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Abstract 

Transliteration is the general choice for handling named entities and out of 
vocabulary words in any MT application, particularly in machine translation. 
Transliteration (or forward transliteration) is the process of mapping source 
language phonemes or graphemes into target language approximations; the reverse 
process is called back transliteration. This paper presents a novel approach to 
improve Punjabi to Hindi transliteration by combining a basic character to 
character mapping approach with rule based and Soundex based enhancements. 
Experimental results show that our approach effectively improves the word 
accuracy rate and average Levenshtein distance of the various categories by a large 
margin. 

Keywords: Transliteration, Punjabi, Hindi, Soundex Approach, Rule based 
Approach, Word Accuracy Rate. 

1. Introduction 

Every machine translation system has to deal with out-of-vocabulary words, like technical 
terms and proper names of person, places, objects, etc. Machine transliteration is an obvious 
choice for such words. When words cannot be found in translation resources, such as a 
bilingual dictionary, transliteration - the process of converting characters in one alphabet into 
another alphabet - is used. Transliteration is a process wherein an input string in some 
alphabet is converted to a string in another alphabet, usually based on the phonetics of the 
original word. If the target language contains all the phonemes used in the source language, 
the transliteration is straightforward, e.g. the Hindi transliteration of Punjabi word “ਕਮਰਾ” 
[kamarā] (room)1 is “कमरा” [kamarā], which is essentially pronounced in the same way. 
Nevertheless, if some of the sounds are missing or are extra in the target language, they are 
generally mapped to the most phonetically similar letter, e.g., in Hindi we have syllables 
(consonant clusters) that are written as a single atomic grapheme and have a double sound 
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associated with them, like “क्ष”, which is a combination of the sound of “क” and “ष”. No such 
consonant cluster is present in Punjabi. So, a similar sounding letter generally is used to 
denote such sounds. Again, there is no rule to find out when a sequence of letters in Punjabi is 
going to map in a consonant cluster in Hindi, e.g., consider the two names written in Punjabi, 
viz. ਿਸ਼ਿਤਜ [ṣitij]  िक्षितज [kṣitija] and ਿਸ਼ਕਾਕਾਈ [śikākāī] िशकाकाई [śikākāī]. In the first name, 
the consonant cluster ਿਸ਼ is mapped to िक्ष, whereas, in the second name, the same is mapped to 
िश. 

The important consideration in transliteration is to preserve the phonetics of 
transliterated word (Virga & Khudanpur, 2003). The transliteration process depends on the 
target language and on the education and experience of the actual transliterator. Thus, a single 
foreign word can have many different transliterations. For example, “ਮਿਹਫੂਜ਼” [mahiphūz] (safe) 
can be transliterated as “महफूज़” [mahaphUz], “महफ़ूज़” [mahafUz], “मिहफूज़” [mahiphUz], 
“मिहफ़ूज़” [mahifUz], etc. This variation, due to localization, poses problems in various NLP 
tasks, like cross language information retrieval. According to Viswanadha R. (2002), for a 
finer transliteration among two scripts, the scripts must have the features of completeness, 
predictability, pronounceable, unambiguousness, and partial reversibility. Transliteration 
schemes have to face the problem of letters present in one language and not in the other. 
Unless a superset of letters from all of the Indian Languages is formed, uniform transliteration 
is ruled out. Viswanadha, (2002) had the view that, when characters do not have any 
appropriate transliteration, they should be consumed and not replaced with any other character. 
This results in partial loss of reversibility and readability. 

For several decades now, Roman transliteration has been used in English Indian language 
texts. Extensive research has been carried out on methodologies for transliterating Indian 
scripts to and from their Romanized counterpart. Transliteration among Indian scripts is a 
rather neglected area. With the development of ISCII (Indian Script Code for Information 
Interchange), the problems in transliteration among Indian scripts have been solved to some 
extent. ISCII has been designed via the phonetic property of Indian scripts and caters to the 
superset of all Indian scripts. The ISCII document is IS13194:1991, available from the office 
of the Bureau of Indian Standards. The ISCII approach is based on the fact that many Indian 
language groups share a common set of phonemes, and via the same set of codes for different 
Indian languages, it would be possible to change fonts from one language to the other, thereby 
"transliterating" the script in the process. By attaching an appropriate script rendering 
mechanism to ISCII, transliteration from one Indian script to another is achieved in a natural 
way. Later in the decade of the 1990s, Unicode standards were developed for representing the 
character set of all languages. In Unicode, alphabets are coded by script rather than language, 
which saves reduplication of the same character if it occurs in multiple languages. The 
Gurmukhi and Devanagari Unicode tables were based on templates from the 1988 versions of 
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the ISCII standard. 

In this paper, we will discuss the Punjabi to Hindi Machine transliteration system. 
Although Punjabi and Hindi are related languages, and, except for a few cases, all letters of 
Gurmukhi script (a script for the Punjabi Language) are present in Devanagri script (a script 
for the Hindi Language), the task of transliteration from Punjabi to Hindi is not trivial. We 
will use letter to letter mapping as the baseline and try to find the improvements by rule based 
and Soundex based approaches. This work forms part of larger Punjabi to Hindi machine 
translation system, and the results of transliteration will be applied to this system for its 
improvement. 

The remainder of the paper is organized as follows. Section 2 reviews previous work. In 
Section 3, the Gurmukhi and Devanagri scripts are compared, and the problems of 
transliteration from Punjabi to Hindi are discussed. Section 4 describes the formulation of the 
rule based model and the Soundex based model. Section 5 outlines the experiment and the 
evaluation methodology used. Section 6 will present the results. Finally, Section 7 contains 
our overall impressions and conclusions and points to future work. 

2. Previous Work 

The topic of machine transliteration has been studied extensively for several different 
language pairs, and many techniques have been proposed. Grapheme based models and 
Phoneme Based models are the two approaches found in literature. Grapheme refers to the 
basic unit of a written language: for example English has 26 graphemes or letters. Phonemes 
are the simplest significant unit of sound e.g. the /M/, /AE/, and /TH/ in math. Grapheme 
based models are classified into the statistical transliteration based model, decision tree based 
model, transliterated network based model etc. Some examples of this would be the 
noisy-channel model (NCM) (Lee & Chang, 2003; Virga et al., 2003), HMM (Jung, Hong & 
Paek, 2000), decision tree (Kang & Choi, 2000), transformation-based learning (Meng, Lo, 
Chen & Tan, 2001), statistical machine transliteration model (Lee et al. 2003), finite state 
transducers (Knight & Grahel, 1998), and rule-based approach (Oh & Choi, 2002; Wan & 
Verspoor, 1998). The phoneme-based approach has received remarkable attention in various 
works (Lee et al. 2003; Meng et al. 2001; Oh et al., 2002; Knight et al. 1998; Virga et al. 
2003; Jung et al. 2000; Al-Onaizan & Knight, 2002). 

For Indian languages, as mentioned earlier, Roman transliteration has been used to 
represent texts of Indian languages in English. Since it is difficult to represent the letters of 
Hindi using just the twenty six letters of the Roman alphabet, scholars have used varying 
schemes to accommodate sounds that could not be correctly indicated using appropriate 
Roman letters. The schemes are somewhat arbitrary in the choice of Roman letters. Sometimes, 
phonetic symbols are used in place of the normal Roman letters. Most phonetic symbols are 



 

 

80                                 Gurpreet Singh Josan and Gurpreet Singh Lehal 

basically the letters of the Roman and Greek alphabets with special marks known as diacritic 
marks. Roman transliteration that makes use of diacritic marks works better for Indian 
languages, and some standardization has been effected in the last few decades based on the 
recommendation from the National Library in Calcutta (“Transliteration Principles,” 
2008).  Roman letter assignments in this scheme are phonetically equivalent to the letters of 
Sanskrit or other Indian languages. The primary difficulty in data entry of the phonetic 
symbols is that there is no provision to input the symbols directly using the standard ASCII 
keyboard. Transliteration methods using only the displayable ASCII symbols do not run into 
this problem since the ASCII letters can be typed in directly. A special computer program, 
however, would be required to interpret the input string to produce the Indian languages 
display or printout. This is precisely what the currently popular transliteration schemes 
attempt. Schemes such as ITRANS (Chopde, 2001), RIT (Kanneganti & Kishore, 2008), 
ADHAWIN (Srinivasan, 1995), and MYLAI (KalyanaSundram, 2008), use only the standard 
displayable ASCII letters and symbols to transliterate the text. These schemes allow multiple 
representations for certain syllables and long vowels but the processing program handles this 
well. Although the input can be done using standard keyboards, these schemes are not suitable 
for searching the contents on the Internet. There is a need to evolve a case-insensitive 
transliteration scheme to facilitate searching on web. 

For the Punjabi language, a Gurmukhi to Roman transliteration system using a 
transliteration scheme based on ISO: 15919 transliteration and ALA-LC has been developed at 
Punjabi University Patiala (Sharma, 2008). 

All of these transliteration schemes are either from Roman to Indian languages or 
vice-versa. Transliteration among Indian languages is rather ignored. As the English language 
is one of the official languages of India, Roman transliteration is developed primarily to 
disseminate information in the English language. Little need is felt for transliteration among 
Indian languages. Malik (2006) has developed a machine transliteration system from Hindi to 
Urdu. The system converts Hindi and Urdu into a common language that may be ASCII 
encodings of Hindi and Urdu characters or the International Phonetic Alphabet (IPA) 
equivalents of Hindi and Urdu Phonemes. Then, Hindi and Urdu will be generated from the 
common language. This makes the system reversible. 

A corpus based transliteration system for Shahmukhi to Gurmukhi has also been 
developed (Saini & Lehal, 2008). Their system uses statistical data from both Shahmukhi and 
Gurmukhi corpora like character, word, and n-gram frequencies. In this system, script 
mappings are performed for simple consonants, aspirated consonants (AC), vowels, and other 
diacritical marks or symbols. Next, the transliteration system is virtually divided into two 
phases. The first phase performs rule-based transliteration, and the second phase performs the 
transliteration using bi-gram language model. 
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A machine transliteration system has also been developed for transliterating from Hindi 
to Punjabi (Goyal & Lehal, 2009). This system has implemented approximately fifty complex 
rules for making the transliteration between Hindi-Punjabi language pair. The system claims 
98% accuracy. The system is not reversible due to the dependency on language-specific rules. 

As more and more data in Indian languages is available in electronic format, the need of 
the hour is to develop sophisticated transliteration modules for Indian languages that can be 
used in various NLP systems, like machine translation and cross language information 
retrieval. This paper discusses the first attempt to develop a transliteration system for 
transliterating Punjabi text to Hindi. 

3. Gurmukhi and Devanagari Scripts 

Punjabi can be written in Gurmukhi script or in Shahmukhi script. Shahmukhi is used to write 
and record the Punjabi language in West Punjab in Pakistan. In East Punjab in India, however, 
the Gurmukhi script is used to record the Punjabi language. This paper also considers this 
script for writing Punjabi. The script used for writing Hindi is called Devanagari. Both 
Gurmukhi and Devanagari descended from the Brahmi script of Ashoka. Both scripts are 
left-to-right and words are spelled phonetically. As a background for readers who are not 
familiar with script terminology, we will describe the basic elements of a script here. Building 
blocks of a script are alphabets, which are the sets of letters, each of which represents one or 
more phonemes in the language they are used to write. In some cases, combinations of letters 
are used to represent single phonemes, as in the English sh, ch, and th. The alphabets contain 
letters for both consonants (sound articulated with complete or partial closure of the vocal 
tract) and vowels (sound pronounced with an open vocal tract). A single vowel or a consonant 
plus a vowel make a syllable. A writing system can be syllabary or alphasyllabary. A syllabary 
system is a phonetic writing system consisting of symbols representing syllables. On the other 
hand, an alphasyllabary system consists of symbols for consonants and vowels. The 
alphasyllabary system is also known as abiguda. Both Gurmukhi and Devanagri are 
alphasyllabary in nature. Alphabets of both scripts represent syllables. All consonants contain 
an inherent vowel /a/ or schwa ending, both of which can be altered or muted by means of 
diacritics or matra. Vowels can also be written with separate letters when they occur at the 
beginning of a word or on their own. When two or more consonants occur together, special 
conjunct symbols are often used to add the essential parts of the first letter or letters in the 
sequence to the final letter (“Writing Systems,” 2010). 

Gurmukhi, meaning "from the mouth of the Guru" is the most commonly used script in 
India for writing in Punjabi. Gurmukhi was introduced by the second Guru of the Sikhs, Guru 
Angad Dev Ji, in the sixteenth century as a polished version of the Landa writing system, 
which was used in old Punjabi at that time. Part of the shift from Landa to Gurmukhi entailed 
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the inclusion of some Devanagari letters. Gurmukhi was then used to record the scriptures of 
the Sikhs, and it continues till today as the prominent writing system for Punjabis. Bhatia 
(1993) identifies three stages of development the Punjabi language has undergone over the 
years, which are illustrated in Figure 1 below. 

Stage 1 : Old Punjabi (10th to 16th century) 

Stage 2 : Medieval Punjabi (16th to 19th century)

Stage 3 : Modern Punjabi (19th century to present)

Figure 1. The development stages of the Punjabi language. 

In Gurmukhi, there are three letters that are used to provide bases for free-standing vowels: 

ੳ [uṛa] ਅ    [ æṛa] ੲ  [iṛi] 

There are nine dependent vowel sounds (also called diacritics) available in Punjabi as ◌ਾ, 
ਿ◌, ◌ੀ, ◌ੁ, ◌ੂ, ◌ੇ, ◌ੈ, ◌ੋ, and ◌ੌ. The allowed combination of vowel symbols and sounds are ਅ, ਆ, 
ਇ, ਈ, ਉ, ਊ, ਏ, ਐ, ਓ, and ਔ. These are also called independent vowels. All of these 
combinations have a unique code in Unicode and are termed as independent vowels. When a 
vowel sound comes at the start of a word or is independent of some consonant in the middle or 
end of a word, independent vowels are used. There are 32 consonants in the older Gurmukhi 
script. Later, some more letters were introduced to represent some sounds adapted from Farsi 
and Persian. Presently, Gurmukhi has 38 consonants, 10 vowels letters (independent vowels), 
9 vowel symbols (dependent vowels), 2 symbols for nasal sounds, and 1 symbol that 
duplicates the sound of consonants (Bhatia, 1993; Malik, 2006). The form of each syllable is 
often dependent on whether it occurs in combination with other letters, e.g., a vowel following 
a consonant changes its form, behaving as a diacritic modifier to the consonant: 

ਕ + ਈ = ਕੀ 

All consonants have an inherent vowel, i.e. /a/. Diacritics, which can appear above, 
below, before or after the consonant they belong to, are used to change the inherent vowel. 
When certain consonants occur together, a special conjunct symbol halant character ◌੍ before 
the consonant is used to combine the essential parts of each letter. For example 

ਕ + ◌੍ + ਰ = ਕਰ੍ 

These are also called conjunct consonants. A sentence illustrating Gurmukhi script is 
given below. Terminology used throughout the paper is: TT denotes phonetic transcription, G 
denotes gloss, and E denotes English sentence. 
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“ਪੰਜਾਬੀ ਮੇਰੀ ਮਾਂ ਬੋਲੀ ਹੈ।” 

TT: pañjābī mērī māṃ bōlī hai. 

G: Punjabi my mother tongue is. 

E: Punjabi is my mother tongue. 

The Nāgarī (lit. 'of the city') or Devanāgarī ('divine Nagari') was originally developed to write 
Sanskrit but was later adapted to write many other languages, including Hindi. Devanagari has 
65 consonants, 18 full vowel letters, 17 vowel symbols, and 2 symbols for nasal sounds. Hindi 
uses only 34 consonantal syllables, 11 vowel letters (independent vowels), 9 vowel symbols 
(dependent vowels), and 2 symbols for nasal sounds (“The Devanagari Script Block,” 2008). 
Similar to Gurmukhi, the form of each syllable is often dependent on whether it occurs in 
combination with other letters, e.g., a vowel following a consonant changes its form, behaving 
as a diacritic modifier to the consonant: 

क    [ka] + आ [ā] = का [kā] 

When two consonants occur together, the combination results in a conjunct character. The first 
sign receives the diacritic  known as a halant, to show that the consonant has its inherent 
vowel silenced, also known as the dead consonant form. 

क् [ka] + र [ra] = कर् 

Unlike Devanagari, there are only a few conjunct consonants in Gurmukhi. In Devanagari, if a 
consonant is followed by two vowels, then the first vowel is written in the diacritic form, 
whereas the second is written in full. This feature is not present in Gurmukhi. Vowels may 
also be nasalized, which is indicated by a anusvara “ ◌ं” or chandrabindu “ ◌ँ” written over the 
head stroke (horizontal line) of the vowel or the consonant it is attached to. 

हु ँ[hũ] nasalized 

In cases where part of the vowel is written above the head stroke, only the dot is used to 
indicate nasalization. Although chandrabindu is not a part of Standard Hindi, in practice, both 
are used interchangeably in Hindi. The sentence illustrating Hindi is given below: 

“पंजाबी मेरी मातृभाषा ह।ै” 

paṁjābī merī mātṛbhāṣā hai 

G: Punjabi my mother tongue is. 

E: Punjabi is my mother tongue. 

Except for minor differences, most of the letters are same in both of the scripts. There are 
three syllables of consonant clusters in Hindi that are written as a single atomic grapheme, i.e., 
तर् , ज्ञ, क्ष but no such letters or consonant clusters are available in Gurmukhi. Punctuation in 
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Punjabi is similar to Hindi. Table 1, adapted from (Goyal & Lehal, 2009), shows the 
similarities and dissimilarities among alphabets in both scripts. As we can see, most of the 
letters have one to one correspondence, so this table also forms the base for direct mapping. 

Table 1. Alphabet of Gurmukhi and Devanagari scripts 
Gur
mu
khi 

Dev
ana
gari 

Gur
mu
khi

Dev
ana
gari

Gur
mu
khi 

Dev
ana
gari 

Gur
mu
khi

Dev
ana
gari

Gur
mu
khi

Dev
ana
gari

Gur
mu
khi

Dev
ana
gari 

Gur
mu
khi 

Dev
ana
gari 

ੳ - ◌ਾ ◌ा ਕ क ਟ ट ਨ਼ ऩ ਲ ल ਗ਼ ग़ 

ਅ अ ਿ◌ ि◌ ਖ ख ਠ ठ ਪ प ਲ਼ ळ ਜ਼ ज़ 

ੲ - ◌ੀ ◌ी ਗ ग ਡ ड ਫ फ - ऴ ੜ ड़ 

ਆ आ ◌ੁ ◌ु ਘ घ ਢ ढ ਬ ब ਵ व ੜਹ੍ ढ़ 

ਇ इ ◌ੂ ◌ू ਙ ङ ਣ ण ਭ भ ਸ਼ श ਫ਼ फ़ 

ਈ ई ◌ੇ ◌े ਚ च ਤ त ਮ म - ष ਯ਼ य़ 

ਉ उ ◌ੈ ◌ै ਛ छ ਥ थ ਯ य ਸ स ਤ਼ ᬵ 

ਊ ऊ ◌ੋ ◌ो ਜ ज ਦ द ਰ र ਹ ह - ᭁ 

ਏ ए ◌ੌ ◌ौ ਝ झ ਧ ध ਰ਼ ऱ ਕ਼ क़ ᴠ ᭂ 

ਐ ऐ - ऋ ਞ ञ ਨ न - र्   ਖ਼ ख़ ᴟ ᬾ 

ਓ ओ - ॠ - कृ         

ਔ औ - ॐ ੴ -         

4. Approach to Transliteration from Gurmukhi to Devanagari 

4.1 Letter to Letter Mapping 
Both Punjabi and Hindi are phonetic languages, and their scripts represent the phonetic 
repository of their respective languages. These phonetic sounds are used to determine the 
relations between the alphabets of the two scripts. On the basis of this idea, character 
mappings are determined. The development of the Unicode system for representing alphabets 
eases the problem to some extent. With this system, every letter can be uniquely mapped to 
the corresponding letter, as shown in Table 1. Taking into account the similarity of both of the 
scripts, letter to letter mapping is the obvious choice for the baseline computation. Letters are 
mapped using Table 1. This system is used as the baseline for improvements by the rule based 
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and Soundex based approaches. 

For analysis and comparison purposes, both scripts are subdivided into different groups 
on the basis of types of letters, e.g., consonants, vowel symbols, vowel sounds, and other 
symbols. 

4.1.1 Vowel Mapping 
Punjabi contains 10 vowel symbols. Hindi vowels have one to one correspondence with 
Punjabi vowel symbols. There are nine dependent vowel sounds available in Punjabi as ◌ਾ, ਿ◌, 
◌ੀ, ◌ੁ, ◌ੂ, ◌ੇ, ◌ੈ, ◌ੋ, and ◌ੌ. Corresponding vowel sounds in Hindi are ◌ा, ि◌, ◌ी, ◌ु, ◌ू, ◌े, ◌ै, ◌ो, 
and ◌ौ. When a vowel sound comes at the start of a word or is independent of any consonant 
in the middle or the end of the word, independent vowels are used. The mapping is shown in 
Table 2. 

Table 2. Vowel Mapping 
Independent vowels Dependent vowels 

Gurmukhi Devanagari Gurmukhi Devanagari

ਅ  अ  ◌ਾ   ◌ा, 

ਆ  आ  ਿ◌  ि◌, 

ਇ  इ  ◌ੀ  ◌ी,   

ਈ  ई  ◌ੁ    ◌ु,   

ਉ  उ  ◌ੂ    ◌ू,   

ਊ  ऊ  ◌ੇ    ◌े, 

ਏ  ए  ◌ੈ    ◌ै,   

ਐ  ऐ  ◌ੋ    ◌ो,   

ਓ  ओ  ◌ੌ  ◌ौ 

ਔ  औ     

Besides these vowels, Punjabi has two more symbols, ੳ and ੲ. No symbol is present in Hindi 
for these two symbols. The nearest phonetic letters are उ and इ, respectively. These are used in 
the letter to letter mapping scheme. 
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4.1.2 Consonant Mapping 
Consonant mapping is shown in Table 1, Columns 5-14. No letter in Punjabi is present for the 
Hindi letters “ऴ”, “ष”, and “ᭁ”. This means these letters can never be mapped in a letter to 
letter based approach. Similar is the case for some double-sound-producing syllables, like “क्ष”, 
“ज्ञ”, and “शर्”. Syllables like “ज्ञ” and “शर्” can be mapped by a rule based approach while 
others like “ष”, “क्ष”, “ऴ”, and “ᭁ” can be handled by the Soundex based approach discussed 
in the next sections. 

4.1.3 Conjunct Consonants Mapping 
There are three conjunct consonants in Gurmukhi also called PAIREEN, (“Haahaa”), 

(“Raaraa”), and (“Vaavaa”), which are shown in Table 3. 

Table 3. Sub Joins of Gurmukhi 

Conjunct Consonants Punjabi Hindi English 

 ਬੁਲਹ੍ੜ [bulharh] बुल्हड़ A person with large lips 

 ਪਰ੍ੀਤਮ [pritam] पर्ीतम A person name (Pritam) 

 ਸਵ੍ਰਗ [svarag] स्वरग Heaven 

The usage of PAIREEN “Haahaa” is quite frequent in Punjabi, but the other two are very rare 
in usage and are used in Sanskrit loan words. In Punjabi, they are represented by the halant 
character ◌੍ before the consonant, which indicates that the inherent vowel is omitted. A similar 
halant character is also present in Hindi, which can replace the halant character in Punjabi. It 
may be noted that the actual sequence of letters is the same in both languages but the visual 
sequence of letters differs (Table 4). PAIREEN “Haahaa” in Punjabi is replaced with their 
full consonant counterparts, while the full consonant preceding them in Punjabi is shown in 
half form in Hindi. Similar is the case with PAIREEN “Vaavaa”. On the other hand, 
PAIREEN “Raaraa” takes the position below the previous consonant in Punjabi as well as in 
Hindi. 

  Table 4. Actual Sequence of letters 

ਬ  ◌ੁ  ਲ  ◌੍  ਹ  ੜ  =  ਬੁਲਹ੍ੜ

ब  ◌ु  ल  ◌੍  ह  ड़  =  बुल्हड़

4.1.4 Other Symbols 
Punctuation marks and digits are the same in both scripts. A special character called as visarga 
(◌ः) is present in Hindi but not in Punjabi. So, it will never be mapped in the letter to letter 
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based scheme. Besides this, Gurmukhi has two separate nasal characters, Bindi (◌ਂ) and Tippi 
(◌ੰ ). Hindi has only one nasal character called anusvara “ ◌ं”. In the Devanagari script, 
anusvara is represented with a dot (bindu) above the letter e.g. “मं”. Both nasal characters of 
Punjabi are mapped to this single nasal character in Hindi. Adhak (◌ੱ ) is used to duplicate the 
sound of a consonant in Punjabi. No such character is present in Hindi. Sound duplication is 
represented by half form consonants in Hindi. 

4.1.5 Problems in Letter to Letter Mapping 
The total number of letters in Punjabi and Hindi are not same (Table 1). The Punjabi letters ੳ 
and ੲ have no mapping in Hindi. Similarly, there are letters in Hindi that have no mapping in 
Punjabi e.g. ऋ. These letters will never be mapped in Punjabi to Hindi transliteration using a 
direct mapping method. Some letters have more than one representation in Hindi, e.g., ਸ਼ may 
be mapped to श or ष. Another problem is the use of conjunct consonant forms in Hindi. In 
Hindi, a syllable may consist of a vowel, a consonant followed by vowel, or a consonant 
cluster followed by a vowel. The last form i.e., when two or more consonants are used within 
a word with no intervening vowel sound, is known as a conjunct consonant. Use of conjunct 
consonants is limited in Punjabi. Only three letters can be used as conjuncts i.e., ਹ, ਰ, and ਵ. 
Their representation is also unique. It is not a trivial task to find out which combinations of 
letters in Punjabi will take conjunct consonant form in Hindi. For example, why the word ਿਨਊ 
[niū] (new) in Punjabi takes the conjunct consonant form in Hindi न्यू, is not clear. 

Also, the mapping of nasal consonants is not clear. Nasal consonants in initial place in a 
conjunct may be expressed using the anusvara over the previous vowel, rather than as a 
half-glyph attached to the following consonant. The anusvara is written above the headstroke, 
at the right-hand end of the preceding character. In the list below, both spellings are correct 
and equivalent, although anusvara is preferred in the case of the first two: रंग = रङ्ग, पंजाबी = 
पᲳाबी, िहदी = िहन्दी, लंबा = लम्बा. Anusvara is still applied when previous character has its own 
vowel sign. If the vowel sign is [aa], the anusvara appears over the [aa], e.g. ᯋांसीसी or 
आंदोलन. 

Similarly, the position of the character “र” is not specific. It can be used as consonant, 
subscripted consonant, or can take a position above a consonant or diacritics, and it is 
typically displayed as a small mark above the right shoulder of the last letter in the syllable. It 
is not clear how the character ਰ [ra] in Punjabi will map to which form in Hindi, e.g., the three 
cases where mapping of ਰ is not clear are: from ਤਰਕਸ਼ [tarkash] (arrow-holder) to तरकश, from 
ਵਰਤ [varat] (fast) to वर्त, and from ਬਰਤਨ[bartan] (utensil) to बतर्न. 
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4.2 Rule Based Approach 
Character mapping alone is not sufficient for a Punjabi to Hindi machine transliteration 
system. Quite a reasonable improvement can be achieved by small amount of dependency or 
contextual rules. These rules are manually crafted with the help of a linguist by observing the 
problems in the direct mapping system. This section discusses such rules for alleviating some 
of the problems discussed in the previous section. Ideally, the rule set must contain all of the 
rules required by the system to perform, but practically it is not possible to construct such a set. 
About 11 rules are identified that are applicable on the source text and about 8 rules are 
identified that are applicable on the target text. We tried to cover all the possible cases but still 
we may miss some of them. Moreover, new rules can be added when identified. The rules go 
as follows: 

1. Letters whose mapping is not available in Hindi : 

a. ੳ and ੲ are two such letters whose corresponding Hindi letters are not available. They 
are replaced by their most phonetically equivalent letters, i.e., उ and इ respectively. 
Formally, the rule goes like this 

if inpt_str contain “ੳ” then replace it with “उ” 

if inpt_str contain “ੲ” then replace it with “इ” 

b. A character adhak “◌ੱ” is present in Punjabi and used to show the stress on the next 
character. No letter in Hindi is present to represent this character. Nevertheless, the 
purpose is served by placing a half character before the stressed character, e.g., “ਸ਼ੱਕਰ” 
[śakkar] (jaggery) is transliterated as “शक्कर”[śakkar]. There is an exception for this rule. 
If the next character of adhak “◌ੱ” is ਖ [kha] then, instead of placing a half character, a 
half क[ka] is placed, e.g., “ਮੱਖਣ” [makkhaṇ] (butter) transliterated to “मक्खन” [makkhana]. 
Also, if the next character is ਛ [ccha], then the half character is replaced by a half च, e.g., 
as in “ਮੱਛਰ” [macchar] (mosquito), which is transliterated to “मच्छर” [macchar]. Similarly, 
if the next character is ਧ [dha], then the half character is replaced by a half द, e.g., as “ਬੱਧ” 
[baddh] is transliterated as ब᳍. Formally, it is 

If current_char = “◌ੱ” then 
 If nxt_char= “ਖ” then 
  map “◌ੱ “ to “क्” 

  else if nxt_char= “ਛ” then 
   map “◌ੱ “ to “च”् 
  else if nxt_char= “ਧ” then 
   map “◌ੱ “ to “द”् 
  else  
   map “◌ੱ “ to nxt_char & “◌੍” 
  end if 
 end if 
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2. Bindi and Tippi both are used to produce a nasalized sound in Punjabi. There is only Bindi 
(anusvara) present in Hindi to serve the same purpose. Tippi can be successfully mapped to 
Bindi in Hindi. A special case is when the tippi “ ◌ੰ ” [ṃ] is followed by “ਨ” [na] or “ਦ” [da], 
then it is replaced by a half “न”, as in “ਕੰਨੜ” [kannaṛ] (Kannad) “क᳖ड़” [kannaṛ]. If, however, 
it is followed by “ਬ” [ba], then it is replaced by a half “म”, as in “ਮੋਜ਼ੰਿਬਕ” [mōzmbik] 
(mozambique) “मोज़िम्बक”. Formally, it is 

If current_char = “◌ੰ ” then 

 If nxt_char= “ਨ” then 

  map “◌ੰ “ to “न”् 

  else if nxt_char= “ਬ” then 

   map “◌ੰ “ to “म”् 

  else 

   map “◌ੰ “ to “◌ं” 

  end if 

 end if 

3. The presence or absence of the diacrtic mark “ਿ◌” in the target string is effected by the 
character ਹ [ha] in Punjabi. When ਹ [ha] in the input string is followed or preceded by the ਿ◌ 
[i] mark, ਿ◌ [i] is translitrated differently. In this case, ਹ [ha] is followed by ਿ◌ then ਿ◌ is 
ommited from the transliterated text, e.g., ਸ਼ਿਹਰ [shahir] (city) is transliterated to शहर. On the 
other hand, if ਹ [ha] is preceded by ਿ◌, then ਿ◌ is mapped to ◌े in the transliterated text, e.g., 
ਿਸਹਤ [sihat] (health) is transliterated to सेहत. Formally, it is 

If current_char = “ਹ ” then 

 If nxt_char= “ਿ◌” then 

  Omit “ਿ◌” in target string 

  else if prev_char= “ਿ◌” then 

   map “ਿ◌”  to “◌े” 

  else 

   map “ਿ◌” to “ਿ◌” 

  end if 

 end if 

4. Another rule deals with transliteration of letters ਅਰ [ar]. If this combination appears at the 
final position in a word, then, instead of mapping ਅ [a]to अ, this letter is mapped to य., e.g.,  
ਬੀਅਰ [bīar] (bear) is transliterated to बीयर. Formally, it is 
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If last_two_char = “ਅਰ ” then 

  map “ਅ”  to “य” 

 else 

  map “ਅ” to “अ” 

 end if 

5. If ਅ is in the last position, then it is replaced by य as in ਿਪਰ੍ਅ [pria] – िपर्य Formally, it is 

If last_char = “ਅ ” then  map “ਅ”  to “य” 

6. If ਈ is in the last position, then it is replaced by यी,  e.g., in ਵਾਜਪਾਈ [vājapāī] (Vajpai)– 
वाजपायी Formally, it is 

If last_char = “ਈ ” then  map “ਈ”  to “यी” 

7. If ਓ is in the last position or the 2nd to last position, then it is replaced by यो, e.g., in ਗਲੀਿਲਓ 
[galīliō] (galilio) – गलीिलयो. Formally, it is 

If last_char = “ਓ” or second_last_char= “ਓ” then  map “ਓ”  to “यो” 

8. A rule for plural forms of Punjabi words calls for changing the vowel sign of the last 
chararcter. It says that, if the last characters are ◌ा ◌ं, then ◌ा is mapped to ◌ो in Hindi, e.g., 
ਿਕਤਾਬਾ ਂ [kitābāṃ] (books) is transliterated to िकताबᲂ[kitābō]̃. Although this is a case of 
translation where the root ਿਕਤਾਬ [kitāb] is the same in the two languages and gets inflected by 
the rules in respective languages, this case can be handled at the transliteration stage. 
Formally, it is 

If last_two_char = “◌ा ◌ं” then   map “◌ा”  to “◌ो” 

9. Similarly, if the last positions are occupied by ਆਂ [āṁ], then ਅ [a] is mapped to य, e.g., ਸ਼ੀਸ਼ੀਆਂ 
[shīshīāṃ] (bottles) should be mapped to शीशीयᲂ rather than शीशीᲐ. It is worth mentioning 
here that both of the spelling variants are acceptable in general to Hindi speakers but the 
former is preferred. Formally, it is: 

If last_two_char = “ਆਂ” then   map “ਅ”  to “य” 

10. The character ੴ [ik-ōṅkār] is replaced by string “एक Აकार”. Formally, 

If char = “ੴ” then   map “ੴ”  to “एक Აकार” 

11. The letter “ਣ” [ṇ] is converted to “न” if it is a last consonant in a word, e.g., in ਕਿਹਣਾ [kahiṇā] 
(to say) the letter ਣ is converted to न when transliterated to produce “कहना”. 

If last_consnt = “ਣ” then   map “ਣ”  to “न” 

The above rules are applicable for the character sequence found in the source script. Table 5 
describes some rules that are applicable to the character sequence found in the target script, i.e. 
Hindi. We can find a probable character sequence using the letter to letter mapping approach. 
These rules then can be applied to these probable strings. Every row of Table 5 gives the 



 

 

               A Punjabi to Hindi Machine Transliteration System                91 

replacement rules for a character combination found in the probable string. For example, for a 
source script word ਿਵਉ [viu] (view), the letter to letter mapping approach produces a probable 
string िवउ, which is converted to ᳞ु by applying the rule from the following table. Formally, it 
can be described as follows: 

For each chr_seqnce in table 

 If chr_ seqnce present in input string then  

  Replace chr_ seqnce to corresponding seqnce from table 

Table 5. Replacements in transliterated text 

Occurrence in 
hindi token 

Replacement in 
hindi token Example 

"ि◌उ" "◌्यु" ਿਵਉ [viu]–िवउ – ᳞ ु

"ि◌ऊ" "◌्यू" ਿਨਊ [niū]– िनऊ – न्यू 

"ि◌ओ" "◌्यो" ਿਬਓਰਾ [biōrā]– िबओरा – ब्योरा 

"◌ीआ" "ि◌या" ਕੋਰੀਆ [kōrīā]– कोरीआ – कोिरया 

"◌ीअ" "ि◌य" ਕੋਰੀਅਨ [kōrīan] — कोरीअन — कोिरयन 

"इण" "यण" ਰਾਮਾਇਣ [rāmāiṇ] — रामाइण — रामायण 

"◌ीयो" "◌्यो" ਟੋਕੀਓ [ṭōkīō] — टोकीयो – टोक्यो 

"ि◌आ" "◌्या" ਿਸਆਿਚਨ[siācin]— िसआिचन — स्यािचन 

4.3 Soundex Based Approach 
Considerable improvements are noticed over the letter to letter mapping approach when using 
the rule based approach, but still some problems persist. Although we tried to cover the 
maximum number of rules, still there are cases for which no rule applies. Letters or syllables 
not available in Punjabi but present in Hindi, ऋ, क्ष ,ज्ञ ,शर् ,ष, etc. are still unhandled. The 
syllables having double tones in Hindi, like ऋ is a combination of sound of consonant “र” /r/ 
and vowel “ਿ◌” /i/, are represented in Punjabi with the help of two letters, like the consonant 
“ਰ” /r/ and vowel “ਿ◌”/i/. There is no means to find when these two letters in Punjabi will map 
to corresponding letters “िर” or to a single syllable “ऋ” in Hindi, e.g., consider following 
cases. 
Case I:  ਿਰਕਸ਼ਾ(riksha) [rickshaw]  िरक्शा 
Case II:  ਿਰਸ਼ੀ(rishi) [cleric]  ऋिष 
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In Case I, the letters ਿਰ are mapped to िर, whereas, in Case II, they are mapped to ऋ. Also, the 
rule based approach is deficient in producing the half form of letters and some other letters, as 
discussed in the previous section. For generating these characters, the Soundex technique is 
employed. Soundex is a phonetic matching technique. The Soundex algorithm was designed 
by Odell and Russell (1918) to find spelling variation of names. It represents classes of sounds 
that can be lumped together. Two names match if they have the same Soundex representation. 

Back in 1918, Odell and Russell proposed Soundex, the first phonetic encoding for 
English to be used in the US census. Soundex partitions the set of letters into seven disjoint 
sets, assuming that the letters in the same set have similar sounds. Each of these sets is given a 
unique key, except for the set containing the vowels and the letters h, w, and y, which are 
considered to be silent and are not taken into account during encoding. For example, both 
realize and realise have been encoded to ‘R-420’ in Soundex encoding, which works well for 
trivial cases, but fails to give same code to words where letters change its pronunciation in 
different contexts. For example, knight, night, and nite are similar sounding words but 
Soundex does not give the same code to these words. 

For Punjabi to Hindi transliteration, the Soundex concept is extended for searching for 
the correct spelling variant of a given transliteration. The Soundex codes are assigned to the 
Hindi characters based upon their phonetics i.e., similar sounding characters get the same code, 
e.g., both श and ष have the same sound, thus, they get the same code, 44. The akharas having 
single graphemes get the code according to the sounds they produce, e.g., ऋ is a combination 
of sound of consonant “र” /r/ and vowel “ਿ◌” /i/, so it gets the code of these two letters, i.e. 
4149. The code table is shown in Table 6. Codes in this table are selected in such a way that 
similar sounding letters get the same code. We start with independent vowel sounds whose 
code ranges from 1 to 5. For consonants, we start from two digit codes, i.e. 11 to 47. 
Thereafter, we code the dependent vowels and some other miscellaneous letters. Unlike 
Soundex code, which consists of a letter (the first letter of the string) followed by three 
numerical digits encoding the remaining consonants, all characters of the Hindi string are 
coded into digits. This ensures matching in case the first letter does not match. From the 
transliterations produced by the previously discussed methods, the correct spelling variant is 
searched using Soundex codes as described in the following lines. Let H be a set of equivalent 
Hindi words and TH be a transliteration produced by the machine transliteration step. A 
relevant h from H is selected by comparing phonetic similarity between H and TH. For 
implementation purposes, we make a unigram table from a corpus of about 1 GB size obtained 
from the Internet. Unigram contains about 150,000 unique words along with their frequency in 
the corpus. The codes are generated for each of the word in unigram using Table 6. For the 
comparison, letters in TH are converted into phonetic code using the mapping table as 
described in Table 6. Then, this code is looked for in a unigram table. The unigram table may 
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produce more than one candidate. The candidate with maximum frequency is selected as the 
correct variant of the given TH produced by the machine. For example, consider the word 
“ਡਰਾਫਟ” [ḍarāphaṭ] (draft) written in Punjabi. The string “डराफट” is produced by the baseline 
module. The code 2541483623 is generated for this string, as shown in the following table. 

ड र ◌ा फ ट 

25 41 48 36 23 

This code is looked for in a unigram database. This database contains two entries against this 
code, i.e. डर्ाफ्ट and डराफ्ट with frequency 12 and 8. The string with higher frequency is 
selected as the correct output for this input. 

Table 6. The coding scheme for Hindi text 

अ 1   च 17  न 34   ◌ा 48 

ऑ 1   छ 18  प 35   ◌ॉ 48 

इ 2   ज 19  फ 36   ि◌ 49 

ई 2   ज़ 19  फ़ 36   ◌ी 49 

उ 3   ज्ञ 20  ब 37   ◌ो 50 

ऊ 3   झ 21  भ 38   ◌ौ 50 

ए 4   ञ 22  म 39   ◌ ू 51 

ऐ 4   ट 23  य 40   ◌ ु 51 

ओ 5   ठ 24  र 41   ◌ े 52 

औ 5   ड 25  ऌ 42   ◌ ै 52 

क 11   ड़ 26  ल 42   ◌ँ or ◌ ं 53 

क़ 11   ढ 27  ळ 42   ◌ ़ 54 

क्ष 12   ढ़ 28  व 43   ॐ 55 

ख 13   ण 29  श 44   ऋ 4149 

ख़ 13   त 30  ष 44   ॠ 4149 

ग 14   थ 31  आ 45   ◌ृ or ◌ ॄ 4149 

ग़ 14   द 32  स 46 शर् 4441 

घ 15   ध 33  ह 47   

ङ 16                  
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5. The Experiment 

In this section, we describe the evaluation of our models on the task of Punjabi to Hindi 
transliteration. 

5.1 Data 
A provocative question for evaluators is the type of test material that should be adopted for 
evaluation. Balkan (1994) describes three types of test material, viz. test corpora, test suites, 
and test collections. While test corpora is a collection of naturally occurring texts, a test suite 
is a collection of artificially constructed inputs, where each input is designed to probe a 
system's treatment of a specific phenomenon or set of phenomena. A test collection is a set of 
inputs associated with a corresponding set of expected outputs. Test suites and test corpora are 
extensively used for evaluating various systems involving NLP, while test collections are 
rarely used. 

Users can make their own test suites, and such test suites are helpful for checking the 
improvement of an MT system. For two competing systems, however, test suites are not 
considered a good method of assessment. It is difficult to interpret the result that both systems 
transliterate same percentage of text but fail on different sentences. How to design a test suite, 
the cost of constructing it, and what sort of sentences/words should go into a test suite are 
some other issues discussed by Arnold (1995). There are several issues involved in the 
selection of a set of words for a comprehensive evaluation. For example, the set could be 
constant, variable, or a mixed one; the collection of words may be domain-specific or generic. 
It is obvious that there is no guarantee that even the bulkiest sample will include all of the 
possible words of the source language. Some suggestions as to what should go into a test suite 
are discussed in Hoard (1991). Some empirical evidence is present in literature to answer the 
question of how much text to include in a test suite. Although this evidence is not for 
transliteration system, it can provide insight for this system as well. Elliott et al. (2003) tried 
to prove the general hypothesis that more text would lead to more reliable scores. Based on an 
empirical assessment of score variation, the authors estimate that systems could be reliably 
ranked with test suite of around 14,000 words. Zhang & Vogel (2004) also studied the 
influence of the amount of test data on the reliability of automatic metrics, focusing on 
confidence intervals for BLEU and NIST scores. Their results show that BLEU and NIST 
scores become stable when using around 40% of the data (around 40 documents or 300 
sentences), although stability is defined here in terms of the distance between scores of 
different systems. Estrella et al. (2007) shows that, for human or automatic evaluation, about 
five documents from the same domain-with 6,000 words-seem sufficient to establish the 
ranking of the systems and about ten documents are sufficient to obtain reliable scores. 
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For this experiment, a benchmark sampling method is used to select the set of words. 
Unicode encoded text is used in Punjabi as well as Hindi, as it eliminates the need of 
normalizing the text. If text is in font encoded form, then the ASCII code for a given character 
may vary. For example, under the AnmolLipi font, the Latin character ‘A’ would appear as 
‘ਅ’. Conversely, under the DrChatrikWeb font, it would appear as ‘ੳ’. Unicode encoded text 
provides a unique way of representing a character; hence, it eases the task of mapping letters 
from different alphabets. We tested on people names, location names, and foreign words in 
Punjabi. The list was prepared manually by typing the names and terms from telephone 
directories, census records, etc. and partially obtained from manually searching the Internet. 
We tried to include the maximum possible variety of words in the set. The words are further 
categorized as Punjabi names, Hindi names, English names, and other foreign names/words. It 
is worth mentioning here that quite a number of English words are adapted into the Punjabi 
and Hindi languages, so we categorized them separately from the foreign words, which are 
words from other languages. The list contains about 3500 person names, 1500 location names, 
and 1000 foreign words. 

5.2 Evaluation Methodology 
The following combinations of approaches are tested for Punjabi-Hindi transliteration task. 

Baseline: As a baseline for our experiments, we used a simple letter to letter based approach that 
maps Punjabi letters to the most likely letter in Hindi. We call it CASE-I. 

Baseline followed by Rule Based Approach: Some hand crafted rules are studied for the 
improvements in the letter to letter based mapping system. This system is called CASE-II. 

Baseline followed by Soundex Approach: The Soundex approach is applied to the output of 
the baseline method. This is termed as CASE-III. 

Baseline followed by Rule Based followed by Soundex Based Approach: Both the rule based 
and Soundex approaches, consecutively, are applied to the output of the baseline method. This is 
termed as CASE-IV. 

Baseline followed by Soundex Based followed by Rule Based Approach: Both the Soundex 
based and Rule based approach, consecutively, are applied to the output of the baseline method. 
This is termed as CASE-V. 

Human: For the purpose of comparison, we allowed an independent human subject (fluent in 
Punjabi and native speaker of Hindi) to perform the same task. The subject was asked to 
transliterate the Punjabi words in the test set without any additional context. No additional 
resources or collaboration were allowed. This output was used as the gold standard for checking 
the system's performance. 
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5.3 Evaluation Metrics 
Often, more than one transliteration is acceptable for any input string. Using one gold standard 
may prove to be too rigid for measuring accuracy. On the other hand, including more than one 
correct transliteration complicates the computation of the evaluation score. Also, there is no 
one exact transliteration of a foreign word, so a soft standard is required to indicate the 
closeness of output to the gold standard. Levenshtein distance is used for this purpose. The 
metrics are described as follows: 

Word Accuracy Rate: It is defined as percentage of correct transliteration from the total 
generated transliterations by the system. 

Average Levenshtein Distance: This is the average of Levenshtein distances between the 
transliterated word and reference word. Levenshtein distance is a measure of similarity of two 
strings. The distance is the number of deletions, insertions, or substitutions required to transform 
the source string to the target string, e.g., transforming from the source string इखितआर, which 
results from the direct transliteration of ਇਖਿਤਆਰ [ikhtiār], the correct target string इखत्यार can 
be produced by deleting ि◌ from त, adding halant (◌੍) to त, and replacing अ with य. Thus, the 
Levenshtein distance is 3. 

While Levenshtein distance captures the performance of a system at character level, 
word accuracy rate is used to capture the performance at word level. A word may have 
non-zero Levenshtein distance but still may be accurate. Lower Levenshtein distance value 
implies that, although the result is not the same as that of the gold standard, it is still 
intelligible. 

6. Evaluation Results 

The experiment was performed on the prepared list. The results of this experiment follow. 

Table 7. Word Accuracy Rate and Avg Lev Dist. of Fivr Cases 

 CASE-I CASE-II CASE-III CASE-IV CASE-V 

WAR 73.13% 78.88% 86.72% 92.65% 87.15% 

ALD 0.61 0.32 0.39 0.10 0.37 

The baseline model produced a 73.13% accuracy rate. The rule based enhancement and 
Soundex based enhancement shows the improvements in performance with Soundex prove to 
be better than rule based. It is observed that CASE-V, i.e. Soundex followed by rule based, 
does not provide much improvement. This is because in the literature, the Soundex approach 
is largely discussed as a spelling correction method. Thus, it performs better on refined text, 
i.e. the output generated by the rule base, and fails to perform on raw input. Similarly, the 
average edit distance of different cases is shown in Table 7. The average edit distance of 
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CASE-III is increased from CASE-II then decreased with WAR increasing, as evident from 
Figure 2. This is because the human evaluator has marked some spelling variations correct. 
That is, for the name ਸੁਿਰੰਦਰ (Surinder), the three transliterations produced by CASE-I, Case-II, 
and Case-III are सुिरदर, सुिरन्दर and सुिरदर्, respectively. The human evaluator marked all of 
these as correct. Nevertheless, as Levenshtein distance is measured against a gold standard, 
which is सुिरदर् in this case, CASE-III shows an increase in this parameter despite increased 
word accuracy. The word accuracy rate for CASE IV, i.e. the Base + rule + Soundex approach 
is found out to be 92.65% and Avg. Levs. Dist is 0.10. These figures are the highest among all 
the cases and verify the suitability of the approach. 

 
Figure 2. Word Accuracy Rate and Avg Lev Dist. of Five Cases 

The breakdown of the figures is shown in following tables. 

Table 8. WAR and ALD for person names, location names, and foreign words in all 
cases 

 Person Name Location Name Foreign Words 

 WAR (%) ALD WAR (%) ALD WAR (%) ALD 

CASE-I 75.85 0.59 67.10 0.61 63.50 0.64 

CASE-II 86.9 0.23 79.8 0.24 69.8 0.50 

CASE-III 88.5 0.41 81.7 0.51 89.8 0.26 

CASE-IV 92.8 0.1 91.45 0.1 93.8 0.09 

CASE-V 88.78 0.39 82.7 0.48 90.01 0.24 
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Figure 3. WAR for person names, location names, and foreign words in all cases 

 
Figure 4. ALD for person names, location names, and foreign words in all cases 

The word accuracy for words whose origin is also Punjabi is 86.6 in the baseline model and 
shows the similar trend in other cases, as shown in Table 9. The improvement in all cases is 
registered with maximum for Hindi and English languages. 

Table 9. Word Accuracy rate and Avg. Lev Dist according to origin of  
source language of input word 

 Punjabi Word Hindi Word English Word Foreign Word 

 WAR ALD WAR ALD WAR ALD WAR ALD 

CASE-I 86.6 0.41 63.54 0.76 57.3 0.83 80.1 0.39 

CASE-II 91.6 0.12 70.15 0.44 63.4 0.60 83.9 0.25 

CASE-III 90.1 0.36 83.29 0.46 85.3 0.35 90.05 0.21 

CASE-IV 95.4 0.06 89.9 0.14 92.2 0.10 93.37 0.08 

The accuracy in the baseline model for Hindi and English is quite low because the baseline 
model cannot capture the half form representation of letters. As there is no half form in 
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Punjabi, a Hindi name, when spelled in Punjabi, uses the full form of the character instead of 
its half form. For example, the name इन्दर् (Inder) when spelled in Punjabi will look like ਇੰਦਰ 
[indar]. Here, the half form of न and र in the Hindi name are represented by (tippi-a character 
for nasal sound) and ਰ, respectively. When this form is transliterated by the baseline model, it 
will produce इंदर, which is incorrect. Similar is the case with English and other foreign words. 
So, due to the character gap in Punjabi and other languages, the word accuracy rate for the 
baseline is low. It is also interesting to note that when words that are originally from Hindi and 
used in Punjabi are transliterated back to Hindi, the accuracy rate is lower than other types of 
words (for Cases III and IV). The reasons are twofold. First, Hindi words written in Punjabi 
are an approximate transliteration of the original Hindi word in Punjabi. Depending upon the 
perception of the transliterator, a Hindi word may have more than one representation in 
Punjabi, e.g., the Hindi name आचायार् (Acharya) can be represented in Punjabi as “ਆਚਾਿਰਆ ”, 
“ ਆਚਾਰੀਆ ”, “ ਅਚਾਰੀਆ ”, and “ ਅਚਾਿਰਆ ”. Only the first representation, when again 
transliterated back into Hindi, converts to the correct representation. Other representations are 
converted into such strings by baseline and rule based modules that they have no match in the 
unigram table, making the Soundex module inefficient. Normalization of spellings at the 
source by a similar Soundex approach may improve the results. 

Table 10. Breakdown of Word Accuracy rate and Avg. Lev Dist for person names, 
location names, and other words according to origin of source language of 
input word 

 Punjabi Words Hindi Words English Words Foreign Words 
WAR ALD WAR ALD WAR ALD WAR ALD 

CASE-I 

Person 
Name 86.9 0.4 63.92 0.77 79.51 0.59 82.78 0.39 

Location 
Name 76.61 0.60 67.09 0.48 42.30 1.23 73.68 0.26 

Other 
Words 87.02 0.27 30 1.3 52.21 0.83 66.66 0.55 

CASE-II 

Person 
Name 91.6 0.12 70.49 0.43 84.33 0.32 87.41 0.24 

Location 
Name 91.12 0.14 75.95 0.34 57.69 0.61 73.68 0.26 

Other 
Words 91.8 0.11 29.04 1.25 56.63 0.71 66.66 0.33 

CASE-III 

Person 
Name 91.4 0.35 83.14 0.14 90.36 0.34 90.72 0.23 

Location 
Name 77.41 0.56 82.28 0.29 65.38 0.90 94.73 0.05 

Other 
Words 92.30 0.22 90.1 0.3 87.61 0.23 88.88 0.33 

CASE-IV Person 
Name 95.8 0.05 89.7 0.12 95.18 0.08 94.7 0.08 
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Location 
Name 92.74 0.08 91.14 0.14 86.53 0.11 94.73 0.05 

Other 
Words 95.41 0.05 90.8 0.25 92.47 0.10 88.88 0.11 

CASE-V 

Person 
Name 91.4 0.32 85.14 0.15 88.36 0.33 89.72 0.21 

Location 
Name 78.1 0.54 82.8 0.28 67.38 0.85 94.23 0.05 

Other 
Words 92.6 0.21 91.1 0.31 86.94 0.21 89.28 0.3 

The system also benefits from the spelling correction capability of the Soundex method. It can 
improve the results by selecting the correct output for a given wrong input, e.g., for the input 
ਅਨੂਪਮ (correct is ਅਨੁਪਮ [anupam]), the Soundex method selects the correct variation अनुपम 
instead of अनूपम. On the other hand, at times it selects the wrong target word, e.g., for input 
ਕᶥਟ [kaiṇṭ] (cantt) the correct output is कᱹट but the Soundex method selects कᱶ ट as output. 
Another problem with the Soundex based approach is that it is dependent upon the unigram 
table. Although this table is generated from a large amount of data, still it is not exhaustive. 
New terms and names are coined every day, and these need to be included in the unigram table 
regularly. If the data is not present in this table, then the system fails. Such cases, however, are 
few and overall accuracy of the system improves with the combined approach of baseline + 
rule based + Soundex based approach. 

7. Conclusion 

The results show that following the rule based followed by Soundex approach produces the 
best results and the words can be transliterated with considerable accuracy. A fully accurate 
transliteration system is not possible due to the inherent problems, missing corresponding 
letters in two scripts, conjunct form, etc. Although it is possible to transliterate across the 
scripts preserving the basic sounds of the source language, there will be some variations 
because the word in the source script may be pronounced somewhat differently in the target 
script, as per local conventions in each region. This results in more time required by the users 
to interpret the word in the context of original language from which the word comes. The 
transliterated text will be correctly understood only if the reader has knowledge of the 
conventions used for representing sounds in the source script. The aim of the module at least 
is to present a nearest possible transliterated text to the user instead of going blank to such 
words. This module is successfully used for transliterating proper nouns in Punjabi to Hindi 
machine translation system and in the Cross Language Information Retrieval system 
“PunjabiKhoj,” which is a search engine for Punjabi language. 

Although the system performs well, still there is room for improvement. Transcription 
rules based upon IPA and statistical models will be considered in the future. Testing of the 
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system on precision, recall, and F-score is on our future agenda. 
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