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Abstract 

Entity linking (EL) is the task of linking a textual named entity mention to a 

knowledge base entry. Traditional approaches have addressed the problem by 

dividing the task into separate stages: entity recognition/classification, entity 

filtering, and entity mapping, in which different constraints are used to improve the 

system’s performance. Nevertheless, these constraints are executed separately and 

cannot be used interactively. In this paper, we propose an integrated solution to the 

task based on a Markov logic network (MLN). We show how the stage decision 

can be formulated and combined in an MLN. We conducted experiments on the 

biomedical EL task, gene mention linking (GML), and compared our model’s 

performance with those of two other GML approaches. Our experimental results 

provide the first comprehensive GML evaluations from three different perspectives: 

article-wide precision/recall/F-measure (PRF), instance-based PRF, and question 

answering accuracy. This paper also provides formal definitions of all of the above 

EL tasks. Experimental results show that our method outperforms the baseline and 

state-of-the-art systems under all three evaluation schemes. 

Keywords: Entity Linking, Entity Disambiguation, Markov Logic Network, Gene 
Normalization 

1. Introduction 

Developing a system that can identify entities, such as personal names and gene or disease 

mentions, and that can classify the relations between them is useful for several applications in 

natural language processing and knowledge acquisition. There are several possible uses for 
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such a system in different fields, e.g., improving document retrieval for specific entities, 

relation extraction, and attribute assignment (e.g., gene ontology annotations). In these 

applications, recognized entities must be linked to unique database entries. McNamee and 

Dang (2009b) named the task of matching a textual entity mention to a knowledge base (KB) 

entry Entity Linking (EL). In Figure 1, we provide a biomedical abstract to illustrate this task. 

The abstract discusses the relationship of the gene “CD59” to other lymphocyte antigens. 

TITLE: Structure of the CD59-encoding gene: further evidence of a relationship to murine 

lymphocyte antigen Ly-6 protein 

ABSTRACT: The gene for CD59 [membrane inhibitor of reactive lysis (MIRL), 

protectin], a phosphatidylinositol-linked surface glycoprotein that regulates the formation 

of the polymeric C9 complex of complement and that is deficient on the abnormal 

hematopoietic cells of patients with paroxysmal nocturnal hemoglobinuria, consists of four 

exons spanning 20 kilobases. … PMID [1381503] 

Figure 1. An example of entity linking. 

After EL, the gene mention “CD59” in the first sentence must be linked to ID 966 in the 

Entrez Gene database of PubMed. In the first sentence, the authors also listed other 

designations of the gene, including “membrane inhibitor of reactive lysis” and “protectin,” and 

they defined “MIRL” as the abbreviation for “membrane inhibitor of reactive lysis.” Linking 

these instances to the same entry is a problem related to the name variations issue. 

Furthermore, the gene “CD59” may exist in multiple species. For example, it appeared in the 

title of the abstract as a murine gene, but turns out to be referring to a human (patient) gene in 

the first sentence. Therefore, each gene must be linked to its own unique database entry. Since 

these instances are polysemous, they are considered entity ambiguity issues. Finally, the “C9 

complex” in the first sentence is a protein complex, but the Entrez Gene database does not 

contain this type of entity. When an entity cannot be associated with any entries, it is called an 

absence issue (McNamee & Dang, 2009b), and those entities are referred to as “Nils”. 

Of all of the aforementioned issues, entity ambiguity is the most crucial problem (Dredze 

et al., 2010). Take the name “TP53” as an example. In the Entrez Gene database, there are 

over 300 proteins within over 20 species possessing the same name. Several disambiguation 

approaches have been proposed to address the problem. For example, Dredze et al. (2010) 

formulated the disambiguation task as a ranking problem and developed features to link 

entities to Wikipedia entries. Zhang et al. (2010) used an automatically generated corpus to 

train a binary classifier to reduce ambiguities. Dai et al. (2010) collected external knowledge 

for each entity and calculated likelihoods stating the similarity of the current text with the 

knowledge to improve the disambiguation performance. 
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Figure 2. Stages in the bottom-up EL approach: Some works combine the entity 

recognition and the entity classification into one step. 

Usually, a real-world EL system is constructed in a bottom-up manner, so it is necessary 

to make several decisions in different stages during the EL process. Figure 2 depicts the 

bottom-up process (Krauthammer et al., 2004). Entity recognition marks single words (or 

several adjacent words) that indicate the presence of entities. As entity recognition does not 

determine the specific meaning of a concept, it is often combined with Entity Classification, 

which assigns entities to different classes, such as persons, genes, or diseases. After removing 

Nils (Entity Filtering), Entity Mapping maps entities to controlled database entries by 

calculating the similarities between the recognized entities and lexicon resources. This stage 

may resolve the entity ambiguity issue by a disambiguation process that uses contextual 

information to link entities to KB entries. 

As shown in Figure 2, the traditional method for dealing with Nils has been to employ an 

additional step to filter out entities that have no corresponding entry in a KB. For example, 

Bunescu et al. (2006) filtered out mentions whose confidence scores are less than a fixed 

threshold. J Hakenberg et al. (2008) and Li et al. (2009) trained separate binary classifiers to 

validate linked mentions. Dredze et al. (2010) treated Nils as another KB entry candidate to 

train their EL ranking model. 

Unfortunately, the separate-stage approach ignores possible dependencies among these 

stages and can result in error propagation. Continuing our example in Figure 1, in the EL stage, 

“MIRL” can be unambiguously linked to ID 996 with high confidence, because a search for 

the name in Entrez Gene returns only one match. Nevertheless, linking other mentions (e.g. 

“CD59” and “protectin”) to ID 996 is not as easy, since “CD59” alone has 18 candidate entries. 

These names can be linked with more ease when considered as synonyms of MIRL. 

Nevertheless, a divergent filtering stage may filter out the entity mention “MIRL” because it is 

listed as an abbreviation of organization names, such as Mineral Industry Research Laboratory. 
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With a joint inference process, we can carry out both tasks simultaneously to avoid this type 

of error propagation (Poon et al., 2007). 

Joint inference has become popular recently, because it allows features and constraints to 

be shared among different tasks. For example, J. R. Finkel et al. (2009) integrated parsing and 

named entity recognition into a joint model, whereas Dai et al. (2011) created a joint model 

for co-reference resolution and gene normalization and Liu et al. (2012) conducted entity 

recognition and normalization jointly for tweets. In this paper, we use the Markov Logic 

Network (MLN) (Richardson et al., 2006), a joint model that combines first order logic and 

Markov networks, to capture the bottom-up decisions derived from the process illustrated in 

Figure 2. This model captures the contextual information of the recognized entities for entity 

disambiguation, as well as the constraints used when linking an entity mention to a database 

entry. For example, an entity mention can only be linked to a database entry when the mention 

has not been recognized as a Nil. 

Existing EL evaluation metrics assess a system’s performance in terms of the 

effectiveness of database curation (Morgan et al., 2008) or question answering (QA) accuracy 

(McNamee, Dang, et al., 2009). In addition, we evaluate our system at a fine-grained entity by 

entity level. Such evaluation is more relevant to information extraction tasks, such as the 

bio-molecular event extraction task (Kim et al., 2009).  

When considering EL tasks from the entity level, one challenge is the lack of contextual 

information for disambiguating each individual entity. The major scheme of traditional entity 

disambiguation approaches relies on domain knowledge derived from entities’ profiles and 

contextual features extracted within a predefined content window. Rule-based (Dai et al., 2010; 

Jörg Hakenberg et al., 2008), vector space models (Cucerzan, 2007), and machine learning 

approaches (Crim et al., 2005; Mihalcea et al., 2007; Milne et al., 2008) have been proposed 

to disambiguate entity mentions individually. Nevertheless, the context is unclear under 

certain circumstances. Take the sentence “The synthetic replicate of urocortin can bind with 

high affinity to Type 1 and Type 2 CRF receptors” as an example. The sentence itself does not 

explicitly provide any clues to help computer programs determine the identity of the gene 

mention “urocortin”, which has at least eight ambiguous Entrez Gene IDs. One approach is to 

expand the context window used for disambiguation to the paragraph level. Nevertheless, a 

paragraph described in a biomedical article usually incorporates several pieces of information 

in its description, which may not be related directly to a target entity instance and leads to the 

failure of traditional EL approaches. 

Our idea of dealing with the challenge of deficient contextual information for 

disambiguating individual entity instances is to model dependencies among entities across 

sentences in the same paragraph. These dependencies have been ignored by most of the 

previous EL approaches. We refer to our approach as the collective EL, which is developed by 
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considering the relational information hidden among entities. In the following sections, we 

first give formal definitions of the EL tasks mentioned above, followed by an introduction of 

MLN and a description of the main ideas of the proposed EL method with the formulation of 

the collective EL approach. 

2. Entity Linking Problem Definition 

This section gives formal definitions of all related EL tasks. 

Definition 1: Instance-based Entity Linking Problem 

Let M = (m1, m2, …) denote a sequence of entities mentioned in an article A. The surface name 

of mi is denoted by Name(mi). The named entity type of mi is EntityType(mi). The surrounding 

context of mi can be extracted by Context(mi). Given a KB containing a set of entries ID = {id1, 

id2, …}, each of which organizes knowledge related to an entity, the instance-based EL 

problem is defined as finding a mapping function LinkTo(mi) that maps each mi in M to a 

unique entry idi in ID and satisfies the constraint ( ) :i iLinkTo m m M M  . 

In instance-based gene mention linking (GML), only entities whose EntityType(mi) 

belong to “gene” are considered for evaluation. Both the gene normalization task in 

BioCreAtIvE (Morgan et al., 2008) and the EL task in the KB population (McNamee & Dang, 

2009a) can be subsumed into Definition 1. In BioCreAtIvE gene normalization, the developed 

system should satisfy the equation ( ) :i iLinkTo m m M M  . We refer to this task as the 

article-wide EL problem. 

Definition 2: Article-wide Entity Linking Problem 

Let M = {m1, m2, …} denote a set of entities mentioned in A. Given the entries ID = {id1, 

id2, …} in a KB and the mapping function LinkTo(mi), the article-wide EL problem satisfies 

the constraint ( ) :i iLinkTo m m M M  . 

On the other hand, the KB population EL task only considers one certain entity mi 

mentioned in A. We refer to this task as the article-wide “salient entity” linking problem, in 

accordance with the Wikipedia style manual, in which only the salient entity and its related 

entities should be linked in wikification. Excessive links would obstruct the readers in 

following the article by drawing attention away from important links (Mihalcea & Csomai, 

2007). 

Definition 3: Article-wide Salient Entity Linking Problem 

Let M = mi denote the salient entity mentioned in A. Note that, in encyclopedia-style articles, 

1M  because the same surface name described in such articles should refer to the same 

instance. Given the entry set ID = {id1, id2, …} of a KB, the purpose of the article-wide salient 

EL problem is to find the mapping function LinkTo(mi) that links mi to a unique entry idi in E. 
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Note that, in the KB population EL subtask (pertained to the article-wide salient EL 

problem), the salient entity is given. Nevertheless, in the instance-based GML or the 

BioCreAtIvE gene normalization (pertaining to the article-wide EL problem) tasks, the 

systems must also deal with the entity recognition/classification problem. 

3. First-order Logic and Markov Logic Networks 

Markov logic is a statistical relational learning language based on first-order logic (FOL) and 

Markov networks. In this section, we consider FOL and Markov networks in terms of the 

GML task. 

In FOL, the formulae are constructed using four types of symbols: constants, variables, 

functions, and predicates. For GML, a constant symbol may represent a gene mention (e.g. 

“CD59”) or its unique database entry (e.g. the Entrez Gene ID “966”). If variables and 

constants are type-specific, their range can only cover objects of the corresponding type. To 

give an example, the variable y’s range covers all Entrez Gene database IDs. Predicate 

symbols are used to represent the relations between terms; for example, we can define the 

predicate, LinkTo(x, y), to indicate that a gene mention (the variable x) should be linked to an 

entry (the variable y). Formulae are constructed recursively from predicates applied to a tuple 

of terms by through use of logical connectives and quantifiers. Then, we can model the EL 

task by introducing a set of logical predicates. For instance, we can define the predicate 

Candidate(i, j) to indicate that the gene mention i can be mapped to an entry j. The predicate 

captures information about gene mentions and their corresponding candidate database entries. 

Through this predicate, we can infer whether a gene mention is unambiguous. Then, we can 

use the following formula 

Formula 1: ! . ( , ) ( , )x id Candidate x id LinkTo x id    

to model the concept that, when a gene mention is mapped to only one entry, it should be 

linked to that entry. Note that we use the symbol, ! , to refer to a uniqueness quantification. 

A first-order KB is a set of hard constraints on the set of ground atoms of predicates (or 

so-called possible worlds). If a world violates any formula, it has zero probability. In most 

domains, however, it is very difficult to derive non-trivial formulae that are always true. 

Markov logic softens these constraints to handle uncertainty by associating each formula with 

a weight that reflects the strength of a constraint. Ideally, if we could define a formula with a 

proper weight for its distribution, a world in which the formula is satisfied would have a 

higher probability than a world in which it is not. In Markov logic, a set of weighted formulae 

is called a MLN. 

Definition 4: Markov Logic Network 

An MLN L is a set of pairs (Fi, wi), where Fi is a formula in FOL and wi is a learned weight 
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corresponding to the Fi whose value is a real number. In combination with a finite set of 

constants C = {c1, c2, . . . , c|C|}, it defines a Markov network ML,C as follows: ML,C contains 

one node for each possible grounding of each predicate appearing in L. The value of the node 

is 1 if the ground predicate is true, otherwise it is 0. 

Based on the definition, we can generate a graph structure of the ground Markov network 

where there is an edge between two nodes of ML,C if the corresponding ground atoms appear 

together in at least one grounding of one formula in L. Thus, the predicates in each ground 

formula form a clique in ML,C. Each clique in the graph is associated with a potential function 

i .The joint distribution of a set of variables X represented by ML,C then is defined by: 

( )
{ }

1
P( ) ( ) in x

i i
i

X x x
Z

    

where x{i} is the state of the ith clique (i.e., the exact values of the predicates that appear in 

that clique Fi),  ni(x) is the number of true groundings of Fi in x, and { }( ) iw
i ix e  .  Z is the 

partition function given by  { }( )i ix X
i

Z x   .  Markov networks are often represented as 

log-linear models in which each clique is replaced by an exponential weighted sum of the 

features of the state, leading to 

1
P( ) exp ( )i i

i
X x w f x

Z

 
   

 
  

In our implementation, fi is a binary feature, ( ) {0,1}if x  . 

4. The Proposed Entity Linking System for Gene Mention Linking 

Figure 3 illustrates the input of the proposed EL system developed for GML and the FOL 

predicates defined for the corresponding bottom-up stages. The input is an article, such as a 

biomedical abstract. The given article is first processed by a gene mention recognizer to 

identify gene mention boundaries, and the employed gene mention mapper then maps each 

recognized gene to a list of candidate identifiers, based on a lexicon compiled from the Entrez 

Gene database. 

 
Figure 3. MLN hidden predicates defined for each stage. 
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Ideally, we should be able to treat all recognized gene mentions as candidates, and 

proceed directly to the entity mapping task. Nevertheless, the employed recognizer may 

generate false positive gene mentions. Such mentions can be classified into two types: those 

that do not belong to any entity class and those that belong to classes that are not the curation 

target (Nils). In GML, Nils appear when the gene mentions are DNA polymerases, or in a 

specific organism that is not considered. To capture the concept, we define the predicate 

isSuitableForLinking(x), which indicates that the gene mention x of the article is suitable for 

linking to an entry. For entity mapping, we use the predicate LinkTo(x, id) to represent that the 

gene mention x must be linked to the database entry id. As the objective of the entity mapping 

task is to determine a unique KB entry for each entity, we must define a formula to ensure that 

the constraint is satisfied. Regarding GML, we use the following formula to prevent a gene 

mention from associating with more than two identifiers. 

Formula 2: Entity Mapping Constraint 

( , ) ( , )i i j jLinkTo x id id id LinkTo x id     

4.1 Formulation of the Instance-based GML 

Within the machine learning community, classification is typically done on each object 

independently without taking into account any underlying relation that connects the objects. In 

most of the individual EL formulations, an individual classifier is employed to assign a 

probability to the linked ID of an individual instance independently of the linked IDs of other 

instances. For example, the following formula expresses that, if the chromosome location 

information of the entity mention x, which has the KB entry id as its candidate ID, can be 

found in the surrounding text, x should be linked to id. 

Formula 3: ( ) ( , ) ( , )hasChromosomeInfo id Candidate x id LinkTo x id   

Other useful biographical information for locally disambiguating gene mentions includes 

tissues, gene ontology, and PPI. Some researchers (Hakenberg et al., 2007; Lai et al., 2009) 

have used this information for individual GML. Table 1 shows the observed predicates and 

formulae defined for this individual approach. We take hasPPIPartnerRank as another 

example. For the individual GML process, we define the following formula. 

Formula 4: Individual PPI 

! . ( , ,1) . ( ) ( ) ( , )id hasPPIPartnerRank x id w hasWord w isPPIKeyword w LinkTo x id     

implies that the gene mention x should be linked to the id that has the most PPI partners. The 

other predicates, including hasGOTermRank and hasTissueRank, follow a similar concept, in 

which the context is matched with the corresponding keywords to determine the frequency in 

the given abstract text. 
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Table 1. Observed predicates and formulae defined for entity mapping. 

Candidate(x, id) 

hasChromosomeInfo(id) 

hasWord(w): the abstract contain a word w. 

isPPIKeyword(w), isPPIPartner(id1, id2) 

hasPPIPartnerRank (x, id, r) 

hasGOTermRank(x, id, r) 

hasTissueTermRank(x, id ,r) 

hasDictionaryMatchRank(x, id, r) 

hasPrecedingWord(x, w, l), hasFollowingWord(x, w, l) 

hasUnigramBetween(x, y, w) 

V
ariable Type 

x: integer that refers to the xth gene mention in the given article (similarly y refers to the yth 
gene mention) 

id: an Entrez Gene ID, which refers to the linked KB entry. 

w: a word. 

r: integer that refers to the rank of the matching. 

l: integer that refers to a context window length. 

F
orm

ulae 

( , ) ( ) ( , )Candidate x id hasChromosomeInfo id LinkTo x id   

( ) ( ) ( , ) ! . ( )

( , )
i i

i

hasWord w PPIKeyword w Candidate x id id MostPPIPartners id

id id LinkTo x id

  

  
 

( , ) ! . ( ) ( , )i i iCandidate x id id MostGOTerms id id id LinkTo x id     

( , ) ! . ( ) ( , )i i iCandidate x id id MostTissueTerms id id id LinkTo x id     

! . ( , ) ( , )id Candidate x id LinkTo x id   

! , . ( , ) Pr ( 1, ) "("

( , 1, ) ( 1,")") ( 1, )

u id Candidate x id has ecedingWord x u u

hasUnigramBetween x x u hasFollowingWord x LinkTo x id

    
     

 

! , . ( 1, ) Pr ( 1, ) "("

( , 1, ) ( 1,")") ( , )

u id Candidate x id has ecedingWord x u u

hasUnigramBetween x x u hasFollowingWord x LinkTo x id

     
    

 

A drawback of individual EL classifiers is that, when they decide the linking entry of an 

entity, they cannot utilize information about the linked entries and features of other entities in 

the same article. Nevertheless, those entity instances can be related, and the interrelationship 

can be used to improve the EL performance. Furthermore, there are strong dependencies 

among the unknown IDs of the instances, which could either be a true positive entity mention 

or a Nil. These dependencies are highly nonlocal. 
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Collective classification refers to the task of inferring labels for a set of objects using not 

just their attributes, but also the relations among them (Sen et al., 2008). 

Definition 5: Collective Classification 

Given a network N, a node n in N, and the label set L, there are three distinct feature types that 

can be utilized to determine the label l of n, where l L . 

1. The observed features of n. 

2. The observed features (including observed labels if they are known) of nodes in the 

neighborhood (related nodes) of n. 

3. The unobserved labels of nodes in the neighborhood (related nodes) of n. 

In our formulation for EL, for a given article, the candidate database entries of all 

recognized entities form the network N. A mention’s candidate entry and order form the node 

n = (id, order) in N, and an edge exists between two nodes if they have dependencies. In this 

work, the dependencies are constructed based on two main ideas: the discourse salience 

property in centering theory (Grosz et al., 1995) and the protein-protein interaction (PPI) 

association. 

4.1.1 Discourse Salience 

Discourse salience is a phenomenon where, in a given discourse, there is precisely one entity 

that is the center of attention. This entity is mentioned over and over again, which makes it 

more salient than others. We utilize this phenomenon to improve the instance-based EL 

confidence. Suppose that id is a candidate database entry for several entities in a discourse, we 

then can assume that id is more salient than other database entries. If the EL system can link 

one of these mentions to id with high confidence, then the system is more likely to be able to 

link all of the other mentions to id as well. 

4.1.2 Protein-protein Interaction 

Similarly, the idea of employing the PPI association allows us to express the concept that a 

gene mention y should be linked to idj if another gene mention x has been linked to idi and idi 

forms an interaction with idj. 

In order to capture the concepts above, the order of all individual instances described in 

an abstract are leveraged to build dependencies in our formulation. The lack of local 

contextual information then can be resolved by the constructed dependencies. In our work, the 

salience collective is written as follows in Markov logic. 

Formula 5: Salience collective 

( , ) ( , ) ( , ) ( , )Pr ecede x y LinkTo x id Candidate y id LinkTo y id    
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If the database entry id is linked to an entity x that precedes the current mention y and id 

is a candidate entry of y, then the current entity y should also be linked to id. This formula is 

similar to the transition feature of the linear-chain conditional random fields (Lafferty et al., 

2001), which can be implemented in Markov logic as follows. 

Transition feature: ( , ) ( , ) ( , )Pr e cede x y Label x L Label y L     

Note that the symbol “+” in the above formula directs the MLN learning algorithm to 

associate the formula with a different weight depending on variables containing the “+” 

notation. 

We define the predicate PPIPartner(idi, idj), whose value is true if idi and idj form a PPI 

pair. We then use the following formula to capture the PPI association concept. 

Formula 6: PPI 

( , ) ( , ) ( , ) ( , )i j i j jLinkTo x id Candidate y id PPIPartner id id LinkTo y id    

Based on these two collective formulae, Figure 4 compares the ground Markov network 

(b) of our collective formulation with the traditional individual approach (a). In Figure 4 (a), 

the individual approach considers the likelihoods stating the similarity of the current context 

with the domain knowledge of the recognized entity, including chromosome location 

(ChromosomeInfo) and gene ontology (MostGOTerm). Comparing Figure 4 (b) with (a), our 

collective formulation captures the dependencies among entities, allowing the information to 

be employed in the GML decision. 

 
(a) Individual EL formulation. 

 
(b) Collective EL formulation. 

Figure 4. Ground Markov network obtained by applying example formulae to 
the constants x, y = {1, 2}, c = {0, 1}, and id = {966}. 
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4.2 Formulae for Entity Recognition/Classification and Filtering 

The hidden predicate isSuitableForLinking captures the decisions made after the entity 

recognition/classification stage. When the gene mention x is linked to an identifier id, we 

employ the following formula to ensure that it is an entity suitable for linking. 

Formula 7: ( , ) ( )LinkTo x id isSuitableForLinking x  

Note that the formula models the bottom-up decision, as shown in Figure 2. The 

identifier id does not have to be linked to the gene mention x proposed by the entity 

recognition/classification stage. Nevertheless, the id cannot be assigned to the gene mention x 

that has not been proposed as a potential entity. 

Our first formula for isSuitableForLinking treats all gene mentions as potential entities: 

( , ) ( )hasName x n isSuitableForLinking x . 

The other formulae are constructed using the observed predicates defined in Tables 1 and 

2 to check the contextual information. For example, 

  ( , ) ( ) ( )hasFirstWord x w isSpeciesTerm w isSuitableForLinking x     

implies that the suitability of a certain gene mention for linking depends on whether or not the 

first word is a keyword for a certain species. 

Table 2. Observed predicates for entity filtering. 

hasName(x, n) 

hasFirstWord(x, w), hasLastWord(x,  w) 

hasPrefix(x, ch, d, l): the xth gene mention has a prefix ch of length l, and the prefix’s case is the 

same as its following character (d = 0) or different (d = 1). 

  isSpeciesTerm(w), isAllUpperCase(i), hasPartOfSpeech(x, k, p) 

isContainedMoreSpecificMentions(x) 

V
ariable Type

n: a word or a sequence of words that refer to the surface name of a gene mention. 

ch: a character. 

d: an integer. 

k: the kth index of the gene mention. 

p: a part-of-speech 

5. Experimental Results and Discussion 

5.1 Experimental Setup 

5.1.1 Evaluation Metrics 

We use three metrics to evaluate our approach and compare it with other GML methods. The 

first and second metrics used the standard precision, recall, and F-measure metrics (PRF) at 
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two resolutions (article and instance). 

Article-wide evaluation used the standard used in the BioCreAtIvE challenge (Hirschman 

et al., 2005), which is designed to determine an GML system’s performance as an aid for the 

curation of biological databases. The GML system outputs a list of IDs for a given article, and 

this list is compared to the gold standard ID list. The PRF scores are calculated based on the 

sums of true/false positives/negatives (TP, TN, FP, FN). 

Instance-based evaluation measures the GML performance at a fine-grained resolution 

(Dai et al., 2011). In contrast to the first metric, the PRF scores are calculated based on the 

sums of TP, TN, FP, and FN for all instances in the test dataset. Therefore, under this criterion, 

an FP can link a true gene mention to the wrong KB entry or link a false gene mention to any 

entry, while an FN can link a true gene mention to the wrong entry or fail to recognize a true 

gene mention. For TP/FP/FN, we need to determine when the predicted boundary matches that 

of the gold standard. Most pure entity recognition tasks use “exact-matching” as the primary 

criterion. Under this criterion, a candidate gene mention can only be counted as a TP if both 

its left and right boundaries fully coincide with the gold answer. In a real case, however, a 

gene mention can be tagged in several ways (e.g., “serum <entity>LH</entity>“ and “<entity>serum 

LH</entity>“ are both correct), which are intrinsic to the annotation of any gene mention corpus, 

whether developed by humans or machines (Tsai et al., 2006), and may depend on the 

annotator’s perspective (Franzén et al., 2002). Furthermore, for the GML task, the correctness 

of the linked entry is more important than its boundary. Therefore, we used the 

approximate-match to determine the boundary criterion. For example, a TP is counted when a 

machine-linked gene mention is a substring of the gold standard-linked gene mention or vice 

versa and the linked entry is equal to the gold entry. 

The third metric, the mean accuracy across all queries, considers the QA perspective. EL 

is important in QA systems because the systems rely on data from multiple sources, so name 

ambiguity will lead to wrong answers and poor results. We adopt the evaluation metrics used 

in text analysis conference KB population (KBP) track 2009 (McNamee & Dang, 2009a) to 

report Accuracymicro and analyze the results from the QA perspective 1. 

5.1.2 Datasets 

In the experiments, we used the training and test sets (281 and 262 abstracts, respectively) 

released by the BioCreAtIvE gene normalization task (Morgan et al., 2008) for article-wide 

evaluation. The corpus contains annotations for human genes that are linked to IDs in the 

Entrez Gene database. Although the gold answers contain each ID’s surface name, they do not 

give the exact location of the corresponding gene mention in the abstract. To obtain 

                                                       
1 For details please refer to http://apl.jhu.edu/~paulmac/kbp.html. 
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fine-grained evaluation results, our in-lab biologists compiled an instance-based GML corpus 

by annotating the exact location and the boundary of the IDs’ gene mentions (Dai et al., 2012). 

After compiling the corpus, we performed three-fold cross validation (CV) on the training 

dataset to optimize the weights and formulae and to evaluate its performance on the test set. 

In QA evaluation, as defined in KBP, the associated document is used to provide 

contextual information that might be useful for linking. We paired the surface names with 

their corresponding documents as the input query. For each query, the corresponding gold 

answer could be 1) an Entrez Gene ID or 2) a Nil in cases where our biologists annotated the 

entity as a mention without associating it with any IDs. Table 3 shows the generated 

query/answer pairs based on the BioCreAtIvE Corpus. 

Table 3. The statistics of the generated query/answer  
pairs on the BioCreAtIvE corpus. 

Dataset # of queries # of Nil # of Entities

Training 1073 87 1132 

Test 1266 66 1154 

5.1.3 Model Configurations 

To assess the performance of our models and determine the possible gains that can be 

achieved by considering a collective model and a joint model of the bottom-up stages, we 

designed two configurations. The first configuration was the collective model, which used all 

of the disambiguation formulae defined in Section 4.1 (denoted as CM). The constructed 

Markov network resembles Figure 4 (b) with additional grounding for the predicates and 

individual formulae defined in Table 1. The second configuration further included the 

formulae defined in Section 4.2 on CM to build a joint model (denoted as JCM). This work 

used the 1-best Margin Infused Relax online learning Algorithm (MIRA) (McDonald et al., 

2005) for learning weights and employed cutting plane inference (Riedel, 2008) with integer 

linear programming as its base solver for inference at test time as well as during the MIRA 

online learning process. 

In addition, we compared the first configuration (CM) with two GML approaches: Lai et 

al. (2009)’s rule-based approach and Crim et al. (2005)’s maximum entropy (ME) approach, 

which handled the GML task as an individual classification problem. The ME approach was 

adopted with the individual features described in Section 4.1. 

Finally, to compare the stage-based approach with the second configuration (JCM), 

which performs joint filtering and linking, we trained a separate ME model via the features 

designed for the isSuitableForLinking stage in Figure 3. This model then was combined with 

the first configuration, the Rule-based approach and ME approach, which we denote as CMstage, 
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Rule-basedstage, and MEstage, respectively. 

For the above configurations, we employed Lai et al.’s system2 to recognize all gene 

mentions and generate mapped candidate IDs for each mention. All configurations were based 

on the same candidate ID sets. 

In the next sub-section, we first discuss the fine-grained resolution results. Then, we 

derive BioCreAtIvE’s evaluation results by simply merging the linked identifiers in all indices 

and removing duplicated identifiers. Finally, the results are displayed from the QA 

perspective.  

Table 4. The three-fold CV results on the training set using instance-based 
criterion. Our models are highlighted in bold. 

Config. P (%) R (%) F (%) Diff (F) 

No Disambiguation 81.0 48.0 60.3 - 

Salience Collective 79.9 49.6 61.3 +1.0 

PPI Collective 79.3 51.2 62.2 +1.9 

Rule-based 71.7 54.0 61.6 +1.3 

ME 79.8 48.9 60.5 +0.5 

CM 73.5 55.9 63.5 +3.2 

Rule-basedstage 71.7 54.0 61.6 +1.3 

MEstage 86.4 46.9 60.8 +0.8 

CMstage 73.5 55.9 63.5 +3.2 

JCM 79.9 54.9 65.1 +4.8 

5.2 Experiment Results 

Table 4 shows the fine-grained results derived on the training set. The employed system’s 

linking performance without applying any disambiguation approaches is shown in the first 

row (No Disambiguation.) Our model can simulate the same PRF scores when only Formula 1 

is applied. The last column shows the improvement of F-score over the baseline after 

implementing different GML disambiguation methods. 

It can be observed that, by adding the salience collective (Formula 5) without any 

disambiguation formulae and domain knowledge, the recall rate is improved by 1.6%, which 

results in an improved F-score. This demonstrates that a scientific article often contains 

repetitive information, such as key genes, which can be captured by the formula. Furthermore, 

                                                       
2 The employed system can be downloaded from https://sites.google.com/site/potinglai/downloads. 
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the PPI collective combining the domain knowledge achieves a higher PRF-score, even 

outperforming the Rule-based and ME. 

Table 5. Results derived on the test set. 

Metrics Fine-grained Resolution (%) Aids for Curation (%) 

Config. P R F Diff P R F Diff 

No Disambiguation 80.7 56.3 66.3 0 77.3 71.5 74.3 0 

Salience Collective 79.5 59.0 67.7 +1.4 77.2 71.3 74.1 -0.2 

Rule-based 72.9 63.9 68.1 +1.8 82.6 83.4 83.0 +8.7 

ME 79.2 58.2 67.1 +0.8 88.8 79.0 83.6 +9.3 

CM 73.8 64.3 68.7 +2.4 86.1 83.0 84.5 +10.2 

Rule-basedstage 73.7 64.2 68.7 +2.4 84.1 83.7 83.9 +9.6 

MEstage 80.2 58.4 67.6 +1.3 90.2 79.0 84.3 +10 

CMstage 74.3 64.3 69.0 +2.7 87.9 83.2 85.5 +11.2 

JCM 77.5 63.7 69.9 +3.6 87.7 83.8 85.7 +11.4 

The results derived on the test set by fine-grained resolution and aided for curation and 

QA are shown in Tables 5 and 6, respectively. In summary, we observe that the collective 

GML method consistently outperforms the compared methods under the three criteria. 

Moreover, the comparison of our joint model (JCM) and the stage models shows that the joint 

model performs better under all evaluation metrics. 

Table 6. QA results on the test set. 

Config. Accuracy

No Disambiguation 65.7 

Salience Collective 67.2 

Rule-based 72.4 

ME 66.8 

CM 73.1 

Rule-basedstage 73.0 

MEstage 67.0 

CMstage 73.3 

JCM 73.5 

We also observe that adding the salience collective reduces the recall rate in the aid for 

curation evaluation. According to our analysis, the salience collective improves the recall in 
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the fine-grained evaluation. In contrast, for database curation, the collective tends to improve 

the overall precision. Nevertheless, it reduces the recall. By removing the salience collective 

from CM, the P improved by 0.8% but the R reduced by 0.7% in the test set. This 

phenomenon is reasonable because adding the dependency causes the model to link mentions 

with previous linked IDs. 

Finally, the results also reveal the performance gap (approximately 15.8%) when we 

want to employ the GML system, which is evaluated in terms of the database curation 

criterion with 80+% F-score on advanced IE tasks, such as relation or event extraction. 

5.3 Discussion 

Evaluating EL from the fine-grained perspective allows us to analyze the task in detail. In this 

section, we describe our findings and propose potential research directions. 

One advantage of employing MLN in our EL modeling is that it is easy to model 

arbitrary longer range dependencies, as expressed by Formula 5 and Formula 6. It is difficult 

to model such dependencies using ME. As shown in Tables 4 and 5, adding the collectives 

improves the fine-grained EL performance. 

Another advantage of our GML approach is that it is flexible and can be applied quickly 

in real-world applications. The EL task usually is defined as linking a mention to a unique 

entry. Nonetheless, in the biomedical field, there are some mention descriptions that cannot be 

linked to unique IDs. The following are some examples extracted from our corpus: 

1. ABCB9 protein appears to be most highly expressed in the Sertoli cells of the seminiferous 

tubules in mouse and rat testes. 

2. cDNA cloning and chromosomal localization of the human and mouse isoforms of 

Ksp-cadherin. 

3. p63 was detected in a variety of human and mouse tissues. 

The GML system cannot link each of the gene mentions in the above sentences to just one ID. 

Our model can deal with these cases by modifying the constraint of Formula 2 with a larger 

cardinality or introducing additional formulae to determine the cardinal constraint 

dynamically. 

Our experiment results also raise an interesting question: What causes the huge 

performance gap between the fine-grained and database curation evaluations? A closer look at 

the bottom-up approach is useful in answering this question. Several works have studied the 

boundary issue in entity recognition (J. Finkel et al., 2005; Tsai et al., 2006), and this issue 

was found to have a significant effect on the performance of GML. For example, consider the 

following sentence: 
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“<entity id=3083>Hepatocyte growth factor (HGF) activator</entity> is a serine protease responsible for 

proteolytic activation of <entity id=3082>HGF</entity> in response to tissue injury” 

All of the employed gene mention recognition systems and the three open available gene 

mention recognition systems3,4,5 separate the first gene mention (ID:3083) into at least one 

mention (“hepatocyte growth factor” or “HGF”). The incorrect boundary leads to errors in the 

entity mapping stage, and it could result in the extraction of an incorrect self-activation event: 

<entity id=3082>HGF</entity> activates <entity id=3082>HGF</entity>. An experiment conducted on the test 

set showed that our MLN model could achieve an F-score of 79.4% from the fine-grained IE 

perspective if we replaced the predicted mentions’ boundaries with their corresponding 

overlapped gold standard boundaries. These results show that a hybrid approach combined 

with entity-centric boundary expansion is required before entity mapping. For instance, if we 

input the example sentence to a syntactic parser like Enju6 and find that the adjacent words 

“Hepatocyte growth factor (HGF) activator” belong to the same noun phrase and the word 

“activator” is a legal suffix for a gene mention, it implies that we can expand the boundary. 

The result also motivates us to reconsider the bottom-up EL approach. Are the results of 

entity recognition/classification a prerequisite for GML? We raise this question because, under 

the bottom-up approach, the entity mapping process still needs to deal with the boundary issue 

in order to generate more candidate identifiers, as shown by the previous example sentence. 

Moreover, the disambiguation process needs to look for knowledge, such as species 

information, surrounding the gene mention’s boundary, which is usually located in the same 

noun phrase. It has been shown that joint learning of multiple types of linguistic structures in 

models can produce more consistent outputs. A feasible approach would be to treat noun 

phrases as potential candidate gene mentions and employ a mapping algorithm to generate 

identifiers for each noun phrase. Using the proposed approach to model biographical 

information and the dependencies between noun phrases, we can perform joint learning and 

inference for gene mention recognition and linking. This issue will be the major direction of 

our future research. For chunking parsing, there are several openly available tools, such as 

GENIA tagger7, OpenNLP8, and Lingpipe9 package. Kang et al. (2011) have reported that the 

OpenNLP package performs noun-phrase chunking, best among the six state-of-the-art 

chunkers specifically for the biomedical domain. Therefore, we will use the OpenNLP 

                                                       
3 http://pages.cs.wisc.edu/~bsettles/abner/ 
4 http://www-tsujii.is.s.u-tokyo.ac.jp/GENIA/tagger/ 
5 http://cbioc.eas.asu.edu/banner/webBasedBannerStart.html 
6 http://www-tsujii.is.s.u-tokyo.ac.jp/enju/demo.html 
7 http://www.nactem.ac.uk/GENIA/tagger/ 
8 http://opennlp.apache.org/ 
9 http://alias-i.com/lingpipe/ 
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package as the first step to generate candidate noun phrases, and we may consider combining 

more results from different chunkers through a voting strategy to further improve the chunking 

performance. 

Table 7. The hardest queries in the test set. 

<query id, name, docid> 

<#1, AIP1, 9647693> 

<#2, TR1, 10455115> 

<#3, PAGE1, 9651357> 

<#4, UGT2B11, 8333863> 

Finally, we report our observations on the hardest queries under QA evaluation. Table 7 

lists the queries that could not be answered correctly by any of the employed methods. After 

checking each error event carefully, we found that our model outputs Nil for Query #1 due to 

the absence of gene biographical information in the context. The gene mention of Query #2 is 

an abbreviation, and the query is affected by a problem similar to the ambiguous acronym 

problem discussed in the KBP 2009 track (McNamee, Dang, et al., 2009). Our model fails to 

output correct IDs for #3 and #4 because no distinction is made between matches of official 

symbols and synonyms when searching for candidate IDs. In our current work, the matches of 

official symbols and those of synonyms share the same predicate. We believe that appending 

more predicates and formulae corresponding to these two types of matches will improve our 

system’s accuracy. 

6. Conclusions 

In this paper, we give formal definitions for EL tasks, including instance-based EL, 

article-wide EL, and article-wide salient EL. We then present a novel approach that employs 

MLN to jointly model bottom-up decisions in a specific EL task-GML. A collective 

formulation for instance-based GML is introduced with several useful formulae, including the 

dependencies among IDs, which can be used for GML disambiguation. Moreover, the benefit 

of predicting suitable mentions and their IDs jointly in contrast to the stage-based approach is 

illustrated, which selects mentions before linking IDs. Our experiments provide the first 

comprehensive gene mention evaluation results from three different perspectives and highlight 

problems that need to be addressed in the future, including the assignment of non-unique 

identifiers, the boundary issue, and the direction for joint entity recognition and linking. 
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