C,..,C(i-1), trace >>> Ci , C(i+1), ..., Cn. .
The interpretation of this rule is similar to the above except that the
constituent Ci is moved from its left hand side.

3) C->C1,cC2,..,C(i-1), trace, C(i+1), ..., Cn.

This rule can be read as "C is composed of C1, C2, ..., C(i-1), C(i+1), ...,
Cn, and an empty constituent is left between C(i-/) and C(i+1)". The
position of trace is called an empty site.
Under this grammar formalism, only the landing site and the empty site are specified.
It is different from the slash technique in that no explicit slash feature is specified in the
grammar. Consider a sample grammar shown below:
(1) syn_rule S1Bar --> TOPIC <<< TRACE, S:
[TOPIC,head] === [TRACE,head].
(2) syn_rule S1Bar --> S.
(3) syn_rule S --> NP, VP:
[NP,head] === [VP,subj].
(4) syn_rule NP --> *Det, *N:
[NP,head] === [N,head].
(5) syn_rule NP --> *N:
[NP,head] === [N,head].
(6) syn_rule VP --> *TV, NP:
[VP,subj] === [TV,subj],
[TV,obj] === [NP,head].
(7) syn_rule VP --> *TV, TRACE:
[VP,subj] === [TV,subj],
[TV,obj] === [TRACE,head]. .
Rule (1) deals with the topicalization and the others are the normal grammar rules. An
empty constituent appears in rule (7). -

Figure 4 shows one of the relationships between the displaced'cdhstitucnt and its

corresponding empty constituent, which is a leftward movement. Rightward
movement is symmetric, so their treatments are the same.

299

the moved constituen X0 _

AAANA A
c1 .. B .. C
< T '
trace
(the empty constituent)

Figure 4. Leftward Movement

Before the grammar is translated, a preprocessing procedure computes the domination
path, e.g. Yj dominates C and C dominates B. The empty constituent is raised up to
the level dominated by X0 via C and Yj. For example, the above grammar is
preprocessed like:
(1') syn_rule S1Bar --> TOPIC, S:
[TOPIC,head] === [S,trace,head].
(2") syn_rule S1Bar --> S:
[S1Bar,trace] === [S,trace].
(3") syn_rule S --> NP, VP:
[NP,head] === [VP,subj],
[S,trace] === [VP,trace].
(4") syn_rule NP --> *Det, *N:
[NP,head] === [N,head],
[NP,trace] === none.
(5") syn_rule NP --> *N:
[NP,head] === [N,head],
[NP,trace] === n'one‘
(6") syn_rule VP --> *TV, NP:
[VP,subj] === [TV,subj],
[TV,obj] === [NP,head],
[VP,trace] === none.
(7") syn_rule VP --> *TV.:
[VP,subj] === [TV,subj],
[TV,obj] === [VP,trace,head].

300

Rule (7') specifies that all the information about the empty constituent in the original
rule is inherited by the mother category, i.e., VP. Because S dominates VP, rule (3)
shows this information is also passed to S. Rule (1") depicts that the information is
unified to the moved constituent. Rules (4'), (5") and (6') do not dominate any trace
category, so the formulas "[FS,trace] === none" are added. The preprocessor
automatically generates the trace feature for rules. It not only avoids the burden of
grammar writing, but also detects the grammar errors beforehand. Finally, con51der
two general cases for preprocessing. .

(a) For a rule C --> CI1, C2, ..., C(i-1), Ci <<< trace, C(i+1), ..., Cn, if there
exists more than one Ck ((i+1) <k < n) that dominates trace, trace may be transferred
up from different paths. During preprocessing, we split such a rule into several rules
with the same Lhs and Rhs, and different sets of unification formulas. Because our
parsing system can handle the conflict condition, these rules can be tried in parallel.

(b) For arule C-->Cl1, C2, ..., Cn, if there exists more than one Ct (1 £k <n)
that dominates trace, trace may be transferred up through the mother category. In this
way, trace is considered as a disjunction feature to transfer all the possible information

up.

5. Concluding Remarks

This paper proposes a design and an implementation of a parallel parsing system for
natural language analysis based on LR parsing algorithm. It adopts dot reverse items
instead of the conventional Earley items. This interpretation can not only achieve the
same effect as Chart parsing, but also reduce the number of processes to the great
extent. An efficient table management algorithm is also presented to construct the
parsing trees. A global table for parse tree generation is set up incrementally. It is
transferred from the leftmost word process to the rightmost process. Because the delta
table generated by an intermediate word process is mutual exclusive of the global table
sent from its left hand side word process, and the former is much. smaller than the
latter, it is easy to keep tables sorted and packed. For the well-treatment of the gapping
phenomena, the formalism to specify the landing site and the empty site is introduced.
A grammar translator adds disjunctive trace features to unification formulas
automatically. Currently, it can capture the relationship of serial binding. The parallel
parsing system is implemented with Prolog and with Strand, and running on Sun-series
workstations.

. Acknowledgements

Research on this paper was partially supported by National Science Counc11 grant
NSC-81-0408-E002-514, Taipei, Taiwan, R.O.C.

301

References

[1] A. Nijholt, "Parallel Parsing Strategies in Natural Language Processing,"
Proceedings of International Parsing Workshop on Parsing Technologies, 1989,
pp. 240-253.

[2] R. Akker, H. Alblas, A. Nijholt and P.O. Luttighuis, "An Annotated
Bibliography on Parallel Parsing," Memoranda Informatica 89-67, Department of
Computer Science, University of Twente, the Netherlands, 1989.

[3] H. Schnelle, "Panel Discussion on Parallel Processing in Computational
Linguistics," Proceedings of 12th International Conference on Computational
Linguistics, 1988, pp. 595-598.

[4] D.L. Waltz and J.B. Pollack, "Massively Parallel Parsing: A Strongly Interactive
Model of Natural Language Interpretation,” Cognitive Science, Vol. 9, 1985, pp.
51-74.

[5] T.Liand H.-W. Chun, "A Massively Parallel Network-Based Natural Language
Parsing System," Proceedings of the Second International Conference on
Computers and Applications, 1987, pp. 401-408.

[6] B. Selman and G. Hirst, "Parsing as an Energy Minimization Problem," in
Genetic Algorithms and Simulated Annealing, Lawrence Davis (Editor), Morgan
Kaufmann Publishers, 1987, pp. 141-154.

[7] H. Nakagawa and M. Tatsunori, "A Parser based on Connectionist Model,"
Proceedings of 12th International Conference on Computational Linguistics,
1988, pp. 454-458.

[8] H. Schnelle and R. Wilkens, "The Translation of Constituent Structure
Grammars into Connectionist Networks," Proceedings of 13th International
Conference on Computational Linguistics, 1990, pp. 53-55.

[9]1 X. Huang and G. Louise, "Parsing in Parallel,” Proceedings of 11th International
Conference on Computational Linguistics, 1986, pp. 140-145.

[10] A. Haas, "Parallel Parsing for Unification Grammars," Proceedings of
International Joint Conference on Artificial Intelligence, 1987, pp. 615-618.

[11] E.L. Lozinskii and S. Nirenburg, "Parsing in Parallel,” Computer Language,
Vol. 11, No. 1, 1986, pp. 39-51.

[12] H. Tanaka and H. Numazaki, "Parallel Generalized LR Parsing Based on Logic
Programming," Proceedings of International Workshop on Parsing Technologies,
1989, pp. 329-338.

[13] H. Numazaki and H. Tanaka, "A New Parallel Algorithm for Generalized LR
Parsing," Proceedings of 13th International Conference on Computational
Linguistics, 1990, pp. 305-310.

302

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

Y. Matsumoto, "Handling Coordination in a Logic-Based Concurrent Parser,"
Natural Language Understandiné and Logic Programming, 1991, pp. 1-12.

A. Kouji, "Parallel Parsing System Based on Dependency Grammar," Natural
Language Understanding and Logic Programming, 1991, pp. 147-157.

R. Grishman and M. Chitrao, "Evaluation of a Parallel Chart Parser,"
Proceedings of the 2nd Conference on Applied Natural Language Processing,
1988, pp. 71-76.

H.S. Thompson, "Chart Parsing for Loosely Coupled Parallel Systems,"
Proceedings of International Workshop on Parsing Technologies, 1989, pp. 320-
328. _

P. Shann, "The Selection of a Parsing Strategy for an On-Line Machine
Translation System in a Sublanguage Domain," Proceedings of International
Workshop on Parsing Technologies, 1989, pp. 264-276.

M. Tomita, "An Efficient Augmented-Context-Free Parsing Algorithm,"
Computational Linguistics, Vol. 13, No. 1-2, 1987, pp. 31-46.

K.-H. Chen and H.-H. Chen, "Attachment and Transfer of Prepositional Phrases
with Constraint Propagation,” Submitted to Computer Processing of Chinese and
Oriental Languages (first revision).

H. Tanaka and K.G. Suresh, "YAGLR: Yet Another Generalized LR Parser,"
Proceedings of ROCLING IV, Taiwan, 1991, pp. 21-31.

A.V. Aho and J.D. Ullman, The Theory of Parsing, Translation, and Compiling,
Vol. 1: Parsing, Prentice-Hall, 1973.

M. Kay, "Algorithm Schemata and Data Structures in Syntactic Processing," in
Readings in Natural Language Processing, B.J. Grosz (Editor), Morgan
Kaufmann, 1986, pp. 35-70.

1. Foster and S. Taylor, Strand: New Concept in Parallel Programming, Prentice
Hall, 1989. '
H.-H. Chen, I.-P. Lin and C.-P. Wu, "A New Design of Prolog-Based Bottom-
Up Parsing System with Government-Binding Theory," Proceedings of the 12th
International Conference on Computational Linguistics, 1988, pp. 112-116.
H.-H. Chen, "A Logic-Based Government-Binding Parser for Mandarin
Chinese," Proceedings of the 13th International Conference on Computational
Linguistics, 1990, pp. 48-53.

303 -

