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Abstract 

An adversarial attack is an exploitative process in which minute alterations are made to              

natural inputs, causing the inputs to be misclassified by neural models. In the field of speech                

recognition, this has become an issue of increasing significance. Although adversarial attacks            

were originally introduced in computer vision, they have since infiltrated the realm of speech              

recognition. In 2017, a genetic attack was shown to be quite potent against the Speech               

Commands Model. Limited-vocabulary speech classifiers, such as the Speech Commands          

Model, are used in a variety of applications, particularly in telephony; as such, adversarial              

examples produced by this attack pose as a major security threat. This paper explores various               

methods of detecting these adversarial examples with combinations of audio preprocessing.           

One particular combined defense incorporating compressions, speech coding, filtering, and          

audio panning was shown to be quite effective against the attack on the Speech Commands               

Model, detecting audio adversarial examples with 93.5% precision and 91.2% recall.  

Keywords​: adversarial attack, speech recognition, deep learning, audio compression, speech          

coding 

1. Introduction

Due to the widespread and growing use of neural networks for various tasks, it is imperative                

that these models be robust and secure while remaining generally usable. Although these             

models are quite powerful and are well-suited for a variety of tasks, they are not without their                 

imperfections. First applied against computer vision models [1], adversarial attacks exploit           

the flaws of neural networks by making perceptibly insignificant changes to a source to              

produce adversarial examples, with the purpose of causing the neural network to misclassify             

the example. These attacks can be quite potent and have caused misclassification rates of              
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above 90% in image classifiers [2]. Because of their exploitative nature, adversarial attacks             

can be quite difficult to defend against without sacrificing general model usability or             

accuracy. 

The use of adversarial attacks is not restricted to the field of image recognition. Modern               

speech recognition has become increasingly reliant on end-to-end neural models, which are            

able to largely outperform traditional models that rely heavily on signal processing and             

hidden Markov models. These sophisticated neural models may be state-of-the art, but are             

also more susceptible to attack by adversarial examples. Recent work has shown that two              

speech recognition models, a convolutional neural network (CNN) model trained on the            

Speech Commands dataset [3] and Mozilla’s implementation of the DeepSpeech end-to-end           

model [4], are vulnerable to adversarial attacks. Two separate attacks on the two models were               

able to generate extremely potent adversarial examples, capable of inducing a           

misclassification rate of up to 100%. This trend threatens the current reliability of deep              

learning models within the field of speech recognition. As such, there is a crucial need for                

defensive methods that can be employed to evade audio adversarial attacks. 

2. Related Work

The attack against the limited-vocabulary Speech Commands model detailed by Alzantot et            

al. [3] shows particular relevance within the field of telephony, as it could be applied to                

maliciously manipulate the limited-vocabulary speech classifiers used for automated         

attendants. During this attack, adversarial examples created by a gradient-free genetic           

algorithm allow the attack to penetrate layers of non-differential preprocessing, which is            

commonly used in automatic speech recognition.  

2.1 Audio Preprocessing Defenses  

Recent work in computer vision has shown that preprocessing methods, such as JPEG and              

JPEG2000 image compression [5], resizing [6], and pixel deflection [7] are capable of             

defending against adversarial attacks with varying degrees of success. Preprocessing defenses           

have also been employed in speech recognition to mitigate adversarial examples. Yang et al.              

[8] achieved a high rate of success with the use of local smoothing, down sampling, and              

quantization in an attempt to neutralize adversarial examples produced by the attack of            

Alzantot et al. Quantizing with ​q = 256, Yang et al. achieved their best result of mitigating                
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(i.e. retrieving the original label of) 63.8% of the adversarial examples. Quantization causes             

various amplitudes of sampled data to be rounded to the nearest integer multiple of the ​q                

value; this allows adversarial perturbations with small amplitudes to become disrupted.  

Work has also been done in employing audio compression, Hertz shifting, noise reduction,             

and low-pass filtering [9], to defend against Carlini and Wagner’s attack [4] on DeepSpeech.              

The results of [9] suggest that the most promising preprocessing method was low-pass             

filtering, with which the authors were able to retrieve the original label of 90.11% of Carlini                

and Wagner’s adversarial examples. By utilizing low-pass filtering, a selected range of higher             

frequencies are eliminated, preserving a lower band of frequencies in which human speech is              

located. If a significant portion of the of the adversarial perturbation is found within the               

discarded higher frequencies, the attack can be disrupted. Although this work was able to              

largely neutralize the threat of adversarial examples against DeepSpeech, this came at a             

noticeable cost to general model accuracy.  

2.2 Speech Coding  

Although the results of [9] imply that low-pass filtering outclasses audio compression as a              

preprocessing defense, this work only explored two standards of audio coding: Advanced            

Audio Coding (AAC) and MP3. Though those two compression standards enjoy widespread            

popularity, they are not necessarily adequately equipped in defending against targeted           

adversarial examples on speech recognition. For the purposes of teleconferencing and VoIP,            

speech codecs such as Speex [10] and Opus [11] are primarily used due to their ability to                 

preserve the quality of human speech, even through imperfect conditions and lower bitrates.  

In 2002, Valin [10] began the Speex project with intent on providing “a free codec for free                 

speech.” Further development allowed Speex to grow in popularity, becoming adopted by            

well-known, practical VoIP applications such as TeamSpeak and Twinkle . Speex codec is            1 2

built upon the Code Excited Linear Prediction (CELP) algorithm [12], which models the             

vocal tract using a linear prediction model capable of minimizing differences of the             

uncompressed source within a “perceptually weighted domain.” The minimization is          

achieved by applying the following weighting filter to the raw input: 

  

1 http://teamspeak.com/en/features/overview 
2 http://www.linuxlinks.com/Twinkle/ 
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where ​A ​is a linear prediction filter with γ​1 and γ​2 ​managing the filter shape. This filter allows                  

for various levels of noise at different frequencies and has proven to be useful for neutralizing                

adversarial perturbations whilst maintaining the quality of human speech. In addition, Speex            

also includes numerous features, such as voice activity detection, denoising, and support of             

various bandwidths. As this compression seems to resemble audio preprocessing methods           

proven capable of effectively mitigating adversarial examples, it seems better suited than            

MP3 or AAC compression for the task of defending against adversarial attacks.  

The Opus codec, which is used by the highly popular proprietary VoIP application Discord ,              3

is a modern successor to the Speex codec [11]. By combining the CELP algorithm with               

SILK, a linear predictive coding algorithm developed by Skype Technologies in 2009 , it is              4

considered an improved and more advanced version of Speex; the application of Opus             

compression for defending against adversarial examples is therefore worth testing.  

2.3 Ensemble Detection 

Preprocessing defenses against adversarial examples can only be effective and practical if            

they are able to mitigate adversarial examples without greatly compromising general model            

accuracy. A viable form of preprocessing would disrupt the predictions of adversarial            

examples more than it would disrupt the predictions of benign examples. In particular, there              

should ideally be a small difference between the output vectors produced by passing the raw               

input and preprocessed input through a neural network when the input is benign, but that               

same difference should be much larger if the input is adversarial. This core idea can be used                 

to apply preprocessing methods to detect adversarial examples, rather than simply mitigating            

or neutralizing perturbations. 

Within the field of computer vision, ensembles of preprocessing methods have been used for              

detecting adversarial examples. Xu et al. [13] proposed the feature squeezing method for             

detecting adversarial examples. This method combines smaller “squeezing” methods into an           

ensemble, and calculates an ​L ​1 score from of the maximum ​L ​1 ​distance between any pair of                

output probability vectors produced by passing the raw and squeezed inputs through a deep              

3 http://discordapp.com/features 
4 http://www.h-online.com/open/news/item/Skype-publishes-SILK-audio-codec-source-code-955264.html 
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neural network (DNN). Using feature squeezing, Xu et al. were able to consistently detect              

over 80% of adversarial examples produced from a variety of attacks.  

 

3. Methods and Evaluation 

The aim of this research can be divided into two parts: using the individual methods of                

preprocessing independently to detect adversarial examples, and examining various methods          

of combining the preprocessing detectors together as ensemble detection methods. The           

adversarial examples are generated using the genetic attack described by Alzantot et al.             

against the pre-trained Speech Commands model [3].  

3.1 Speech Commands Dataset and Model 

The Speech Commands dataset was released in 2017 and contains 105,829 labeled utterances             

of 32 words from 2,618 speakers [14]. As a light-weight model, Speech Commands is based               

on a keyword-spotting convolutional network (CNN) [15] that is capable of achieving 90%             

classification accuracy on this dataset. For the purposes of this research, a unique subset of               

30,799 labeled utterances of 10 words are used in order to maintain consistency with previous               

research pertaining to the adversarial examples of Alzantot, et al. From this subset, 20              

adversarial examples are generated for each nontrivial source-target word pair for 1800 total             

examples. Each example is produced with a maximum of 500 iterations.  

3.2 Preprocessing Defenses 

A simple method for using preprocessing to detect adversarial examples is by checking to see               

if the prediction produced by the model changes if the input is preprocessed; if the model’s                

prediction of the raw input does not match the prediction of the preprocessed input, it is                

declared adversarial. The following preprocessing methods are used in isolation for detecting            

adversarial examples:  

● MP3 Compression, 

● AAC Compression, 

● Speex Compression, 

● Opus Compression, 

● Band-pass Filtering, and 

● Audio Panning and Lengthening. 
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While the MP3 and AAC compressions correspond directly to preprocessing defenses in            

related work described in Section 2.1, the other defenses listed above have not yet been               

directly tested against audio adversarial examples. The band-pass filter defense builds off of             

the low-pass filter of [9] by combining it with a high-pass filter in order to deter additional                 

adversarial perturbations outside of the frequency range for natural human speech. Audio            

panning is a form of preprocessing frequently used in audio mixing that distributes a signal               

across stereophonic channels, distorting channel volumes to mimic the perception of audio            

coming from an off-centered position. The audio panning and lengthening defense lengthens            

audio by 1% in addition to panning to increase the spatial distortion of adversarial              

perturbations in the signal. 

3.3 Ensemble Detection Methods 

Individual preprocessing methods as isolated defenses can successfully fend off certain           

adversarial attacks. However, attacks aware of the preprocessing defenses are capable of            

optimizing to become more robust [4]. As such, the use of any one preprocessing method               

alone for detecting adversarial examples would prove to be insufficient and render the model              

increasingly susceptible to more advanced attacks. Therefore, a combined deployment of           

preprocessing methods, or an ensemble, may be able to provide better security with a more               

complex defense.  

The preprocessing detection methods described in Section 3.2 can be combined in a variety              

of configurations. The ensemble detection methods explored in this research are discussed            

below. 

3.3.1 Majority Voting Ensemble  

The simplest method of combining the preprocessing methods together would be by            

assigning each preprocessing method a vote, and declaring an audio signal as adversarial if a               

majority of the ensemble declares the signal adversarial. As there are six preprocessing             

methods that are combined into an ensemble, ties with this discrete voting scheme are              

possible. To err on the side of security, this procedure will declare a signal as adversarial in                 

the event of a tie. 

 

 

21



 

3.3.2 Learned Threshold Voting Ensemble 

The majority voting ensemble declares an audio signal as adversarial if there are at least three                

votes in favor of it being adversarial. This threshold for deciding how many votes are needed                

to declare an audio signal as adversarial is arbitrary, and can adapt to different circumstances.               

A low threshold would result in a high recall in detecting adversarial examples, but would               

sacrifice precision. A high threshold would result in a lower recall in detecting adversarial              

examples, but would yield a higher precision. This ensemble method experiments with using             

various voting thresholds for detecting adversarial examples on a labeled training set, and             

chooses the threshold that results in the best precision and recall. To balance both precision               

and recall, F​1 scores are used for selecting the best threshold, although in practice, one could                

adjust the F-measure to reflect one’s attitude on the relative importances of precision and              

recall.  

3.3.3 ​L ​1​ Scoring 

The previously discussed ensemble voting methods are relatively simple, as they simply            

examine the model’s discrete prediction of the raw and preprocessed inputs for each             

preprocessing method. Additionally, the voting methods above are indiscriminate and treat           

each member of the ensemble equally. A more nuanced approach for measuring the             

differences in predictions between raw and preprocessed inputs is by ​L ​1 ​scoring the different              

output logit vectors, similar to how Xu et al. integrated the multiple squeezing methods in               

their feature squeezing defense. In this method, an ideal threshold ​L​1 score is learned from                

training data by finding the threshold of maximum information gain, and test examples that              

surpass this threshold are declared adversarial. This method uses the maximum ​L ​1 ​distance to              

calculate the score, implicitly assigning more importance to preprocessing methods that           

produce output vectors that are highly different than the output vectors produced by             

predicting raw signal. As such, this method would theoretically be more sensitive in detecting              

adversarial examples, but it may also be quite aggressive in declaring signals as adversarial at               

the risk of falsely declaring benign examples as adversarial.  

3.3.4 Tree-based Classification Algorithms 

The above ensemble methods discard information of the class-specific variation in the output             

vector for each preprocessing method, relative to the raw input. In order to preserve this               
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information, a multi-dimensional vector can be used, with each dimension accounting for the             

output vector variation for that class. For the tree-based detection methods discussed in this              

research, a multi-dimensional vector composed of the summed absolute class-specific          

differences between the raw input’s resultant probability vector and the preprocessed input’s            

resultant probability vector over each method of preprocessing. In particular, the ​i ​th            

dimension of this summed absolute difference (SAD) vector ​S​ is calculated as follows: 

where ​P ​corresponds to the set of output probability vectors yielded by the methods of               

preprocessing in the ensemble, and ​r ​corresponds to the output probability vector produced             

by passing the raw signal through the Speech Commands model without any preprocessing. 

This vector will preserve information about class-specific variation between the predictions,           

and will reduce the number of features of the vector inputted to the tree-based classifier down                

to 12 (which is the same as the number of classes). Considering the relatively small training                

dataset size (which is discussed in Section 3.4), having less features for tree-based             

classification may improve performance. However, the 84-dimensional vector formed by          

simply concatenating each output probability vector together would preserve the most           

amount of information. As such, the use of this concatenated probability (CP) vector for              

tree-based classification is also tested, even if the dataset isn’t large enough for the              

classification algorithms to effectively handle that large of a vector.  

Decision tree-based classification algorithms are well-suited for classifying vectors of          

features into discrete classes. In this research, three tree-based classification algorithms are            

employed for using vectors of summed absolute differences for detecting adversarial           

examples: random forest classification, adaptive boosting, and extreme gradient boosting.          

Random forest classification functions by constructing many decision trees in an attempt to             

stave off the possibility of over-fitting. Adaptive boosting and extreme gradient boosting are             

gradient boosting algorithms which function by building an ensemble of weak learners in a              

stage-wise fashion. Each of these tree-based algorithms are used twice in this research: once              

for using SAD vectors for classification and once for using CP vectors for classification.              

These tree-based algorithms have had quite high success in applied problems, are possibly             
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well-suited for detecting adversarial examples. 

3.4 Evaluation  

The aforementioned detection methods are evaluated based on their precision and recall in             

detecting adversarial examples. As the simple preprocessing detection methods discussed in           

Section 3.2 require no training, the precision and recall measurements are calculated based             

off of their performances on the full set of 1,800 generated adversarial examples and 1,800               

randomly selected benign examples. Many of the ensemble detection methods, however, do            

train and adapt based off what is seen in training data, so precision and recall measurements                

for these detection methods are calculated based off of their performance on a subset of only                

900 adversarial examples and 900 benign examples; the 900 other adversarial and benign             

examples are used as a training dataset.  

Within the context of defending against adversarial attacks, there seems to be an implicit              

tradeoff between security and general model accuracy. Although it is important to have a              

high recall in detecting adversarial examples for the sake of security, a low precision in               

detection would cause the model to decline in usability. This research takes the stance of both                

security and general model accuracy being equally important. To reflect this attitude, F​1             

scores are used to combine the precision and recall measurements with equal consideration. 

4. Results 

The results of the individual preprocessing detection methods described in Section 3.2 are             

summarized in Table 1. Measurements indicate that all of the methods are capable of              

detecting adversarial examples produced by the attack with varying rates of success. The             

results are consistent with the findings of [9] in that MP3 compression performs adequately at               

best when compared with the other methods. AAC and Opus compression perform notably             

better, but are not able to achieve as high of a recall as Speex compression (which also yields                  

the highest F​1 ​score).  

Although the use of band-pass filtering for detecting adversarial examples is extremely            

precise, it yields a remarkably low recall, which suggests it is a bit too passive with its                 

declaration of adversariality.  

As many of these preprocessing methods distort audio signals in fundamentally different            

ways, the overall high precision (and lower recall) measurements of each of the individual              
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preprocessing suggest that some of the ensemble methods may be more effective in detecting              

adversarial examples. 

Table 1: ​Precision, recall, and F​1 ​ values for isolated preprocessing methods in detecting adversarial examples.  

 

Table 2:​ Precision, recall, and F​1 ​ values for ensemble detection methods in detecting adversarial examples.  

 

The results of the ensemble detection methods described in Section 3.3 are summarized in              

Table 2. The voting methods performed quite well and achieved the two highest F​1 scores of                

all the methods discussed in this paper. This may be attributed to the high precisions and low                 

recalls of the individual preprocessing methods described in Table 1; the relatively strict             

voting threshold of votes needed for an adversarial declaration capitalizes on the high             

precision of each of the methods and is able to increase recall. The majority voting method                

especially benefited from the high precisions of its constituents and yielded an extremely             

high precision of 96.1%. The Learned Threshold Voting method was able to learn a lower               
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voting threshold of only two votes needed for an adversarial declaration. As such, this              

method was able to yield a notably higher recall than what was achieved through majority               

voting, but at a noticeable cost to precision. As the Learned Threshold Voting method still               

retained a fairly high precision, it achieved the overall highest F​1 ​score of any of the other                 

preprocessing methods. The recall values for detecting adversarial examples using the           

Learned Threshold Voting method are detailed in Figure 1. 

The ​L ​1 Scoring method was able to achieve higher recall than either of the two voting                

methods, perhaps due to its aggressive nature. However, this was achieved at the cost of               

precision, which evidently lowered the F ​1​ score.  

Although tree-based classification algorithms can be quite powerful in a variety of situations,             

the tree-based methods were not able to perform as well as the voting methods in detecting                

adversarial examples using SAD vectors. This may be because the SAD vectors fed into the               

tree algorithms discarded important voter-specific information. In particular, the vector of           

summed absolute differences effectively anonymizes the voters in the ensemble; it inherently            

considers each member of the ensemble equally.  

 

Figure 1:​ A heat map detailing the rates (in percent) of detecting targeted adversarial examples with the 
Learned Threshold Voting method. The diagonal of zeroes correspond to trivial source-target pairs 
for which no adversarial examples were generated. 
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This discarded information proved to be quite crucial for effectively detecting adversarial            

examples, as the tree-based classification methods performed significantly better with CP           

vectors (which are highly conservative). In particular, the extreme gradient boosting and            

adaptive boosting classification algorithms were able to yield the highest recall values for             

detecting adversarial examples out of all of the detection methods discussed in this research.              

Considering that the tree-based classification methods performed significantly better with the           

voter-specific information available in the CP vector, it is worth noting that the Learned              

Threshold Voting method, which yielded a higher F​1 score than any tree-based classification             

method, does not use voter-specific information; each vote carries equal weight towards            

breaking the learned threshold. As such, it may be possible that the tree-based classification              

methods outperform the Learned Threshold Voting method on larger datasets, as it could be              

that this training dataset was not sufficiently large enough for learning how to optimally use               

an 84-dimensional vector for classification. However, given the heavy reliance of training            

data that the tree-based classification methods exhibit, they are likely not as well-suited for              

flexibly handling different types of attacks as the voting methods. 

As the Learned Threshold Voting method performed better over all other detection methods             

discussed in this paper, it can be helpful to examine the adversarial examples that remain               

undetected by this method and the benign signals that get incorrectly flagged as adversarial.  

One method of analyzing the adversarial examples is by examining the average frequency             

level throughout the signal. Since we are able to recover the original, clean source for each                

adversarial example, we can examine the difference between the average frequencies of each             

adversarial example and its clean source. The means and standard deviations of this             

difference for undetected and detected adversarial examples are depicted in Table 3. 

Table 3: ​Mean and Standard Deviation of Differences of Average Frequencies for undetected and detected 
adversarial examples.  

 

Upon performing a Student’s t-test, the difference in undetected adversarial examples was            
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found to be less than the difference in detected adversarial examples with 99% statistical              

significance. This suggests that the frequencies of adversarial perturbations in the undetected            

adversarial examples were concentrated at lower frequencies than those of detected           

adversarial examples. As human speech is found within these lower frequencies, it is much              

more difficult to disrupt or detect these adversarial examples without distorting the speech in              

the signal. This may explain why these adversarial examples remained undetected under the             

Learned Threshold Voting method. As a side effect, these undetected adversarial examples            

with significant perturbation in the lower frequency bands would theoretically be more            

perceptibly noisy to humans, as the physiology of the inner ear is fine-tuned for picking up                

auditory information at these frequencies [16].  

Benign examples that were falsely detected as adversarial also exhibited an interesting            

property. In particular, the Speech Commands model achieved a classification accuracy of            

92.7% on raw benign examples that were not detected as adversarial, but that accuracy fell to                

40.4% for raw benign examples that were falsely detected as adversarial. The relatively low              

classification accuracy for the benign examples flagged as adversarial suggests that even            

benign examples that are classified incorrectly by the model exhibits some volatility of             

outputted predictions upon preprocessing, similar to adversarial examples. For reference, the           

model achieved 90.3% classification accuracy in general over all benign examples. 

5. Conclusion and Future Work 

Although the results of this research suggest that ensembles of audio preprocessing can be              

highly effective for detecting adversarial examples, it is important to note the drawbacks of              

the defenses discussed in this paper. An analysis of adversarial examples that went             

undetected by the Learned Voting Threshold method implied that those examples had more             

adversarial perturbations in the lower frequency bands than the adversarial examples that            

were detected. This suggests that attacks can optimize adversarial examples robust to the             

Learned Threshold Voting method by concentrating adversarial perturbations within the          

frequency range of human speech.  

Although using ensemble detection methods may provide marginal security over using           

isolated preprocessing detection methods, recent work has shown that adaptive attacks on            

image classifiers are able to bypass ensembles of weak defenses [17], including the feature              
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squeezing ensemble of Xu, et al.; this work could be applied to attack speech recognition               

models. Future work can be done in investigating stronger ensembles for detecting audio             

adversarial examples and other defenses that can withstand adaptive attacks. Considering the            

faceted usefulness of Speex compression for detecting adversarial examples, perhaps further           

investigation into speech coding for defending against adversarial attacks is warranted.  

Nevertheless, this paper demonstrated that methods of audio preprocessing can be used to             

detect adversarial examples produced by the attack of Alzantot et al. on Speech Commands.              

Additionally this paper examined the effectiveness of various ensembles of audio           

preprocessing detection methods for defending against adversarial examples. While these          

detection methods may not be extremely effective against more adaptive attacks, this research             

aimed ultimately to further discussion of defenses against adversarial examples within the            

audio domain: a field in desperate need of more literature. 
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