DEVELOPMENT OF AN AUTOMATIC ENGLISH GRAMMAR
DEBUGGER FOR CHINESE STUDENTS: A PROGRESS REPORT"

Hsien-Chin Liou, Hui-Li Hsu, Yong-Chang Huang, and Von-Wun Soo

National Tsing Hua University

Abstract

This paper reports the research about development of an automatic English
grammar debugger (on a personal computer) for Chinese coilege students,
based on an analysis of the errors they made in their compositions. The first
stage of development is devoted to an error analysis of 125 writing samples
and classification of the errors into 14 main types and 93 subtypes. To
implement the grammar debugger we first built a small dictionary with 1402
word stems and necessary features, as well as a suffix processor which
accommodates morpho-syntactic variants of each word stem. We then built
up an ATN parser, which is equipped with correct phrase structure rules and
error patterns. In addition, a set of disambiguating rules for multiple word
categories was designed to eliminate the unlikely categories to increase the
precision power of the parser. The current implementation enables detection
of seven types of error for a text input and response of corresponding
diagnostic feedback messages. Future research will be focused on refining
the grammar debugger to detect more types of mistakes with more precision
and on providing appropriate feedback messages to diagnose students’
deficiency as well as operations for students to edit their errors.

* Introduction
One of the reasons which make English writing classes formidable for language
teachers in Taiwan is the seemingly endless correction task of many learners’ grammatical

mistakes such as subject-verb agreement and article usage. This experience motivated our

' The research project is sponsored by National Science Council (#NSC80-0301-HO007-15) in Taiwan,
Republic of China. We would like to acknowledge our research assistant’s (Kuei-Ping Hsu) full-time dedication
to the project.

277

use of computer software to alleviate teachers’ burden. If a computer program can help
detect or even correct grammatical mistakes in students’ compositions, it will reduce the
tiring part of revision process and leave more time for human teachers to work on
higher-level re-writing tasks such as revision of contents, organization, or expressions.
For this purpose, we have tested to what extent a commercial software package,
Grammatik 1V [1] could help our students. It was found that only 14 percent (10 out of
70) of all the categories that Grammatik IV had detected are substantive grammatical errors
which writing teachers are serious about. What is worse, the package misses some of the
significant errors frequently made by students due to the package’s limited capacity, and
generates false positives and misleading messages such as those in the following brackets.

(1) Having listening _ the teachers’ word, I was not surprised at the poor
score 1 got as 1 didn’t do the question with caution. [Passive voice: 'was
surprised’ Consider revising using active]

(2) There were great man in the world whom I respected forever. [The
context of 'whom’ indicates you may need to use 'who’]

(3) These occupy successively lower vanges on the scale of computer
translation ambition. [Usually these’ should be followed by a plural
noun.]

The failure in Grammatik 1V is due to erroneous analysis of sentence structures (as in all
the three above) or rigid confofmity to rhetorical conventions (as in (1) and (2)). The
disappointment with Grammatifk IV motivated our research on the development of an
automatic English grammar debugger which can detect the major mistakes unique in our
students’ compositions. Concurrent efforts such as Chen and Xu [2] have been initiated,
which, as complementary to the present research, has much to be desired regarding their
global design and achievements. For example, the error types their debugger handles are
not based on corpus but on the researchers’ intuition.
The Research

This project proceeds in two stages. Stage I is devoted to analysis of errors in

students’ compositions, categorization of error types, and formulation of computer

278

processable rule patterns based on the categorization. Stage II concentrates on
implementation of the grammar debugger on a personal computer.

Stage I FError Analysis and Categorization
We have collected over 1000 hand-written compositions, the corpus of this project,

written by our students mainly with engineering backgrounds. The average length of the
essays is about 200 words. To facilitate future testing of the debugger, we have keyed in
some 194 essays (hereafter referred to as the sample database); the rest of them will be
keyed in by the time the project is finished. A textual analysis mainly for syntactic
mistakes has been conducted on 125 essays from the corpus. We have found 1659 errors
and used a database package, dBASE III Plus to manage the errors. We then classified the
mistakes into 14 major types and 93 subtypes for all the data we have analyzed. The rest
of the corpus will be analyzed by the end of this project to update or refine the
categorization. To measure the gravity of the error types, we adopted two criteria:
frequency of occurrence and levels of hindering comprehensibility. Frequency of occurreﬁce
is measured by dividing the number of a certain error type by 1659, the total number of
errors. The results, descending distribution of frequency in both raw numbers and
proportion for major types and subtypes, are shown in Appendix A. To obtain a measure
for the second criterion, level of hindering comprehensibility, we asked two native speakers
(associate professors in linguistics) to grade examples taken from each subtype on a scale
of one to four (meaning bad to very bad for comprehension). Results fromr the two criteria
were used to screen all the error types. Lastly, we chose those categories which had higher
frequency, ‘were perceived worse and more easily processed by the computer -- under
mainly a syntactic approach, before we formulated the categories into rule patterns.

To make the error types processable by a computer, we have tried to formulate error
patterns or represented the errors as explicitly as possible so that computer programs may

recognize/detect them. Here, we use the subtypes under Verbs as examples to illustrate

how error patterns and pattern matching rules were formulated. All the subtypes are listed

in Table 1.

279

Table 1

Subtypes of Er}grs Under the Verb Category

V1 (be V; redundant be verb; double finite verbs)
People could contact with friends when they were lived away.
V2 (modal + past verb)
If you’use it carefully, it could made many work for you.
V-sub (verb subcategorization errors) '
They try their best to stop them happen_ again.
VT (wrong tense/aspect) »
If the war happened, we can never live a good life.
VT-1 (verb tense disagreement between clauses)
If we were not interested in the basic research, then we will not go ahead
any more.
VT-2 (tense disagreement in a compound)
...we must avoid hazardous by-product of science and utilized the good
points of science.
VT-3 (tense disagreement at discourse level) _
On holidays, 1 often went out of Taipei. I usually ride my motorcycle
enjoying the speed of wind. ‘
VT-4 (contracted form fails to show plural form)
It’s rainy last weekend.
VF (wrong verb forms -- passive/progressive forms)
The classmates and the teacher are all keep in my mind.

We then pulled out all context fields of each error type from our database and examined
how the errors were manifested. For instance, all the contexts of V1 errors are listed in

Table 2.

280

Table 2
All Contexts of V1 Errors

Record# context

29 ... people could contract with their friends and daily when they were lived
away.

68 ... then many dangerous thing will be happened.

506 Scientists have done a lot of works which made our living pattern is different
from those days.

639 ... the earth would be die at last.

692 ... although they are not necessary improve our material life directly.

782 Because the scient is progress too fast.

817 It is seem great for the results coming out from science.

833 Although science makes our lives more comfortable, is it all do good to us?

885 Science has occupied a part of our life, and we are enjoy the development and
achievement that science bring to us.

911 ... I was fortunately passed the entrance examination

964 All of them made the earth never be suitable to be lived.

1040 All my life was began to be contained in the textbooks....

Here we take three error types, V1, V2, and V-sub as examples to illustrate how error
patterns were formulated, or what we designed as a solution if the pattern could not be
represented in a formal way. First, the V1 error pattern can be described as a be verb
plus another non-be verb, which has a feature of [intransitive], or [transitive] followed by
a noun phrase at the verb phrase level. The only exception is the error in Record number
506 which requires another pattern to describe: causative verb, make plus finite verb be.

More explicit rules can be written as follows:

281

a’ V[b] X - V[vi]
|_V[vt] NP
b’ V[c] X V[b]
(V[b]: be verbs; X: wildcard symbol; V[vi]: intransitive verbs; V[vt]:
transitive verbs; NP: noun phrase; V[c]: causative verbs)
(Note: Tentatively X is defined as an arbitrary number of words.)

Likewise, the error pattern for V2 can be described as:
modal V-ed/V-en

(read as a modal such as should, could followed by the past tense or past
participial form of a verb).

V-sub concerns problems with verb subcategorization. Referring to categorization
in the framework of generalized phrase structure grammar [3], we have classified verbs into
33 categories (see Appendix B for detail). Since we have found that it is impossible to
formulate error patterns for the V-sub type, we have attempted to represent the correct
patterns instead. The correct representation enables mapping of verb patterns of the
erroneous input onto the correct representation. As we have not cbmpleted this part, it will
not be discussed in the remaining part of this paper.

Stage II On-line Implementation

Before we explain the work in this stage, we would make a note: the current project
does not deal with misspellings that spelling checkers in commercial word processing
packages have achieved to a very satisfying extent. For this project, the implementation
work is divided into three phases and programméd in C language. Phase one concerns
preparation of a small machine readable dictionary. Phase two involves construction of the
electronic grammar debugger itself. Phase three pertains to phrasing and delivery of
feedback messages.

Phase I. A survey of literature indicates that there are several comprehensive
machine readable dictionaries available such as Longman Dictionary of Contemporary

English, Webster’s Seventh Collegiate Dictionary, Collins Bilingual Dictionary, and Collins

282

Thesaurus [4, 5, 6]. As our learners have limited English vocabulary and the project is
exploratory in nature, we decided to make a small dictionary on our own to meet the
immediate needs. Our experiences with this small dictionary, however, will help selection
of the crucial information and access methods when we adopt an electronic comprehensive
dictionary in the future. For our own dictionary, first, a program was written to extract
word types from our sample database and formed the core of our dictionary entries. There
are currently 1402 entries in the dictionary. Prbper nouns like Chang, Tsing Hua are
tentatively listed in the dictionary alphabetically. Each of the words is attached with (a) its
part-of-speech information and (b) necessary features. Note that we have selected only the
more likely part-of-speech information which our learners use in their English writing; we
have not encoded rare usage in our dictionary. Ideally we hope the selection and ordering
of word categories reflect the frequency of occurrence of each word, yet this requires
further research. This selective approach has the disadvantage of encountering more
unknown words if a learner’s essay happens to be of higher quality. However, the reason
why we adopted the simplification strategy is to save the dictionary space and increase the
parser’s precision. A sample of the dictionary entries and their affiliated features is shown
in Table 3.

Table 3

A Sample of Word Entries and Their Selected Features in the Dictionary

Noun: count/noncount; vowel/consonant in the initial phoneme (V/C)
Adjective: single/multiple syllable (S/M); V/C

Adverb: subcategories (8 classes); S/M; V/C

Verb: subcategories (33 classes)

Pronoun: singular/plural/both (S/P/B); person (1st, 2nd, 3rd); case
(subject/object/possessive)

Determiner: S/P/B

The entries in our dictionary are mainly stems of words, or headwords. To

accommodate suffix changes of word stems, we have designed a suffix processor as

283

suggested in the EPISTLE text critiquing system [7] by adopting the cbncept called a
distributional lexicon [8]. The processor is equipped with information about (a) rules of
changes concerning word categories (e.g. from verb to noun) or the inflectional features
(e.g. from plural noun to singular noun), and (b) associated actions (e.g. omitting -s can
reform a noun stem). By means of a search procedure to correlate rules and suffix changes
between the variants and headwords, the suffix processor ensures that the dictionary can
identify the following three types of morpho-syntactic variants of each corresponding

headword built in the dictionary: (a) the inflectional suffixes such as -ing, -ed, -s (for both

verbs and nouns), (b) the derivational suffixes such as -ly in happily (from happy), -ful in
cheerful (from cheer), and (c) markers of comparative and superlative degrees, -er, -est
(such as hotter, or fastest). In this way, our dictionary can cope with natural English texts
without building all the derivations as respective entries in our dictionary. To increase the
processing efﬁciency; we grouped the rules above so that when a word like getting is
encountered, it is assigned to the -ing group. This can save the searching time among all
the suffix rules.

To cope with irregular forms of verbs, we have designed a\table which lists the root
form, and irregular changes of verbs. If an irregular verb like began is found in this table,
it is associated with the feature past tense for later processing and its root form begin.
Then, the processing directs to our dictionary and attaches affiliated features of begin to
began.

In addition, we plan to build up a phrase dictionary and a dictionary of common
problematic words to cope with errors in, for instance, sentences (4) and (5).

(4) The misuse of the science results to the terrible thing of the rest part of
the earth. (should be results in)

(5) We know that science is effected to human life seriously. (should be
science affects human life seriously)

Whether these dictionaries are to be integrated into a parsing process (to be described

shortly) or remain individual processors is to be explored, though Stock [9] suggests the

284

former being more profitable in their system.

Phase II. In phase two, a parser was built and augmented by pattern matching of
error types in order to automatically detect grammatical mistakes in a text input. Most of
the work has been completed, whereas the other has been planned or under way.

The error patterns obtained from the analysis in the above section were tentatively
classified into eight levels of processing, based on ease of manipulation by the computer or
linguistic analysis, if applicable. The classification will be revised as we analyze more
students’ essays, generalize more and finer error patterns, and encounter bottlenecks.

() matching strings: For instance, the mistake in (6) can be easily detected when

we simply search for the words ’Although/Though’ and ’but’.

(6) Although my high school years were full of pressure, but I still found my
ways to relax myself.
(II) matching strings and sets: For instance, the mistake in (7) can be detected when

we search for the words No matter and a set of question words such as when, where, who.

(7) No matter eating, clothing, living, and walking, we rely on science.
(IIT) using the suffix processor to cope with errors related to a certain category of

words: The technique can, for example, handle the problem of pluralizing uncountable
nouns. After failing to match the word informations as in (8) in our dictionary, the suffix
processor (designed to extract a possible stem, or root form for a word) can be used to
reform the stem information. Since the countability feature for information indicates that
it is uncountable, we can detect the nature of its error: an uncountable noun should not
have a plural form.

(8) We must depend on some instruments like radio, computer to receive
informations.
(IV) incorporating information in the dictionary into string matching: For instance,

the mistake in (9) can be detected by matching the word more and searching for part-of-
speech information of the following word in the dictionary. During the latter process, the
suffix processor is activated to attach the feature [simple] or [comparative] degree to the

word. This corresponds to the error pattern, 'more’ + comparative degree of

285

adjective/adverb, and the debugger can flag this mistake.

(9) The weather becomes more hotter than before.

(V) looking the problem up in a dictionary for common problematic words or
phrasés: As mentioned before, some of the students’ mistakes are related to a specific word
or phrase. This phenomenon will lead to construction of a specific dictionary with the hope
of detecting such types of errors more effectively. In addition to problematic words,
resolution techniques for detection will be built in the dictionary. This approach may help
solve some of semantic problems which are not very meaning-dependent such as (10). With
‘the help of parsing, the program can detect the mistake: misuse of an adjective for an
adverb. With the special dictionary, the program enables specific diagnosis of a common
error type, confusion between everyday and every day (because of very similar forms).

(10) A lot of people feel nervous everyday. _

(VI) using syntactic parsing and pattern matching: This level will be explained in
more detail shortly as it is the main mechanism by which the most of the implementation
work has been accomplished.

(VII) using semantic processing: Most of the diction problenis fall into this category.
This will be a very challenging problem as the information conveyed in the essays of our
corpus is not within a limited domain. We have not yet had a clear idea of how to cope
with such problems.

(VIII) using discourse strategies: Some of the errors concerning the scope of
discourse such as anaphora may be too complex to be resolved in this project; however, we
will explore the possible directions for future study.

Pattern matching, as an efficient technique from the programming perspective, has
been shown limited in developing grammar checkers [see 10, for example]. Thus, a
syntactic parser is one of the ultimate solutions to natural language understanding/analysis.
To structurally analyze the input text, a top-down parser has been constructed. It was
formulated in the augmented transition network (ATN) grammar [11]. To increase its

precision of analysis, a set of word category disambiguation (WCD) rules has been devised

286

to pre-process multiple word categories of some input words. The rules cut down the
- possibility of multiple word categories, and reduce the number of ambiguous sentence
structures as well as processing time. For example, if a word has two categories, verb and
adjective, and it is preceded by a determiner and followed by a noun, then the category,
adjective is chosen such as falling in the falling rock. For the parser to be able to debug
grammatical errors (besides judging whether the sentence is grammatical or not), two types
of information have been encoded in the program: an expert model and a bug model. The
expert model represents all the structural possibilities of correct sentences, whereas the bug
model represents the error patterns we have formulated. For the expert model, a small
segment of phrase structure rules by which we need to generate the structure of a correct
sentence look like the following.

S-> NP VP
NP -> (Det) (AP) N ({PP, S’})
AP -> (Det) ("more") A {PP, S’}
VP -> V (NP) ({NP, PP})
PP -> P NP
S’ -> Comp S ,
(S: sentence; NP: noun phrase; VP: verb phrase; Det: determiner; AP:
adjective phrase; N: noun; S’: embedded sentence; A: adjective; V: verb;
PP: prepositional phrase; P: preposition; Comp: complementizer; (): optional
- symbol; {}: selectional symbol)
The bug model currently has three groups of error patterns: those manifested at noun

phrase, verb phrase, and clause levels. Each of the groups is activated while the parser is
analyzing/reconstructing its corresponding constituent. There are cases whose bug structure
is unlikely to be represented, due, for instance, to its sporadic or idiosyncratic nature. In
those cases, we map the expert model onto the input sentence and try to diagnose the nature
of the problem by some devised heuristic. The dual-model mechanism is similar to a meta-

rule concept described in Weischedel and Sondheimer [12].

287

Figure 1 is a flow chart that demonstrates the procedures by which the grammar
debugger processes each sentence and detects errors. The program allows regular English
texts as its input and processes sentence by sentence. For each sentence, the program first
uses the binary search algorithm to locate each word in the dictionary. If the program finds
the word, it then records all associated features of this word. If the program fails, it
proceeds to search for the word in the irregular verb table. If it finds the word, then the
program goes to the dictionary to locate its root form and obtain features as well. If the
program still can not find the word, it activates the suffix processor to do morphological
processing. Notice that the category of a word before morphological processing is unknown
and the word does not exist in the dictionary. After the word is processed by the suffix
processor, it may be reformed and obtain its category information from this process. If the
program still fails at this stage, the word is recognized as an unknown one for our current
system. Up to this stage, each word, except unknown ones, is assigned its word
category/categories and associated features. At the error detection level, i. e. after each
word has been assigned categories, the program activates word category disambiguation
(WCD) rules to cut down unlikely categories if a word has more than one category. After
WCD processing, each sentence obtains a hypothetically correct combination of word
categories to be processed by the parser. If the parser determines the sentence as
grammatical, the program proceeds to the next sentence. If the sentence is determined as
ungrammatical and detected by any of the error patterns, the program reports the
error/feedback message and continues for the next sentence. If neither the parser nor
pattern matching can determine the status of the input sentence, the sentence is assigned by
another combination, if any, of word categories and the program repeats the parsing/pattern-
matching processing. After the program exhausts all the possible combinations of word
categories but still can not determine the status of the sentence (grammatical or
ungrammatical) nor the nature of errors made, then the sentence is. determined unable to be

understood by the debugger/the current system.

input text

process each
sentence

process each word in
this sentence

binary search for each
word in the dictionary

find this Yes

le—_ Continue for next sentence

each word attached with
all the features in the

dictionary for later

processing

A

word?/

No

check the word in
irregular verb table

morphological

for the word

record all features

all the words have
been processed

g0 to the dictionary

and search for its verb
root form and record
features of verb variants

processing

go to dictionary

and search for the
word stem and record
‘category

(to be continued)

Yes

find the
word ?

(next page)

—_—

an unknown word for
the current system

Figure 1. The flowchart of processing a sentence in the program.

289

®

WCD processing|

assign one of the combinations
for all word categories

each word has a hypothetically
correct word category

processed by
ATN parser

(to continue)

exhaust all combinations,
unable to be processed
by current system

assign a new
combination

ungrammatical &
no error found

parsing for grammalicality and
pattern matching for detection
of error pattern

syntatically
cormrect

ungrammatical but
error type matched

\

Continue for next
sentence

report error
message

290

The operation of the grammar debugger is basically an interaction between the
parsing and the matching of error pattern processes. Each sentence is presumed to be
ungrammatical, or erroneous. The program thus activates the pattern matching process first.
As previously mentioned, the bug model has three groups of error patterns. Whenever a
corresponding constituent in a sentence is built by the parser, that group of error patterns
is tested to match whether the input sentence has any of the error patterns. For example,
the debugging process of sentence (11) can be illustrated in the following trace, run by our
current system.

(11) No matter _ he say_, he like_ these job_.

Table 4 ’
An Output Trace

Parse sentence : No matter he say, he like these job.

Searching in the dictionary
WORD : no

CATEGORY : <av>
WORD : matter
CATEGORY : <n v>
WORD : he

CATEGORY : <ppn>
WORD : say
CATEGORY : <v>

WORD : he
CATEGORY : <ppn>
WORD . like

CATEGORY : <v pp>
WORD : these
CATEGORY : <d pn>
WORD : job
CATEGORY : <n>

Using WCD-rules
WORD : no

CATEGORY : <av>

291

WORD : matter
CATEGORY : <nv>
WORD : he
CATEGORY : <ppn>
WORD : say
CATEGORY : <v>
WORD : he
CATEGORY : <ppn>
WORD : like
CATEGORY : <v pp>
WORD : these
CATEGORY : <d>
WORD : job
CATEGORY : <n>

Assigning category
no <av> matter <n> he <ppn> say <v> he <ppn> like <v> these <d> job <n>

Syntax Error !! ---> No matter
no matter (?) he say, he like these job.

Syntax Error !! ---> Number disagreement: determiner -- noun
no matter he say, he like (these) (job).

Syntax Error !! ---> Subject-verb disagreement
no matter (he) (say), he like these job.
no matter he say, (he) (like) these job.

This is not a correct sentence. There are four errors.

First of all, pattern matching of clause level errors is activated. Error types such as
although ... but or no matter are classified under the clause level errors. This sentence
matches the error pattern of no matter, which is thus flagged. Since there is only one noun
phrase (NP), these job, error types at the noun phrase level are attempted and found

matched with the type determiner-noun disagreement. The correct noun phrase should be

these jobs, so these job is flagged. Subject-verb (S-V) agreement is checked for each NP

and VP (verb phrase) in each clause. The program first locates the head of each NP and

292

VP and returns the number values (singular or plural) of both. Then, a comparison process
is made to see whether they agree. In the case above, two incidents of S-V disagreement
are found. If none of the error types are matched in any of the constituents, the parser
proceeds and determines whether this is grammatical under our current phrase structure
representation.

Currently, our checker can locate the following seven types of errors:
(1) although ... but combination

(11) Although he is poor, but he is happy.
(2) erroneous usage of no matter

(12) People can produce many things, no matter bad or good.
(3) determiner-noun disagreement

(13) We can know many informations.

(14) This is a books.

(15) I like an book’.
(4) unbalanced coordinated phrases

(16) He likes a dog but hate_ a cat.
(5) capitalization misuse

(17) There are not the exist of Television, computer, airplane, and so on.
(6) erroneous morphological changes in verb phrase, and

(18) I should went with you.
(7) subject-verb disagreement

(19) Human create_ the science.

(20) Human already have the ability to research the phenomena of space.

(21) But the development in science have bring great change.

(22) A man who like_ art like_ books.

? The initial phoneme of book is encoded in the dictionary.

293

Phase III. Phase three concerns what and how feedback messages should be given.
When the program detects a grammatical error, giving appropriate feedback messages is
essential for a grammar checker to achieve its educational goal. For this, we plan to design
a message generating routine which basically matches a flag that is attached to each
processing rule with a message file, and outputs the message to the users, possibly with
some examples. The way we design the message is to use a template; namely, the message
consists of some variables (as the underlined words in the following brackets) and literal
texts (those in plain texts). For example, a feedback message for sentence (23) may look
like that in the brackets:

(23) The development in scientific technologies have bring great change.

[development is the subject of the verb have. The subject is in 3rd person

singular form. The following are 2 correct examples:
The baby in the living room watches television.
The lady who sits next to me teaches English.]
For technical terms, we consider using Chinese. In addition, the correction and feedback
given should be set up with a user-friendly interface environment so that language teachers
and learners will not encounter confusion -- which may seem reasonable or common to
computer-literate people, though.
Future Research

As an exploratory but ambitious research study, the current project has its drawbacks
to be improved. Since we are aiming to treat the errors manifested in natural English texts,
the coverage of English grammar, of both correct and incorrect ones, is much wider than
much of the previous research work. Thus, the error detection tasks are accomplished in
an dissatisfying piecemeal manner. In the future, we, therefore, will try to formulate the
global mechanism of the grammar debugger in a more generalized, from the linguistic
perspective, framework. Possible directions we will refer to are those in Jensen, Heidorn,

Miller, and Ravin [13], Kwasny and Sondheimer [14], Weischedel and Black [15], and

294

Weischedel and Sondheimer [see 12].

For the short-term goal, first, we will complete the analysis of the remaining corpus.
Second, we will polish the programming tasks in detecting errors, as pattern matching is
likely to fail for most of the error types and parsing is overloaded with problems in the
long tradition of natural language processing. In addition, the grammar debugger’s
performance is still waiting to be tested. Last, we will consider at which point to give
appropriate feedback messages and what actions allowed for the user to edit the mistake

after the debugger detects an error.

[1]
[2]
[3]

[4]

[5]

[6]

[7]

[8]

[9]

References

G. D. Price, Grammatik 1V: User’s Guide, Reference Software International, San
Francisco, CA, 1989.

S. Chen, L. Xu, "Grammar-Debugger: A Parser for Chinese EFL Learners," CALICO
Journal, vol. 8, no. 2, pp. 63-75, 1990.

G. Gazdar, E. Klein, G. Pullum, 1. Sag, Generalized Phrase Structure Grammar,
Harvard University Press, Cambridge, MA, 1985.

B. Boguraev, T. Briscoe, "Large Lexicons for Natural Language Processing: Utilising
the Grammar Coding System of LDOCE," Computational Linguistics, vol. 13, no. 3-4,
pp. 203-218, 1987.

B. Boguraev, T. Briscoe, Eds., Computational Lexicography for Natural Language
Processing, Longman, London, 1989.

R. J. Byrd, N. Calzolari, M. S. Chodorow, J. L. Klavans, M. S. Neff, O. A. Rizk,
"Tools and Methods for Computational Lexicography," Computational Linguistics, vol.
13, no. 3-4, pp. 219-240, 1987.

G. E. Heidorn, K. Jensen, L. A. Miller, R. J. Byrd, M. S. Chodorow, "The
EPISTLE Text-Critiquing System," IBM Systems Journal, vol. 21, no. 3, pp.
305-326, 1982.

A. Beale, "Towards a Distributional Lexicon," in The Computational Analysis of
English, R. Garside, G. Leech, and G. Sampson, Eds., Longman, London, 1987, pp.
149-162.

O. Stock, "Parsing with Flexibility, Dynamic Strategies, and Idioms in Mind,"
Computational Linguistics, vol. 15, no. 1, pp. 1-18, 1989.

[10] G. Hull, C. Ball, J. L. Fox, L. Levin, D. McCutchen, "Computer Detection of Errors

in Natural Language Texts: Some Research on Pattern Matching," Computers and the
Humanities, vol. 21, no. 2, pp. 103-118, 1987.

[11] W. A. Woods, "Transition Network Grammars for Natural Language Analysis,"

Communications of the ACM, vol. 13, no. 10, pp. 591-601, 1970.

[12] R. M. Weischedel, N. K. Sondheimer, "Meta-Rule as a Basis for Processing Ill-

Formed Input," American Journal of Computational Linguistics, vol. 6, no. 3-4,
pp- 161-177, 1983.

[13] K. Jensen, G. E. Heidorn, L. A. Miller, Y. Ravin, "Parsing Fitting and Prose Fixing:

Getting a Hold on Ill-Formedness," American Journal of Computational Linguistics,
vol. 9, no. 3-4, pp. 147-160, 1983.

296

[14] S. C. Kwasny, N. K. Sondheimer, "Relaxation Techniques for Parsing Grammatically
I1I-Formed Input in Natural Language Understanding Systems," American Journal of
Computational Linguistics, vol. 7, no. 2, pp. 99-108, 1981.

[15] R. M. Weischedel, J. E. Black, "Responding Intelligently to Unparsable Inputs,"
American Journal of Computational Linguistics, vol. 6, no. 2, pp. 97-109, 1989.

297

MAIN TYPE
Det
Verb
Noun

PS
Concord
Sent
Prep
Lex.
Ccon
Mec

Adv

Adj
Pron
Aux

APPENDIX A
Descending Distribution of Errors in Main Types and Subtypes

N
326
231
178
174
168
158
123
115

67

54

PER CENT
"19.65
13.92
10.73
10.49
10.13
9.52
7.41
6.93
4.04
3.25
1.63
1.39
0.54
0.36

O\% \° 0\° 0\ A\° 6\0 0\ 0\ B\0 A\ O\0 O\ 0P @

————————————— ———————— ——— — — — —— —— — — — —————— ————— —— — Y — —— ——— ——————

MAIN TYPE
Det
Noun
Det

Lex
Prep
Concord
Sent

PS

Verb
Sent
Verb
Conij
Ver
Mech
Det

PS

Verb
Concord
Noun
Adj
Prep
Concord
Noun
Prep
Concord
PS

PS

Verb

PS

Det
Sent

PS
Concord

SUBTYPE
A-3

CN

A-1
Dict
Prep-1
35-1
Run-on
PS-nadj
V-sub
Frag
vVT-1
Conj-1
vVT-3

Ca
Det-a
PS-adjn
VF

SV

UN
Comp-1
Prep-2
35-4

NN
Prep-3
358-5
PS-nv
PS-adjadv
Vi

PS-advadj
A-2

E

PS-vn
3S/paral

(to be continued)

298

0\© 0\0 0\0 O\ A\° A\0 A\O O\ A\ B\O B\P A\C B\O A\0 B\O O\P A\ A\O B\O B\ B\O O\ B\ B\ B\° O\O B\P 0\° O\ O\ O\ O\° o\°

Adv
Sent
Sent
Con
Ver

MAIN TYPE

Pron
Adv
Concord
Conj
PS
Adv
Sent
Verb
Aux
PS
Det
Lex
Lex
Det
Adv
Mech
Lex
Verb
Lex
Sent
PS
Concord
PS
Adv
Verb
Sent
Noun
Pron
Lex
Concord
Mech
PS
PS
Lex
PS
PS
Lex
Lex
Lex
Det
Det
Concord
Sent
PS
PS
Lex
Sent
PS

(to continue
ED
2S
Paral
NM
vT-2

SUBTYPE
Pron-1
Adv-2
SP

AB
Ps-vadj

Aux-to
PS-prepv
Det-0
Dict-v
2V-1

A-4

ASP

A

Dgct-p
VT-4

Red

WH »
PS-adjv
35-2 .
PS-advcon]
very/much
vT

Rel-3
One-N

" anaf

SM

3S-3

Punct
PS-conjprep
PS-nadv
Sem-1 ,
PS-prepconj
PS-N.PP
to/too
Dict-Es
A/E
some/any
Num-a

WS

Rel-2
PS-infprep
Red-Comp
PH

WHi

N-adj

(to be continued)

299

N0

l—'l—'i—‘i—'!—‘i—‘i—‘!—‘i—‘l—‘l—‘l—'l—'l—‘l—‘l\JNNNNNNNNNNNNNNNNwahhbhhhmmmmmm\!z

0.48
0.48
0.48
0.42
0.42

PER CENT
0.42
0.36
0.30
0.30
0.30
0.30
0.30
0.24
0.24
0.24
0.24
0.24
0.24
0.18
0.18
0.18
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.12
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06
0.06

0P 0P o\ 0\ o\

0\° 0\° 0\° 6\° 0\° B\O B\O A0 A\ A\ 0\° B\O A\° B\° O\P B\O B\0 B\P B\C B\O B\C B\O B\O B\P BV B\C B\ B\ B\ BN O\O B\ VO B\O N0 A\ AP B\ AN A\ O\0 B\ B\ B\0 OV OV O O\°

(to continue)

Aux Aux-2 1 0.06 %
Aux Aux-1 1 0.06 %
Lex Dict-mb 1 0.06 %
Lex Dict-e 1 0.06 %
Adv TA 1 0.06 %
Adv SA 1 0.06 %
Adv Adv-1 1 0.06 %
Total 1659 100.00 %

300

v & W N

© N o

10

1

12

13

14

15

16

17

18

19

20

21

22

23

Appendix B

Verb Subcategorization

vp -=> Vv
vp --> v np

vp --> v np ppltol

vp --> v np pplfor]

vp --> v np np
vp --> v nb pp[+loc]
vp --> v np s[fin]

vp --> v (ppltol) s[fin]

e.g. ... concede to the scientists that John has contact with the patient

vp --> v s[bse]

die

Love
give
buy
spare
put
persuade

concede

insist

e.g. ... insisted (that) the job be given to John

vp --> v (pplofl) slbsel

e.g. ... require of them that they write a paper

vp --> v vplinfl
e.g. ... continue to be unhappy

vp --> v vplinf, +norm)
e.g. I tried to leave.

vp --> v (ppltol) vplinf]
e.g. ... seems (to us) to be unhappy

vp --> v np vplinfl
e.g. ... believe John to be unhappy

vp --> v np vplinf +norm]

e.g. ... persuade them to give themselves up

vp --> v (np) vplinf +norm]
e.dg. ... promise Mary to do the homework

vplagr s] --> v np
e.g. It bothered Li that Tom was chosen.

vpl+it] --> v (ppltol) s[fin]

. e.g. It seems (to us) that Mary is unhappy

vplagr nplthere, PLUI] --> v np[PLU]
e.g. There was a Lion in the zoo.
There were three wolves in the zoo.

vp --> v s[fin]
e.g. Mary believes that it is true.

vp --> v s[+Q]
e.g. He inquired which way to go

vp =-> v np s[+Q]
e.g. Tell us why you did it.

vp --> v pplof]

301

require

tend

try

seem

believe

persuade

promise

bother

seem

believe

inquire

tell

approve

do

talk

feel

believe

consider

give up

hear

want

make

compare

24 vp[+AUX] --> v vpl[-AUX bsel
e.g. I do like it be true.
25 vp --> v pplto]l pplabout]
26 vp --> v adj/n
e.g. I felt stupid/ a fool.
27 vp --> v np adj
e.g. They believe her guilty.
28 vp --> VvV np np
e.g. They consider this offer a big improvement.
29 vp --> Vv v+ing
e.g. She’s given up smoking.
30 VP --> Vv np v+ing
e.g. They heard someone laughing.
31 vp --> v np v-ed
e.g. I want this work finished by tomoriow.
32 vp --> v np vplbsel
e.g. ... make her cry
33 VP --> VvV np pp
e.g. ... compare it with a book.
Abbreviation

fin: finite

bse: bare infinitive
insisted (that) the job be given to John

inf: infinitive continue to be unhappy

+norm means the noun is not in it or there dummy form

Q: question marker Tell us why you did it

AUX: auxiliary

agr: agreement

plu: plural

302

concede to the scientists that Jone has rings

