Implementation of Malayalam Morphological Analyzer Based on

Hybrid Approach

Vinod P M, Jayan V, Bhadran V K
Language Technology Centre
CDAC Thiruvananthapuram

{vinodpm, jayan, bhadran}@cdac.in

Abstract

The Malayalam Morphological analyzer, which described in this paper, is developed based
on the hybrid approach, i.e. combining methodologies of both paradigm and suffix stripping
approaches. Lttoolbox, an important module in the Apertium package, acts as the back bone
of this system. The analyzer program in Lttoolbox tokenizes the text in surface forms (lexical
units as they appear in texts) and delivers, for each surface form, one or more lexical forms
consisting of lemma, lexical category and morphological inflection information. This system
also borrows the concepts of suffix stripping approach that would help a lot to improve the
accuracy. The main objective of this system is to help the language students as well as
common people.

Keywords: Apertium, Lttoolbox, paradigm approach, suffix stripping, hybrid approach.

1. Introduction

Malayalam language is one among the four major Dravidian languages in south India and
also one among the 22 scheduled languages in India. It is mainly spoken by the people of
Kerala state and the union territories of Lakshadweep and Mahe. Around 35.9 million people
are using this language.

Developing a full fledged Morphological analyzer is very difficult due to the rich
morphology and agglutinative nature of Malayalam language. The major problems of
Malayalam morphology are wide range of inflections, multiple suffixes and tendency of
adjacent words to concatenate etc. The multiple inflections can be solved by following the
paradigm approach and Lttoolbox helps to implement the paradigm approach. In order to
handle other problems we need a powerful suffix stripping module. The proposed system [1]
follows a hybrid approach for developing the morphological analyzer, i.e., the combination of
paradigm and suffix stripping approaches.

Lttoolbox is available with the Apertium toolkit, which is an open source shallow-transfer
machine translation system originated within the project “Open-Source Machine Translation
for the Languages of Spain” [2]. Lttoolbox can be customized to any language by including
the required lexical dictionary. Agglutinative languages require some additional modules for
better and accurate word processing.

2. Related Works

There are many works carried out in the field of Malayalam Morphological Analyzer, but no
complete system is available for common people. References [3], [4] and [5] are some
important works related to Malayalam Morphological Analyzer. Two common approaches
identified towards the development of Morphological analyzer are suffix stripping and
paradigm approaches. Reference [6] mentioned about a hybrid approach for developing the
Malayalam Morphological Analyzer and its comparison with the above mentioned
approaches.

3. Hybrid approach architecture

Lttoolbox plays an important role in our system. The It-proc program processes the surface
form in single pass. Multiple suffix words can be processed on iterative basis. So we added
post processing and suffix stripping modules to handle multiple suffix problems.

As an example consider the case of a pronoun concatenate with a post position and it seems
like a single word unit. In this situation the It-proc cannot recognize the surface form even
though both of these words are present in the dictionary. The post processing and suffix
stripping modules help us to handle this situation by identifying the post position and
provides a space between them. Then once again process them with the help of It-proc
program. Whenever the same surface form comes twice as the input of the post processing
module, then it is considered as unknown.

Dictionary
(.metadix)
Lttoolbox
A 4
It-comp
Post
User processing] Output
. — . dul 1
interface Compiled modu’te interface
dictionary
A 4
Recursive
Suffix
It-proc It-expand
stripping

Figure 1. Architecture of Malayalam Morphological Analyzer.

4. Lttoolbox

Lttoolbox 'can be used for lexical processing, morphological analysis and generation etc.
Here we are using Lttoolbox for morphological analysis. Splitting the surface form into its
lemma and the grammatical information is known as analysis process. For example the word
‘cats’ splits into its lemma ‘cat’ and grammatical information <noun><plural>. The reverse
process is the generation process. The Lttoolbox doing this processing with the help of
provided lexical dictionary.

Ltoolbox makes use of the finite state transducer (FST) approach for doing lexical processing.
The class of FST used in Lttoolbox is ‘letter transducer’. Lt-comp, It-proc and It-expand are
the three programs provided by the Lttoolbox package. These programs are used for
compiling, morphological analyzing/generating and expanding the dictionary respectively.

The first part of developing a morphological analyzer is the creation of lexical dictionary
which is also called morphological analyzer specification file. Monolingual dictionary,
bi-lingual dictionary and post generation dictionary are the three types of dictionaries used in
the Lttoolbox. The dictionary files providing a facility to define and use paradigms which
helps to share the same inflection pattern. The dictionary files are mainly found with “.dix” or
“ metadix” extensions. We are using monolingual metadictionary > (‘.metadix’) since it
provides some extra features like handling variable lemma and argument passing etc.
Dictionary files for some languages are available from the Apertium incubator.

4.1 Dictionary structure

The dictionary format is XML, which become very powerful in linguistic data representation
and exchange. The dictionaries follow a typical block structure and the important blocks in
the dictionary structure are,

e An alphabet definition: The list of alphabets used in the dictionary file.

e Definition of symbols: It contains the grammatical symbols that are present in the
file.

e Definition of paradigms: Paradigm definitions to be used in the dictionary sections
or in other paradigms.

e One or more sections with conditional tokenization.

e One or more sections with unconditional tokenization.

4.2 Paradigm Approach

A paradigm definition defines an inflection paradigm in the dictionary file. It groups the
words which are having similar inflection pattern. The paradigm can be viewed as small
dictionaries which specify regularities in the lexical processing of the dictionary entries. To
specify these regularities, each paradigm has lists of entries <e> like the ones in the dictionary,
that is, it has the same structure as a dictionary section <section>; therefore, paradigm entries
consist of a pair (<p>) with left side (<I>) and right side (<r>). These elements can contain
text or grammatical symbols <s>. Some times a paradigm definition contains entries of

! http://wiki.Apertium.org/wiki/Lttoolbox
* http://wiki.Apertium.org/wiki/Metadix

* http://wiki.Apertium.org/wiki/Incubator

another paradigm. An example of paradigm definition is shown below.

<pardef n="walk/ed verb">
<e><p>
<I>ed</I>
<r>ed<s n="verb"/><s n="past"/></r>
</p></e>
<e> <p>
<I></I>
<r><s n="verb"/><s n="present"/></r>
</p></e>
</pardef>

5. Malayalam Morphological Dictionary

The main part in the development of a morphological analyzer using Lttoolbox is creating the
morphological dictionary. Since Malayalam is morphologically rich with wide range of
inflections [7] and [8], lot of attention is needed in creating the dictionary. We choose
metadictionary in order to make use of its additional features over the normal dictionary.

The paradigm facility helps a lot to handle the inflections of the words. In order to cover all
cases we created 24 noun paradigms, 56 verb paradigms, 12 adjective paradigms etc [9], [10],
[11] and [12]. The alphabets used in the dictionary are in wx notation.

5.1 Noun Paradigm

To understand the paradigm design the surface form of a word can be considered as two parts
such as root and suffix. By examining the suffix portion of the noun word the grammatical
information like case, gender and number can be obtained. The main task is identifying the
suffix and root of the particular surface form. With the help of the compiled dictionary file the
Lttoolbox will perform the morphological analysis provided the particular noun entry
(consists of the word and the paradigm number) is present in the dictionary. While examining
the noun suffixes we identify some common properties like plural markers, case markers etc.
For example consider the noun 4 (@0’ (maraM) and 7 case markers comes in the suffix part

are,

L (0o Nominative case (maraM -> no suffix)
L (00OYD) Accusative case (marawwe -> -¢)
1 @O I0Y Dative case (marawwin ->-in)

i COMIS Sociative case (marawwOt ->-Ot)

* Phonetic Notations for Malayalam alphabets and which is used for the linguistic processing.

1 QOO Locative case (marawwil _->-il)
1 QOO Instrumental case (marawwAl ->-Al)

1 @O IMer Genitive case (marawwinZe ->-inZe)

Similarly the plural marker comes with the word ‘maraM’ is ‘kal. ’. The variant form of
plural markers comes in the Malayalam morphology are ‘kal. ’, ‘mAZ ’ and ‘aZ ’.
Examples for them are 4 Q68BUY’ (maraffal.), ‘@IRIHOOM DD’ (rAjAkkan mAZ)

and 4+ MY A(b’ (manuRyaZ) respectively.
<pardef n="mara/M__ n">

<e><p>
<l/>
<r>M<s n="N_NOUN"/><s n="SG"/><sa/></r>
</p></e>
<e><p>
<I>ffal. </I>
<r>M<s n="N_NOUN"/><s n="PL"/><sa/> + <s n="kaL_"/></r>
</p></e>

</pardef>

The tags used in the paradigm definition are given in Table 1. The ‘sa’ tag is used for passing
some arguments while adding an entry of that particular paradigm. The name of the paradigm
is "mara/M__ n" (where n denotes noun) and which is specified in the ‘pardef’ tag. We can
give name according to our convenience. The possible inflections of the word ‘maraM’ are
maraM, maraffal , marawwe, maraffal.e, marawwin, maraffalL.kk, marawwOt, maraffal.Ot,
marawwil , maraffalLil , marawwAl , maraffalL Al , marawwinZe and maraffalute.

This paradigm "mara/M__n" can be used for the words which have the same inflection
pattern. The paradigm entries are mentioned in the main section in the dictionary. One entry
for this paradigm is,

<e Im="vanaM">

<i>vana </i>
<par n="mara/M__n" sa="NTR"/> </e>

Table 1. List of some noun tags.

Tag Description

N_NOUN Nominative noun

SG Singular

PL Plural

MF Masculine/Feminine

NTR Neuter
M Masculine
F Feminine

While specifying the entries the attribute ‘Im’ (lemma name) contains the surface form of the
word. The ‘<i>’ element contains the root of the particular word and which may or may not
be the actual root word according to the Malayalam language. The actual root word will be
obtained after the processing. The next tag contains the paradigm name and the additional
information that we are passing to the paradigm definition. With the help of the specified
paradigm name the particular surface form is processed. When we give a word to the ‘It-proc’
program it will check whether that word starts with any of the ‘<i>’ element in the paradigm
entries. If a match occurs the corresponding paradigm is used for processing that word. If the
particular inflection is present in the paradigm the program will give a result.

5.2 Verb Paradigm

“The morphology of the verb in Malayalam is somewhat complex, and more research is
needed before a definitive statement can be made about, firstly, what different aspectual
values can be combined, and, secondly, what restrictions there are on the combination of
different aspectual values with different modal forms. A hypothesis one might put forward for
testing is that all morphological combinations are possible that are semantically interpretable
and compatible.” [13]. Malayalam verbs always have complex and multiple suffixes. Much
of the complexity is resolved in the 53 verb classifications done for computational purpose by
R Ravindra Kumar [9]. With the help of this classification we have created 56 verb paradigms.
In order to know the paradigm classifications consider the first verb paradigm which groups

AN 1Y

the root words that are ends in “Y”(Sb)). In this class “unnu”, “uM” and “wu” are the present
future and past tense marker respectively. The present and future suffixes are concatenated

(1))

with out any addition and deletion from the root. To add the past tense suffix “wu” a “u
should be added to the root word and then the tense suftix will be added.

E.g.
Present (pr) “unnu” uYunnu | 20N,
Future (fu) “uM” uYuM | Lo
Past (pa) “wu” uYuwu | 920

To get a causative form, causative suffix “kk” will be added to the root word except in past.
In past the causative suffix will be “cc” and past tense suffix is “u”. While adding “kk” or
“cc” the link morph “uvi” will be added to the root.

E.g. uYuvikkunnu, uYuvikkuM, uYuviccu. () & omy , | wx oo
L Y

The double causative forms can be generated by adding the causative marker “ppi” and “kk”.
The link morph ‘uvi” will be added at the end of root verb before adding the double causative
suffixes.

E.g. uYuvippikkunnu, uYuvippikkuM, uYuvippiccu.

()P ’]| o)y, | ’]| 1660, | P ’]l T D

A noun form can be derived from the root word by adding the suffix “al ” at the end of root
word.

E.g. uYal_() £ ©d)

Analogously paradigms are created for adjectives and pronouns also. But post positions and
adverbs have no paradigm classes and they are specified in the main section of the dictionary
file. Examples for adverb entries are,

<e> <p>
<I>ennAl </I>
<r>ennAl_<s n="ADV"/> </r>
</p></e>
<e> <p>
<I>ivite</I>
<r>ivite<s n="ADV"/> </r>
</p></e>

6. Post Processing and Suffix Stripping Modules

The main problem associated with the Malayalam morphological analyzer is the
identification of words which are formed by combining multiple words. These kinds of words
are commonly called the complex words. The Lttoolbox cannot handle the complex words in
Malayalam. So the presence of complex words and wide range of inflections makes our task
very difficult. In order to overcome this situation we introduced the post processing module
and the suffix stripping module. The task of post processing module is to identify and extract
the words which are not accepted or unidentified by the processing module in Lttoolbox. And
the suffix stripping module has a good collection of commonly used link morphs, post
positions and suffixes. With the help of this collection the suffix stripping module can
separate the word and its suffixes from the surface form. Recursive suffix stripping method is
using for Malayalam. The sandhi rules are also taken into consideration during the splitting
process.

6.1 Recursive Suffix Stripping Algorithm

We have been using a good collection of suffixes, postpositions and link morphs to perform
the suffix stripping. The accuracy of splitting is very much depending up on these collections
as well as the word splitting. A good sandhi splitter will improve the performance to a great
extend.

1) Check for any link morphs present in the surface form. If no go to step 3

2) Split the word based on the information obtained from the previous step and check the prefix
part for validity using It-proc. If valid remove the prefix part from the word and stores in a
word list. Then consider the remaining portion for further processing. If not valid go to step 3.

3) Check for a highest matching suffix. If not found any match then add the word to the word list.
If found go to step 2.

4) Word list gives the splitted form of the complex word.

For example consider the complex word “630S1086)I6NE 10 166))H@OIW 1@)MM,”

(OtikkoNtirikkukayAyirunnu). This verb form contain the link morph ‘DHIMNS (koNt).
The suffix stripping module processes this word in a step by step fashion as follows.

Step 1: [630S 10860 26NE 10 166 @O @M,

Step 2: 630S | (HIENS) | © 186 B I 1M
Step 3: 630S | + OBIENE +[| @186 H@IW |@M,)]
Step 4: €30S | + OBHIENS +| @186 (BRI 1))

Step 5: 63081+ OHIMNE +| @186 + @R)M

Here the word within the square bracket denotes the unknown word obtained from Lttoolbox.
And the simple bracketed portion denotes the link morph of suffix which is identified by the
suffix stripping module. The splitting is done based on the words shown with in the simple
brackets. In each step the unknown word (if present) is processed with the suffix stripping
module. The decomposed form of the complex word is generated in the fourth step. This
outcome is given to the output interface. One important thing is that the tense of the complex
word is identified from the last portion (here it is @chxzﬂ(ogmg (Ayirunnu) which denotes

past tense).
7. Evaluation and Results

Table 2. Dictionary entries.

Category Number of Number of
Paradigms entries
Noun 24 25267
Adjectives 12 17213
Verb 56 9070
Pronoun - 150
Adverb - 2423
Postpositions - 120

The important functions of the morphological analyzer are finding the exact lemma,
segmenting the suffix part and identifying the POS tags. The evaluation is done based on the
above 3 criteria’s [14]. Since it is very hard to evaluate the accuracy of the system
automatically, we compare the results with human intuitions and Malayalam lexicon books.
The dictionary contains around 54,240 entries we randomly take 10000 words for the
evaluation purpose. Each result is evaluated with respect to the 3 functionalities of the

morphological analyzer. The average of 3 cases is considered as the total accuracy of the
system.

Root identification accuracy 94%
POS identification accuracy 85%
Suffix segmentation accuracy 72%
Accuracy of MA (average of 83.67%
above 3)
Output for the word “63051086)26ME 10 166)) 6O @M,
(OtikkoNtirikkukayAyirunnu.) is given below.
6308 |
Root: 6308
Verb ~ Mun_Vineyaccam
Suffix: (})
Root: 630S
Verb Past Transitive
Suffix: ())
Root: 630S
Verb Past Intransitive
Suffix: ())
8NN3
Postposition (&HJ6NS)
| ©186)H

Present (| (Cﬂ&@gcﬁa)

Root: | ()
Verb Nat Vineyaccam
Suffix: ())(§ &) (| &)

WRIWRlH))

Past (GR® 1@M))

8. Conclusion and Future Work

Malayalam is a morphologically rich and agglutinative Indian language. So it is very difficult
to develop a computer system for Malayalam. The major problems which we have to face
during the initial stages are multiple suffixes, high inflections, tendency of adjacent words to
join together etc. But the hybrid approach is very effective for developing a morphological
analyzer for Malayalam language. The accuracy of the system is mainly depends on the
morphological dictionary and the suffix list used. The efficient handling of unknown words

also improves the quality.

Morphological analyzer is a main and important module of the Parsing system. This work can

be extended to develop a Malayalam parser.

References

[1]

[2]

[4]

[3]
[6]

[8]
[9]

Vinod P M, Jayan V, Sulochana K G, “Malayalam Morphological Analyzer: A Hybrid
Approach with Apertium Lttoolbox,” Proceedings of ICON-2011: 9th International

Conference on Natural Language Processing, Macmillan Publishers, India, Page:
219-224, 2011.

Mikel L. Forcada, Boyan Ivanov Bonev, Sergio Ortiz Rojas, Juan Antonio Pérez Ortiz,
Gema Ramirez Sanchez, F elipe Sanchez Martinez, Carme Armentano-Oller, Marco A.
Montava, Francis M. Tyers. “Documentation of the Open-Source Shallow-Transfer
Machine Translation Platform Apertium”, 2010.

Rajeev. R. R, Elizabeth Sherly, “Morph Analyser for Malayalam Language: A suffix
stripping approach,” Proceedings of 20th Kerala Science Congress,
Thiruvananthapuram, 2008

Jisha P. Jayan, Rajeev R.R, Dr. S Rajendran, “Morphological Analyser and
Morphological Generator for Malayalam-Tamil Machine Translation,” International
Journal of Compter Applications, Volume 13, No.8, 2011.

Saranya S. K, “Morphological analyzer for Malayalam Verbs,” unpublished, 2008.

Jisha P. Jayan, Rajeev R. R., S. Rajendran. “Morphological Analyzer for Malayalam-A
comparison of Different Approaches”, IJCSIT, Vol. 2: 155-160, 2009.

A.R.Raja Raja Varma. 2000. “Keralapaanineeyam”, D. C Books Kottayam-12.
Suranad Kunjan Pillai, “Malayalam Lexicon”, The University of Kerala, 2000.

R. Ravindra Kumar, K. G. Sulochana , V. Jayan. “Computational Aspect of Verb
Classification in Malayalam”, Information Systems for Indian Languages
Communications in Computer and Information Science, Volume 139, Part 1, 15-22,
2011.

[10]Sunil R, Nimtha Manohar, V. Jayan, K. G. Sulochana, “Morphological Analysis and

Synthesis of Verbs in Malayalam”, ICTAM, 2012

[11]Sunil R, Nimtha Manohar, V. Jayan, K. G. Sulochana, “Noun Classification in

Malayalam for Natural Language Computing Applications”, NCILC,2012.

[12]Nimtha Manohar , Sunil R, V. Jayan, K. G. Sulochana, “Malayalam Adjective and

Pronoun classification for Computational Applications”, NCILC, 2012.

[13] R.E. Asher, T.C. Kumari. “Malayalam”, Routledge London and New York, 1997.

[14]Huihsin Tseng, Keh-Jiann Chen. “Design of Chinese morphological analyzer",
Proceedings of the first SIGHAN workshop on Chinese language processing - Volume 18,
1-7, 2002.

