COMPUTER GENERATION OF CHINESE COMMENTARY
ON OTHELLO GAMES*
Jen-Wen Liao and Jyun-Sheng Chang +
Department of Computer Science
National Tsing Hua University
Hsinchu, Taiwan 30043

Abstract

This paper describes the design and implementation of a text generation
system which produces a mutil-sentence commentary in Chinese on a kind of
board game call Othello. The system is built under a general framework of
text 'generation. Discourse-related linguistic knowledge is encoded as rules
and a production system is used to manipulate.these rules to generate
cohesive text. A previously constructed sentence generator bas\ed‘ on systemic

grammar is adopted to generate the final surface text.

1. Introduction

Natural language processing (NLP) is a main branch of artificial inteliigence. There are many
applications of NLP such as: Machine Translation, Information Retrieval, Human-machine

Interaction, Text Generation, etc.

We choose a kind of board game called Othello as the application domain of text
generation. We have implemented a text generation system creating commentary on
Othello in Chinese. Despite the apparent simplicity of the task, the possibilities of
producing text are rich and diverse. The commentary is intended to convey both the moves

of the game and the significance of each move by showing errors and missed opportunities.

* This research is partially supported by National Science Council, grant No. NCS79-0408-
E007-05 and NSC80-0408-E007-13.

+ To whom corresoondances should be addressed.

393

In next section, we present the description of ‘Othello. In section 3, we iﬁtroduce the
general concepts of text generation. An overview of our system is-also presented. In section
4, we introduce the first module of the system. In section 5, we give a detailed description
about the second module of the system. In the last section, we show some examples

generated by our system and summarize the paper.
2 Description of the game - Othello

Othello is a derivative of the Go family of board games; emphésizing capture of territory
tﬁrough the process of surrounding the opponent’s pieces. It is played on an 8 x 8 board,
with a set of dual-colored discs by two persons. Each disc is Black on one side and White on
the other. Each color stands for one of the two players. The initial board configuration is

shown in Figure 1.

® N o b @ oo oo

Figure 1. the initial Othello board configuration;

394

1 ' 1
e :
3 1 3
OOECCCe
5 (O 5
6 C 6
7 @ 7
8 ' 8
(a) | (b)

Figure 2. (a) Result of a legal play before BLACK’s move at d4,;
(b) after BLACK’s play at d4.
Initially, WHITE owns the two central squares on the major diagonal (d4 and eS), and
BLACK owns the two central squares on the minor diagonal (e4 and dS). BLACK plays
first, and then the players take turns to play a move until neither side has a legal move. The

player who has more disks at this point wins the game.

A move is made by placing a disc on the board, with the‘player’s color facing up. In order
for a move to be legal, the square must be empty prior to the move and it must result in
capturing of the opponent’s discs. The opponent’s discs are captured by bracketing them
between the disc being played and an existing disc belonging to the player. Bracketing can
occur in a straight line in any of the eight directions(two vertical, two horizontal, and two in
eéch diagonal direction). The captured disc (discovered discs) are ﬂipped to the other color
and become the opponent’s. Bracketing and discovered discs does ndt further cause more
discs to be flipped even if they result in a new bracket. Figure 2(a) and Figure 2(b) show an
example of a legal move by BLACK on square d4, and the resulting cﬁange in disc

ownership.

395

A number o'f simple strategies, such as maximizing the disc differential, have been
suggested for Othello. For more details, see [Rosenbloom 1982] and [Liu, Huarng and Hsu

1987].

3 Text Generation

3.1 Introduction

Text generation is the. reverse of natural language understanding. A generaﬁon system
- accepts a representation of linguistic information and goals and produces a sequence of
sentences that realize the goals and convey the given information. The problem of text
generation can be divided into two main areas which are not wholly independent: planning

the content of what to say and deciding how to say it.
3.2 An Overview of Our System

Our system generates Chinese commentary on Othello games. After the»L'lser or the
computer makes a-move on the board, the system automatically produces a paragraph of
text, analyzing the tactical patterﬁ of the move, estimating the goodness of the move,
comparing the move and the best move that the system knows of and showing the current
board situation. The information of each step is stored in a list called game history list for
later use. When the game is completed, this system displays a commentary on the whole
game, including the mistakes the user or the computer has made, the information of the |
. ownership of discs, and the winner. Our system consists of two principle modules (see

Figure 3):

396

Move Generation
Module

Commentary Generation
Module

Content Determination &
Text Planning
Module

—

Sentence Determination &
Cohesion Enhancement
.Module

I

Surface Generation
' Module

Chinese commentary

Figure 3. The text generation system

1. Move Generation Module which employs a minmaX procedure and an alpha-beta
cutoff procedure to select a move for the computer side or takes user’s input as the
move for the human side at each step. This module returns the game history list as
output for the purpose of generating commentary on the whole game.

2. Commentary Generation Module which uses the methods described in subsequent
sections to construct the commentary for one step or for the entire game. It can be
further divided into three smaller modules:

<A> Content Determination & Text Planning Module which determines what
kind of information should be included in the output text.
 Sentence Determination & Cohesion Enhancement Module which organizes

the unordered, simple commentary into ordered, complex commentary.

397

<C> Surface Generation Module which transforms these commentary into

Chinese sentences.
4. Move Generation Module

The purpose of Move Generation Module is to produce a legal move for the player (the
computer side or the human side) and other relevant information such as game trees, the
value of current evaluation function, etc. The move for the human side is taken from the
input typed by the user and the move for the computer side is calculated by searching the
game tree using a minmax procedure and an alpha-beta cutoff procedure. After each move
of the game is generated, it is recorded in a so-cailed game history list for generating

commentary on the entire game.

Usually the move returned by this module is not the best one since the depth of tree
searching is limited. In order to generate versatile and meaningful commentary, the
commentary generation module search at least one more level down the game tree to

collect more knowledgeable information.
5. Commentary Generation Module

5.1 Content Determination and Text Planning Module

The first phase of text generation is to choose the information that is relevant and
appropriate for inclusion in the output text. The decisions must be based on (1) what key
objects involved that the system thinks is necessary to identify and (2) what aspects of
situations are important and must be described. Also generation goals should be taken into

account.

398

2B

Text planning is the second phase in text generation. This phase accepts an unordered set
of propositions generated by the content determination phase as input and organizes them
into a series of ordered messages. The resulting messages must be appropriate (1) for the
purpose of sentence generation and (2) to the intended audience. A knowledge base is also

used to guide this process.

One of the problems that will occur if the content determination phase and text planning
phase are totally separated is that some verbose or redundant message might be generated
after the first phase such that the subsequent phase must waste time to remove them. ThlS
problem can be efficiently solved by integrating these two phases into one module as in our
implementation. Besides, our system haé a separate discourse module with explicit
discourse structure which guide the content determination phase to generate propositions

in a top-down, goal-directed fashion.

In our system, the input to this module includes the game tree, current board configuration,
etc. We adopt the ATN (Augmented Transition Netwofks) framework to analyze these data
and extract relevant information. The information generated from this phase is represented

in frames like internal representation.

Transition Network formalism is commonly employed in NLP. A transition network consists
of a network name, a set of nodes (states) and arcs. We express the transition network in a
LISP-like list notation. The detailed description of representmg ATN in list notation can be
found in Charniak (1983). The registers in our notation is defined by beginning their names
with character ?. To define a network, we define a LISP function def-net:

(def-net net-name (registers) commands)

‘See Figure 4 for the commands for writing transition networks and Figure S for an example

of network Generate-Partial-Comment in list notation.

399

We represent the internal structure of a sentence using a modified slot-and-filler

representation, which reflects more the functional role of phrases in a sentence. This kind

of internal representations is called propositions. In this notation, we assign a special

semantic role (such as Agent, Theme, or Focus) to each major grouping of words. It

identifies the properties of each semantic role as a set of values. A slot name distinguishes

each value and indicates the role that value plays in the structure. Each slot statement is

made up of the following components:

Commands

Explanations

(traverse (network-name registers))

(seq actions)

(if test thenpart else elsepart)
(either test! actionl test2 action2..)

(:= register value)

(:= (registers) value-list)

Traverse the new network network-name with
the values of registers are passed to the
network-name.

Perform the actions sequentially.

Check if test comes out true. If so, execute the |
commands of thenpart. Otherwise execute
commands of elsepart.

If test] is true, execute commands of actionl.
If the test fails, try test2 , test3, ... until one of
them succeeds.

Set the value of register to the value returned
by the evaluation of value.

Set the value of registers according to the
pattern returned by the evaluation of value-
list. '

(jump tag) Jump to a tag of current network.

(tag tag-name) Define a tag tag-name.

(gen-comment comment)

=, <, >, and, or, dolist, first ...

Generate comment.

some Lisp built-in functions

Figure 4.
400

fad

o8 A

--- aslot name (operator) indicating the type of the structure.
--- the type of the object.

--- the modifiers of the object, which may be a list of semantic role structures.

1 (def-net Generate-Partial-Comment (24gent ?Opponent ?Move ?BestMove ?LastMove
?DiskFlipped ?GameTree ?Ev)

2: (seq

3: (traverse (Decide-Choices ?Agent ?GameTree ?Number-Of-Choices))

4: (if (= ?Number-Of-Choices 0)

5 (jump NEXT)

6: else (traverse (Show-Move 24gent ?Opponent ?Move ?LastMove ?DzskFlzpped)))

7. (it (= ?Number-Of-Choices 1)

8: (jump NEXT)

9: else (traverse (Measure-Goodness- Of—ThlS Move ?Agent ?Move ?BestMove

: ?GameTree ?Other-Chozces-Are-Equal ?MovelsBest)))

10: (if (or ?Other-Chozces-Are-Equal ?MovelsBest)

11: (jump NEXT)
12: else (seq (traverse (Show-Best-Move ?BestMove))
13: (traverse (Compare-BestMove-ThisMove ?Agent ?2Move ?BestMove)))

14: (tag NEXT)

15: (traverse (Consequence-Of-This-Move ?2A4gent ?Opponent ?Move))
16: (traverse (Summary ?Agent ?Opponent ?Ev))

17:) :

18:)

Figure S.

1. The operators for simple NP will be used to indicate the determiner information. The

- possible combination for the operator of simple NPs are: DEF (for definite
reference), INDEF (for indefinite reference), PRO (identifies an NP consiéting of a
pronoun), NAME (identifies an NP consisting of a proper name) and

CONJ(represents two or more NPs connected by conjunction).

The type for simple NPs will be as expected, and the modifiers will consists of

adjectives, relative clauses, number information and so on.

401

2. The operators for clause structures include: PRES (for simple present tense), PAST
(for simple past tense) and INF (for infipitive clause). A
The modifiers of a clause consist of: AGENT (the object that caused the event to
happen), THEME (the thing that was acted upon), AFF-OBJ (the object that was

affected by the event) and FOCUS (the focus of attention of the event).

3. The operators for simple sentences are simply ASSERT (for declarative sentence). As
for compound sentences, the operators are the semantic relations between the clauses
such as ALTHOUGH, CONJUNCTION, RESULT, etc.

For example, the simple sentence "I have 3 choices" might be represented by the

structure:

(ASSERT (PRES HAVE (AGENT (PRO I))
(THEME (INDEF CHOICE (NUMBER 3)))
(AFF-OBJ nil) -
(FOCUS (PRO D))))

Using the technique of transition networks, we can generate the internal representation for
a versatile and comprehensive gaine commentary. During a network traversal, the
command gen-comment creatés a proposition and add it to a output list to be processed

by the next module. If a register appears in the pattern of proposition, we must replace the
register by its value at that position. To generate commentary for each step, we traverse the
network Generate-Partial-Comment. When we traverse the network Generate-Partial-

Comment, we also will traverse the subnetwork Summary (see Figure 6). Note that the
symbol $ means to evaluate the operation immediately following it and use the return value

to fill the slot occupied by $.

402

(def-net Summary (?Agent ?Opponent ?Ev)
(seq
(:= 2AN (Count-disc-number *?4gent))
(:= 20N (Count-disc-number *?Opponent))
(Gen-Comment "(assert (pres REMAIN (agent (pro ?Agent))
(theme (indef DISK (number 24N))) (aff-obj nil) -
(focus (pro 24gent)))))
(Gen-Comment ’(assert (pres REMAIN (agent (pro ?Opponent);
(theme (indef DISK (number ?0ON)))) (aff-obj nil)
(focus(pro ?Opponent)))
(either (= 24N ?ON)
(Gen Comment ’(assert (pres 7/E (agent (pro WE))
(theme nil) (aff-obj nil) (focus (pro WE))))
otherwise

(Gen-Comment ’(assert (pres $(if (> AN ?0ON)’LEAD’LAG)
(agent (pro 2Agent))
§theme (indef DISK (number $(- 2AN ’ON))))
aff-obj (pro ?Opponent))

(focus (pro ?Agent)))))
(either (= ?Ev 0)

(Gen-Comment ’(assert (pres HAVE (a A§ent (pro NOBODY))
%theme indef ADVANTAGE)) (aff-obj nil)
focus (pro NOBODY)))) _

otherwise
(Gen-Comment ’(assert (pres HAVE
(agent (pro $(if (> ?Ev 0) °I "You)))
(theme (indef ADVANTAGE) (aff-obj nil)
(focus (pro $(if (> ?Ev 0) ’I ’Youw)))))

Figure 6.

Suppose that the ?Agent (the player who takes turn now) is *You’ (stands for the human

side) and the ?Opponent is 'I' (stands for the computer side). The current value of

evaluation function (?Ev) is +5. After calculating the disc numbers on the board, we found

that the human side owns 20 discs and the computer side owns 16 discs. The register 24N is

set to 20 and the register 7ON to 16. Therefore we will obtain the following propositions:

(assert (pres REMAIN (agent (pro You)) (theme (indef DISK (number 20)))

(aff-obj nil) (focus (pro Youw))))
(assert (pres REMAIN (agent (pro I)) (theme (indef DISK (number 16)))
(a f-obj nil) (focus (pro Youw))))
(assert (pres LEAD %ent (pro You)) (theme (indef DISK (number 4)))
-obj (pro I) (focus (pro You))))
(assert (pres HAVE (agent (pro 1)) (theme (indef ADVANTAGE))

(aff-obj nil) (focus (pro 1))))

403

The corresponding commentary in Chinese is:

KE=ZEEE

" # T 2 0 ¥ #H F
KHT 1 6 ¥ #H F
fRA L K4 BHHET
K AEE

5.2 Sentence Determination and Cohesion Enhancement Module
5.2.1 Introduction

After the content and overall ordered of the message in the text have been decided, there
are still two problems that neved to be resolved:

1. The first problem is deciding how much information to put in a sentence. For a set of
propositions, it can be realized as a complex sentence or a few simple sentences. The
factors influencing this decision include focus of attention [Derr and McKeown 1984],
semantic and rhetorical relations between propositions [Davey 1979].

2. The second problem has to do with cohesion in tfze text generated. It is necessary in this
phase to find and mark the cohesion links am,o'ng propositions. These markings are
subsequently used in surface generation for such activities as pronominal,
demonstrative, verbal and clausal substitutions, ellipsis, selection of conjunction and

lexical choice.

Some pragmatic knowledge 'is used to solve these two problems above. Under the
consideration of easy understanding and modification, we have selected rules to represent
the knowledge required for this module. Rule-based knowledge representation centers on
the use of IF condition THEN action statements. Our rules are expressed with arrows (--->)
to indicate the IF and THEN portions. For example,

the PH of the spill is less than 6 (IF part)

>

the spill material is an acid. (THEN part)

404

5.2.2 Pattern Matching

To support rule-based approach described in the previous section, we need the technique
of pattern matching. To enhance the capability of pattern matching scheme, we allow
patterns to contain pattern matching variables beginning their names with the character ?.
We also allow the user to attach an arbitrary predicate as a property of a pattern matching
variable. Then when the matcher tries to match a variable against an item, it allows the
match only if the item satisfies the attached predica.te, if one exists. The pattern matching
variable with a predicate is expressed as a list, in which the first element is the variable
name and the second element is an arbitrary LISP predicate. For example, the expression
(age-of ?person ?(age (and (numberp ?age) (< ?age 20)))) \ |
would match
(age-of John 17)

with the result that ?person is bound to John and ?age is bound to 17.

It might be necessary to creaté a new pattern after we apply our pattern matcher to several
patterns and get the variable bindings of a successful match. The pattefn matching
variables of the new pattern are required to be substituted with their corresponding value
of bindings. In addition to replace variables, we might need to execute some other actions
during the substitution to extend the new pattern such as:

!: Triggering another pattern matching process. The pattern following "!" is matched
against a rule named by the first argument of the pattern. If it succeeds, the new
pattern generated by that rule is used to fill the slot where "!" dccupies. For example,
consider the following rule Decide-Opening,

((33) (34)) > Parallel
the pattern before applying the rule: (The Opening is {(Decide-Opening (3 3) (3 4)))

405

and the pattern after applying the rule: (The Opening is Parallel)
$: Evaluating the subséquent function and filling the slot with the return value. If a
. pattern matching variable is contéined in the function, réplace it with its binding
value first and then evaluate that function. For example, if the bindings obtained after
matching X, the'IF part of a rule is ((?A 3) (?B §)),
X ---> (The two variables are $(if (= ?A ?B) ’equal "unequal))
the output pattern generated by the rule will be (The two variables are unequal)
@: Spliiting the resultant pattern following it. It decomposes a pattern into a series of
items. For example,

(a@(bcd)e) becomes (abcde)
5.2.3 Examples

The knowledge base in this module consists of two kinds of rules: one is called the
discourse-rule and the other the pattern-rule. The former describes functional, semantic or
_rhetorical relation among propositions and the latter expresses facts in the knowledge base.
The IF part of these rules is a list of one or more patterns. The main difference between
them is thaf the THEN part of the discourse-rule has several patterns whilé the pattern-rule
has only one. The paftern-rules can be applied in discourse-rules to check if a certain

situation has happened, but the discourse-rules cannot be used in pattern-rules.

In this module, we encode discourse-rules to combine propositions. A discourse-rule
consists of three components: rule-name , rule-body and execution-priority. The rule-name
defines the unique name of a rule. The rule-body has an IF part and a THEN part. If a
portion of the propositions matches the IF part of a rule-body, then it produces a new
output proposition with every variables in the proposition replaced with its binding value.

The execution-priority of rules are used to resolve the conflict where the IF parts of more

406

than one rules matches a portion of propositions. When it happens, the rule with highest
execution-priority fires. .The output proposition of a rule can be tested for further
combination with other propositions. We repeat this pfocess until there is no possibility of
combining propositions. The function def-discourse-rule is used to declare a discourse-

rule.

A pattern-rule has two parts: rule-name and rule-body. The IF part of the rule-body consists
of several patterns enclosed in a list and the THEN part specifies the new pattern to be
generated if IF part of the rule matches the input patterns. The function def-pﬁttern-rule

is used to declare a pattern-rule.

Consider a discourse-rule <Although-but>. Suppose that a speaker makes an utterance
that generates some expectation. But the expectation is contrary to the next utterance.
Under such situation, combining these two utterances into a single complex sentence using
conjunctions is better than producing two separate sentences since the former reflects the
semantic relation while the later do not. To check if there is a certain relation among two

sentences, the rule <Although-but> (See Figure 6) applies a pattern-rule Not-Expect:

There are other aspects of cohesion affecting the quality of output text. For instance, see
input propositions below. Realizing these two propositions into two independent sentences
(sequence 1) obviously is not a good idea since there are many redundant information.
Instead we should join the two propositions by deleting the PREDICATE, THEME and
AFF-OBJ of the proposition 2 and using conjunction to combine the two AGENTSs
(sequence 2). A discourse-rule named identity-delete-1 can be applied in such a condition
by matching the values of PREDICATE, THEME, AFF-OBJ and FOCUS of one

proposition with the corresponding arguments in the second proposition.

407

1. You lead me by 4 disks.
I have advantage.

2. Although you lead me by 4 disks, I have the advantage.

-(def-discourse-rule <Although-but> 7
 ((assert (?T1 ?P1 ?A1 ?T1 201 7F1))
(assert (?T2 ?7P2 2A2 7T2 7(02
I(Not-Expect (?P1 ?A1 ?T1 ?01) (?P2 ?A2 ?T2 ?02))) ?F2))
S—
((Although (assert (?T1 ?P1 ?A1 ?T1 201 ?F1))(assert (?T2 ?P2 2A2 7T2 202 ?F2))))
) |

(def-pattern-rule Not-Expect
((LEAD ?P1 ?- 7P2) (HAVE ?P2 ?(Theme (= (Root ?Theme) ’ADVANTAGE)) -))
---> True

)

input propositions: -
(assert (pres LEAD Ea ent (pro You)) (theme (indef DISK (number 4)))
aff-obj (pro I)) (focus (pro You))))
(assert (pres HAVE (agent (pro [)) (theme (indef ADVANTAGE))
(aff-obj nil) (focus (pro I))))

output proposition:
(Although (assert-(pres LEAD (agent (pro You)) (theme (indef DISK (number 4)))
aff-obj (pro 1)) (focus (pro You)))) :
(assert (pres HAVE (agent (pro D) (theme (indef ADVANTAGE))
(aff-obj nil) (focus (pro 1)))))

5.2.4 DiscuSsion

Our discourse rules are inspired by the research of Derr and McKeown (1984) who
concentrated on using focus to generate complex and simple sentences. They encode tests
on functional information within Definite Clause Grammar (DCG) formalism to determine
when to use complex sentences. These tests look like our discourse rules excebt that they
are written in Prolog and the pattern matching mechanism is implicitly embedded in the -
grammar. Our discourse rules have an extra component ’execution-priorily’ to resolve
conflicts while the tests have not. Checking semantic relation between propositions to

generate complex sentences are also not included in their paper.

408

1. You have S remaining disks.
I have S remaining disks.

2. You and I both have 5 reamining disks.

(def-discourse-rule identity-delete-1 1
((assert (?T ?P (agent ?A1) ?T 20 ?7F1),
(assert (?T ?P (agent 2A2) 7T 70 ?F2)))
—> .
((assert (?T ?P (agent (conj ?A1 ?A2)) 7T 720 ?F1)))

input propositions:
(assert (pres REMAIN(agent (pro You)) (theme (indef DISK (number 3)))
(aff-obj nil) Efocus (pro You)))
(assert (pres REMAIN(agent (pro I)) theme (indef DISK (number J)))
- (aff-obj nil) (focus (pro I)))

output proposition: -
(assert (pres REMAIN (agent (conj (pro You) (pro I)))
theme (indef DISK (number 5)))
aff-obj nil) o
(focus (pro You)))

The process of selecting and combining propositions -in this module is similar to the hill
climbing avlg(')rithm in Mann and Moore (1981). They designed so-called aggregation rules to
combine sentences and then evaluate the resultant combinations. The best one is selected
and the process is repeated. The difference between oﬁr method and theirs is that we
always choose the best combination without generating many other alternatives. Another
disadvantage of the aggregation rules is that they are language-dependent. Our discourse-

rules are less dependent on language than theirs.
5.3 Surface Generation Module
The last module in the system is surface generation which takes the segmented and

enhanced messages produced by-last module as input and generates natural language

sentences as output. It has to make such decisions as (1) what words and phrases to use in

409

describing or referring to entities and their relationship, and (2) what syntactic structure to

use in presenting these pieces of information.

Se.'veral grammatical formalisms have been used for surface generation: Systemic grammar
[Halliday 1976), Transformational grarmmmar [Chomsky 1965], Augmented Transition Network
(ATN) grammar [Woods 1970}, Functional grammar. Our surface genérator use systemic

grammar to produce Chinese sentences.

Our system employs the sentence generator implemented by Kuo (1989) as a part of the
surface generation module for the production of versatile Chinese sentences. The form of
input to the sentence generator looks like frames and has three parts:
1. aframe name --- specifies the constituent of a sentence that the systemic network is to
generate.
2. a list of features --- .provides the information about the functions that this constituent
is intended to perform.
3. an optional subframe list --- gives the subconstituents that are to be handled by the
lower level network. The subframes have exactly the same structure the we have

described.

For example, to generate a sentence "You lead me by 4 disks" in Chinese, the input will be

as follows:

(sentence (s-sentence) .
(clause (independent mood indicative transitivity transitive active double-obj)
(agent (np head-noun pronoun (head-noun You)))
(pred (vp (verb M))E
(aff (np head-noun pronoun (head-noun [)))
(patient (np head-noun noun-mod class-phr (head-noun disk))
(classp (cp number (num 4) (class kir))))))

410

To prepare the input for the sentence generator, the propositions that we have produced
need to be transformed into the form described in the last section. There are many
decisions that we must make during this transformation such as the what features to
include, how to fill the subframes, and which word to use. Instead of writing a subroutine to
transform the propositions, we formalize the transformation by encoding these linguistic
choices as pattern-rules. By matching the input propositions and the IF part of pattern-
rules, the necessary form for the sentence generator can be obtained from the new pattern

part of pattern-rules.

Consider the following pattern-rule for an example. The rule Transform-Clause transforms
the clause element of a proposition into a subframe of the resultant input form according

to the patterns specified in the IF part and the THEN part.

(def-pattern-rule Transform-Clause
(?Type ?Pred (agent ?Agent) (theme ?Theme) (aff-obj ?Aff- Obj) (focus ?Focus))
—>
((c]ause !(Determine-Clause-type (2A4gent))
mood !(Determine-Mood (?Agent))
transitivity @!(Determine-Transitivity (?Agent ?Theme ?Aff-Obj ?Focus))

$(if *?Agent ’(subj @!(Transform-NP ?Agent)))

$(if *?Pred ’(pred !(Transform-VP ?Pred ?Type ?Agent ?Theme)))
$(if ’?Theme ’(patient @!(Transform-NP ?Theme)))

$(if’24ff-0Obj ’(aff @!(Transform-NP 2A4ff-Obj))))

A word in propositions generated by content determination and text planning module
denotes only a concept and does not necessarily correspond to the actual word to appear in
the resultant sentence. But the word system in the sentence generator only consists of
locative particle subsystem. We can either extend the word system in the sentence
generator, or handle the problem of lexical choice during the transformation process

described in the last section. We choose to implemented the lexical choice mechanism in

411

the transformation phase for the following reasons: First of all, these choices can be easily
formulated and encoded as rules without making the grammar too complicated. Secondly,
these rules could be gracefully incorporated with other natural language formalism such as

semantic networks to enhance its capability.

For example, the concept "HAVE" might have the following alternatives.

HAVE CHANCE corresponds to GET CHANCE
HAVE ADVANTAGE corresponds to- GAIN ADVANTAGE

- Through the help of pattern-rules, we are able to implement some simple word choices.
The choices that we have made primarily concentrate on verbs. The rule accepts a verb and
a direct object of the verb as inputs and generates a new word which is then used to replace
the original verb in the input for the sentence generator. The pattern-rule Generate-Word

for verb "HAVE" is described below.

(def-pattern-rule Generate-Word
(HAVE CHANCE)

---> GET)

(def-pattern-rule Generate-Word

- (HAVE ADVANTAGE)

---> GAIN)

5.4 Examples of Text Generated by the System
The following two paragraphs are the commentary produced by our system. The first
paragraph is the comment on a certain step during the game and the second is the

commentary on the entire game.

Commentary on a certain step during the game

R¥EH 1018 E E .
T nes,eyn /R 2BEBHFHMEEZRET

412

REFHN—$MHE .

ns,8)" B BB KA EE 2,6 F 2.

B AR E RE E Iz A B M1 BEH FEZRALELE
T I |
REBSEAESEWNHKE .

fRE T o1 1 EBHE, RHE 1L 2 BEMF

B AR MBERER LI BEHFER2RESEED

Commentary on the entire game

STRE ST R SRR SO E B ST R LD P DB SR S RSP B Y S0 B S S

Bl 5 & — 8 ¥ K I H T T r(3,5)".

KR EEZ2T T "3,0".

HERH RBEMSB FIiITAKHMERBIE

% 14 F.

fBE ik T & B9 ¥ %,

£ 16 F. _

8 T — 4 HEFEFSXXIEEAETTEZ2NAEINNE.

8 19 F.
;‘Eﬁﬁl;ﬁ‘é‘"E‘J%Iﬂg{f’%ﬁﬂ’z‘.ﬁ?Eﬁﬂg1¥E1‘ﬁ?.
22 F.

T — 4 8RO HEHFESRIZET HEZN:IIBEBEF.
8 28 F.
gﬁﬁ‘éﬁﬂmﬁﬁH@%lﬂﬁ{f%{ﬂ?4;5931‘??%%'89%‘*”4&?.
34 F. .
gﬂx;ﬁ%”’Eﬁﬁ%ﬂ%ﬁ’%%ﬁfﬁ?tﬁﬂ‘)1%’5&?.
5 40 F. i

T -4 E RV HEHFESRERIZET £28H6 38H F.
8 43 F.

8 T H L A,

% 46 F.

W T EHE T A.

5§ s0 F. : :

s T — P HESBREHEATEEZEWNE AN ZE.

8% 52 F. - |
HF R T HEBROERFBSMEREZET £BWN1EHEHF.
% 53.F.

W H T K T A.

g 55 F .

BB HF R E B KB FE IS K

ERT TENHREAMNE.

413

£ % 61 F.
AN

R BT £ £ A.

mE s RE.

HE T 23BHB 7, /KF T u B F.
R W15 E — B & 8.

B X A M AR B E A

6 Conclusion

In this thesis, we have designed and implemented a text generation system for generating
commentary on Othello games in Chinese. A framework for text generation is proposed

and adopted in our system.

Our system is a complete text generation system that employes three independent phases to
produce Chinese text. We hope that our work will give rise to other researches on the topic

of text generation in Chinese.

References

[Charniak 1983]
E. Charniak, "A parser with something for everyone", in Parsing Natural Language, ed.
M. King, Academic Press, London, 1983.

[Davey 1978]
A. Davey, Discourse Production,Edingburgh University Press,Edingburgh,1978.

[Derr and Mckeown 1984] ’
M.A. Derr and K.R. McKeown, "Using' Focus to Generate Complex and Simple
Sentences", Proceedings of the 21st Annual Meeting of the ACL (COLING 84), pp.319-
326,1984

[Kuo 1989]

414

7B

H.W. Kuo and J.S. Chang, "Systemic Generation of Chinese Sentences", ROCLING
11, pp.187-212, 1989.
[Li and Thompson 1982]
C.N. Li and S.A. Thompson, Mandarin Chinese - A Functional Reference Grammar,
University of California Press, California.
[Liu, Huarng and Hsu 1987]
P.F. Liu, D.H. Huarng and S.C. Hsu, "An Analysis and Implememtation of Othello",
Bulletin of The College of Engineering, National Taiwan University, No.41, pp.17-26,
1987.
[Mann 1981]
W.C. Mann, "Two Discourse Generators", Proceedings of the 19th Annual Meeting of
the ACL, pp43-47,1981. |
[McKeown 1985]
K.R. McKeown, "Discourse Strategies for Generating Natural-Language Text",
Artificial Intelligence 27, pp.1-41, 1985.
[Moore and Mann 1979]
J.A. Moore and W.C. Mann, "A Snapshot of KDS - A Knowledge Delivery System",
Proceedings of the 17th Annual Meeting of the ACL, pp.51-52, 1979. |
[Moore and Mann 1981]
J.A. Moore and W.C. Mann, "Computer Generation of Multiparagraph English Text",
American Journal of Computational Linguistics 7:1, pp.17-29, 1981.
[Resenbloom 1982]
P.S. Rosenbloom, "A World-Championship-Level Othello Program", Artificial
Intelligence 19, pp.279-320, 1982.
[Wilensky 1986]
R. Wilensky, Common LISPCraft, W.W.Norton & Company, 1986.

415

