
Query Formulation by Selecting Good Terms

 李佳蓉 Chia-Jung Lee, 林怡君 Yi-Chun Lin, 陳瑞呈 Ruey-Cheng Chen

國立臺灣大學資訊工程學系

Department of Computer Science and Information Engineering

National Taiwan University

{cjlee1010, yi.crystal, rueycheng}@gmail.com

劉培森 Pei-Sen Liu

資訊工業策進會

Institute for Information Industry

psliu@iii.org.tw

鄭卜壬 Pu-Jen Cheng

國立臺灣大學資訊工程學系

Department of Computer Science and Information Engineering

National Taiwan University

 pjcheng@csie.ntu.edu.tw

Abstract

It is difficult for users to formulate appropriate queries for search. In this paper, we propose

an approach to query term selection by measuring the effectiveness of a query term in IR

systems based on its linguistic and statistical properties in document collections. Two query

formulation algorithms are presented for improving IR performance. Experiments on

NTCIR-4 and NTCIR-5 ad-hoc IR tasks demonstrate that the algorithms can significantly

improve the retrieval performance by 9.2% averagely, compared to the performance of the

original queries given in the benchmarks. Experiments also show that our method can be

applied to query expansion and works satisfactorily in selection of good expansion terms.

Keywords: Query Formulation, Query Term Selection, Query Expansion.

1. Introduction

Users are often supposed to give effective queries so that the return of an information

retrieval (IR) system is anticipated to cater to their information needs. One major challenge

they face is what terms should be generated when formulating the queries. The general

assumption of previous work [14] is that nouns or noun phrases are more informative than

other parts of speech (POS), and longer queries could provide more information about the

underlying information need. However, are the query terms that the users believe to be

well-performing really effective in IR?

Consider the following description of the information need of a user, which is an example

description query in NTCIR-4: Find articles containing the reasons for NBA Star Michael

Jordan's retirement and what effect it had on the Chicago Bulls. Removing stop words is a

common way to form a query such as “contain, reason, NBA Star, Michael Jordan, retirement,

effect, had, Chicago Bulls”, which scores a mean average precision (MAP) of 0.1914. It

appears obviously that terms contain and had carry relatively less information about the topic.

Thus, we take merely nouns into account and generate another query, “reason, NBA Star,

69

mailto:cjlee1010,%20yi.crystal,%20rueycheng%7D@gmail.com
mailto:psliu@iii.org.tw
mailto:%20pjcheng@csie.ntu.edu.tw

Michael Jordan, retirement, effect, Chicago Bulls”, which achieves a better MAP of 0.2095.

When carefully analyzing these terms, one could find that the meaning of Michael Jordan is

more precise than that of NBA Star, and hence we improve MAP by 14% by removing NBA

Star. Yet interestingly, the performance of removing Michael Jordan is not as worse as we

think it would be. This might be resulted from that Michael Jordan is a famous NBA Star in

Chicago Bulls. However, what if other terms such as reason and effect are excluded? There is

no explicit clue to help users determine what terms are effective in an IR system, especially

when they lack experience of searching documents in a specific domain. Without

comprehensively understanding the document collection to be retrieved, it is difficult for

users to generate appropriate queries. As the effectiveness of a term in IR depends on not

only how much information it carries in a query (subjectivity from users) but also what

documents there are in a collection (objectivity from corpora), it is, therefore, important to

measure the effectiveness of query terms in an automatic way. Such measurement is useful in

selection of effective and ineffective query terms, which can benefit many IR applications

such as query formulation and query expansion.

Conventional methods of retrieval models, query reformulation and expansion [13] attempt

to learn a weight for each query term, which in some sense corresponds to the importance of

the query term. Unfortunately, such methods could not explain what properties make a query

term effective for search. Our work resembles some previous works with the aim of selecting

effective terms. [1,3] focus on discovering key concepts from noun phrases in verbose

queries with different weightings. Our work focuses on how to formulate appropriate queries

by selecting effective terms or dropping ineffective ones. No weight assignments are needed

and thus conventional retrieval models could be easily incorporated. [4] uses a supervised

learning method for selecting good expansion terms from a number of candidate terms

generated by pseudo-relevance feedback technique. However, we differ in that, (1) [4] selects

specific features so as to emphasize more on the relation between original query and

expansion terms without consideration of linguistic features, and (2) our approach does not

introduce extra terms for query formulation. Similarly, [10] attempts to predict which words

in query should be deleted based on query logs. Moreover, a number of works

[2,5,6,7,9,15,16,18,19,20] pay attention to predict the quality or difficulty of queries, and

[11,12] try to find optimal sub-queries by using maximum spanning tree with mutual

information as the weight of each edge. However, their focus is to evaluate performance of a

whole query whereas we consider units at the level of terms.

Given a set of possible query terms that a user may use to search documents relevant to a

topic, the goal of this paper is to formulate appropriate queries by selecting effective terms

from the set. Since exhaustively examining all candidate subsets is not feasible in a large

scale, we reduce the problem to a simplified one that iteratively selects effective query terms

from the set. We are interested in realizing (1) what characteristic of a query term makes it

effective or ineffective in search, and (2) whether or not the effective query terms (if we are

able to predict) can improve IR performance. We propose an approach to automatically

measure the effectiveness of query terms in IR, wherein a regression model learned from

training data is applied to conduct the prediction of term effectiveness of testing data. Based

on the measurement, two algorithms are presented, which formulate queries by selecting

effective terms and dropping ineffective terms from the given set, respectively.

The merit of our approach is that we consider various aspects that may influence retrieval

performance, including linguistic properties of a query term and statistical relationships

between terms in a document collection such as co-occurrence and context dependency. Their

impacts on IR have been carefully examined. Moreover, we have conducted extensive

experiments on NTCIR-4 and NTCIR-5 ad-hoc IR tasks to evaluate the performance of the

70

proposed approach. Based on term effectiveness prediction and two query formulation

algorithms, our method significantly improve MAP by 9.2% on average, compared to the

performance of the original queries given in the benchmarks.

In the rest of this paper, we describe the proposed approach to term selection and query

formulation in Section 2. The experimental results of retrieval performance are presented in

Sections 3. Finally, in Section 4, we give our discussion and conclusions.

2. Term Selection Approach for Query Formulation

2.1 Observation

When a user desires to retrieve information from document repositories to know more about a

topic, many possible terms may come into the mind to form various queries. We call such set

of the possible terms query term space T={t1, …, tn}. A query typically consists of a subset of

T. Each query term tiT is expected to convey some information about the user information

need. It is, therefore, reasonable to assume that each query term will have different degree of

effectiveness in retrieving relevant documents. To explore the impact of one query term on

retrieval performance, we start the discussion with a degeneration process, which is defined

as a mapping function taking the set of terms T as input and producing set {T−{t1},

T−{t2},…,T−{tn}} as output. Mathematically, the mapping function is defined as:

DeGen(T) = {T − {x}|xT}.

By applying the degeneration process to the given n terms in T, we can construct a set of n

queries ∆q = {∆q1 , ∆q2 ,…, ∆qi ,…, ∆qn }, where ∆qi = {t1, … , ti−1, ti+1, … , tn} stands for a

query by removing ti from original terms T.

Suppose query term space T well summaries the description of the user information need.

Intuitively, we believe that the removal of a term (especially an important one) from T may

result in a loss of information harming retrieval effectiveness. To realize how much such

information loss may influence IR performance, we conduct an experiment on NTCIR-4

description queries. For each query, we construct its query term space T by dropping stop

words. T is treated as a hypothetical user information need. The remaining terms in the

description queries are individually, one at a time, selected to be removed to obtain ∆q. Three

formulas are used to measure the impact of the removing terms and defined as:

T)pf(T))/pf(-)q(pf(min(T)g i
ΔqΔqi




min

T)pf(T))/pf(-)q(pf(max(T)g i
ΔqΔqi




max

 
i

i T)pf(T))/pf(-)q(pf(
|T|

(T)g
1

 avg

where pf(x) is a performance measurement for query x, g(T) computes the ratio of

performance variation, which measures the maximum, minimum and average performance

gain due to the removal of one of the terms from T, and |T| is the number of query terms in T.

71

We use Okapi as the retrieval model and mean average precision (MAP) as our performance

measurement for pf(x) in this experiment.

The experimental results are shown in Figure 1. When we remove one term from each of

the 50 topics {T}, in average, 46 topics have negative influence, i.e., gavg(T)<0. This means

that deleting one term from T mostly leads to a negative impact on MAP, compared to

original T. On the other hand, gmax(T)>0 shows that at least the removal of one term

positively improves MAP. By removing such terms we can obtain better performance. The

phenomenon appears in 35 out of 50 topics, which is statistically suggestive that there exists

noisy terms in most of user-constructed queries. In short, removing different terms from each

topic T causes MAP variation in different levels. Some query terms are highly

information-bearing, while others might hurt MAP. It is worth mentioned that we conduct the

same experiment with the Indri and TFIDF retrieval models using the Lemur toolkit [21]. The

results are quite consistent over different models. This characteristic makes it possible for the

effectiveness of a query term on IR to be learned and applied to query formulation.

Fig. 1. MAP gain by removing terms from original NTCIR-4 description queries.

2.2 Problem Specification

When a user desires to retrieve information from document repositories to know more about a

topic, many possible terms may come into her mind to form various queries. We call such set

of the possible terms query term space T={t1, …, tn}. A query typically consists of a subset

of T. Each query term tiT is expected to convey some information about the user’s

information need. It is, therefore, reasonable to assume that each query term will have

different degree of effectiveness in documents retrieval. Suppose Q denotes all subsets of T,

that is, Q=Power Set(T) and |Q|=2
n
. The problem is to choose the best subset ∆q* among all

candidates Q such that the performance gain between the retrieval performance of T and ∆q

(∆q ∈ Q) is maximized:

∆𝑞∗ = 𝑎𝑟𝑔𝑚𝑎𝑥∆𝑞∈𝑄{(𝑝𝑓 𝑇 − 𝑝𝑓 ∆𝑞)/𝑝𝑓(𝑇)} . (1)

where pf(x) denotes a function measuring retrieval performance with x as the query. The

higher the score pf(x) is, the better the retrieval performance can be achieved.

An intuitive way to solve the problem is to exhaustively examine all candidate subset

members in Q and design a method to decide which the best ∆q* is. However, since an

exhaustive search is not appropriate for applications in a large scale, we reduce the problem

93.06%

21.40%

32.71%

18.14%
22.56%

19.46%

30.09%
28.40%

83.04%

35.77%31.97%

45.86%

11.04%16.14%
19.22%

39.11%

57.42%

20.45%

12.53%
14.65%

40.94%

7.03%

37.47%

15.19%
26.49%

5.82%
16.30%

34.31%29.68%

12.38%

66.89%

30.06%

11.61%
21.42%

32.89%

18.08%

35.33%
38.06%

10.06%
10.42%

66.44%
62.96%

56.34%
54.11%

25.12%

16.31%

33.67%
17.23%

67.74%

-120%

-100%

-80%

-60%

-40%

-20%

0%

20%

40%

60%

80%

100%

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41 43 45 47 49

Gmax(q) Gmin(q) Gavg(q) q Precision

72

to a simplified one that chooses the most effective query term ti (ti∈T) such that the

performance gain between T and T-{ti} is maximized:

𝑡𝑖
∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑡𝑖∈𝑇{(𝑝𝑓 𝑇 − 𝑝𝑓(𝑇 − {𝑡𝑖}))/𝑝𝑓(𝑇)} . (2)

Once the best ti* is selected, ∆q* could be approximated by iteratively selecting effective

terms from T. Similarly, the simplified problem could be to choose the most ineffective terms

from T such that the performance gain is minimized. Then ∆q* will be approximated by

iteratively removing ineffective or noisy terms from T.

Our goals are: (1) to find a function r: T →R, which ranks {t1, …, tn} based on their

effectiveness in performance gain (MAP is used for the performance measurement in this

paper), where the effective terms are selected as candidate query terms, and (2) to formulate a

query from the candidates selected by function r.

2.3 Effective Term Selection

To rank term ti in a given query term space T based on function r, we use a regression model

to compute r directly, which predicts a real value from some observed features of ti. The

regression function r: T →R is generated by learning from each ti with the examples in form

of <f(ti), (𝑝𝑓 𝑇 − 𝑝𝑓(𝑇 − {𝑡𝑖}))/𝑝𝑓(𝑇)> for all queries in the training corpus, where f(ti) is

the feature vector of ti, which will be described in Section 2.5.

The regression model we adopt is Support Vector Regression (SVR), which is a regression

analysis technique based on SVM [17]. The aim of SVR is to find the most appropriate

hyperplane w which is able to predict the distribution of data points accurately. Thus, r can be

interpreted as a function that seeks the least dissimilarity between ground truth yi =

(pf T − pf(T − {ti}))/pf(T) and predicted value r(ti), and r is required to be in the form of

w f(ti)+b. Finding function r is therefore equivalent to solving the convex optimization

problem:

𝑀𝑖𝑛𝑤 , 𝑏 ,𝜉𝑖 ,1
,𝜉𝑖 ,2

1

2
 𝒘 2 + 𝐶 (𝜉𝑖,1 +

𝑖
𝜉𝑖 ,2).

(3)

subject to:

∀ 𝑡𝑖 ∈ 𝑇 yi − (w f(ti)+b) ≥ 𝜀 + 𝜉𝑖 ,1 (4)

∀ 𝑖: 𝜉𝑖 ,1, 𝜉𝑖 ,2 ≥ 0 (w f(ti)+b) − yi ≥ 𝜀 + 𝜉𝑖 ,2 . (5)

where C determines the tradeoff between the flatness of r and the amount up to which

deviations larger than ε are tolerated, ε is the maximum acceptable difference between the

predicted and actual values we wish to maintain, and 𝜉𝑖 ,1 and 𝜉𝑖 ,2 are slack variables that

cope with otherwise infeasible constraints of the optimization problem. We use the SVR

implementation of LIBSVM [8] to solve the optimization problem.

Ranking terms in query term space T={t1, …, tn} according to their effectiveness is then

equivalent to applying regression function to each ti; hence, we are able to sort terms tiT

into an ordering sequence of effectiveness or ineffectiveness by r(ti).

2.4 Generation and Reduction

Algorithms Generation and Reduction, as shown in Fig. 2, formulate queries by greedily

73

selecting effective terms or dropping ineffective terms from space T based on function r.

When formulating a query from query term space T, the Generation algorithm computes a

measure of effectiveness r(ti) for each term ti T, includes the most effective term ti* and

repeats the process until k terms are chosen (where k is a empirical value given by users).

Note that T is changed during the selection process, and thus statistical features should be

re-estimated according to new T. The selection of the best candidate term ensures that the

current selected term ti* is the most informative one among those that are not selected yet.

Compared to generation, the Reduction algorithm always selects the most ineffective term

from current T in each iteration. Since users may introduce noisy terms in query term space T,

Reduction aims to remove such ineffective terms and will repeat the process until |T|-k terms

are chosen.

Algorithm Generation Algorithm Reduction

Input: T={t1,t2,…,tn} (query term space)

k (# of terms to be selected)

∆q←{ }

for i = 1 to k do

 𝑡𝑖
∗ ← 𝑎𝑟𝑔𝑚𝑎𝑥𝑡𝑖∈𝑇{ 𝑟 𝑡𝑖 }

∆q← ∆q ∪ {𝑡𝑖
∗}

T← T −{𝑡𝑖
∗}

end

Output ∆q

 Input: T={t1,t2,…,tn} (query term space)

k (# of terms to be selected)

∆q←{ t1,t2,…,tn }

for i = 1 to n-k do

 𝑡𝑖
∗ ← 𝑎𝑟𝑔𝑚𝑖𝑛𝑡𝑖∈𝑇{ 𝑟 𝑡𝑖 }

∆q← ∆q − {𝑡𝑖
∗}

T← T −{𝑡𝑖
∗}

end

Output ∆q

Fig. 2. The Generation Algorithm and the Reduction Algorithm

2.5 Features Used for Term Selection

Linguistic and statistical features provide important clues for selection of good query terms

from viewpoints of users and collections, and we use them to train function r.

Linguistic Features: Terms with certain linguistic properties are often viewed

semantics-bearing and informative for search. Linguistic features of query terms are mainly

inclusive of parts of speech (POS) and named entities (NE). In our experiment, the POS

features comprise noun, verb, adjective, and adverb, the NE features include person names,

locations, organizations, and time, and other linguistic features contain acronym, size (i.e.,

number of words in a term) and phrase, all of which have shown their importance in many IR

applications. The values of these linguistic features are binary except the size feature. POS

and NE are labeled manually for high quality of training data, and can be tagged

automatically for purpose of efficiency alternatively.

Statistical Features: Statistical features of term ti refer to the statistical information about

the term in a document collection. This information could be about the term itself such as

term frequency (TF) and inverse document frequency (IDF), or the relationship between the

term and other terms in space T. We present two methods for estimating such term

relationship. The first method depends on co-occurrences of terms ti and tj (tjT, ti≠tj) and

co-occurrences of terms ti and T-{ti} in the document collection. The former is called

term-term co-occur feature while the latter is called term-topic co-occur feature. The second

method extracts so-called context vectors as features from the search results of ti, tj, and

T-{ti}, respectively. The term-term context feature computes the similarity between the

context vectors of ti and tj while the term-topic context feature computes the similarity

74

between context vectors of ti and T-{ti}.

Term-term & term-topic co-occur features: The features are used to measure whether query

term ti itself could be replaced with another term tj (or remaining terms T-{ti}) in T and how

much the intension is. The term without substitutes is supposed to be important in T.

Point-wise mutual information (PMI), Chi-square statistics (X
2
), and log-likelihood ratio

(LLR) are used to measure co-occurrences between ti and Z, which is either tj or T-{ti} in this

paper. Suppose that N is the number of documents in the collection, a is the number of

documents containing both ti and Z, denoted as a = #d(ti,Z). Similarly, we denote b = #d(ti ,~Z)

c = #d(~ti,Z) and d = #d(~ti,~Z) i.e., Z=N-a-b-c.

PMI is a measure of how much term ti tells us about Z.

PMI ti , Z = log[p(ti , Z)/p ti p(Z)] ≈ log[a × N/ a + b (a + c)] (6)

X
2
 compares the observed frequencies with frequencies expected for independence.

χ2 ti , Z = N × a × d − b × c 2 /[a + b a + c b + d (c + d)] (7)

LLR is a statistical test for making a decision between two hypotheses of dependency or

independency based on the value of this ratio.

−2 log LLR ti , Z = a log
a × N

 a + b a + c
+ b log

b × N

 a + b b + d

 +c log
c × N

 c + d (a + c)
+ d log

d × N

 c + d b + d
 (8)

We make use of average, minimum, and maximum metrics to diagnose term-term co-occur

features over all possible pairs of (ti,tj), for any 𝑡𝑗 ≠ 𝑡𝑖:

𝑓𝑎𝑣𝑔
𝑋 𝑡𝑖 =

1

|𝑇|
 𝑋(∀𝑡𝑗∈𝑇,𝑡𝑖≠𝑡𝑗

𝑡𝑖 , 𝑡𝑗),
(9)

𝑓𝑚𝑎𝑥
𝑋 𝑡𝑖 = max∀𝑡𝑗∈𝑇,𝑡𝑖≠𝑡𝑗

X 𝑡𝑖 , 𝑡𝑗 & 𝑓𝑚𝑖𝑛
𝑋 𝑡𝑖 = min∀𝑡𝑗∈𝑇,𝑡𝑖≠𝑡𝑗

X(𝑡𝑖 , 𝑡𝑗)
(10)

where X is PMI, LLR or X
2
. Moreover, given T={t1, …, tn} as a training query term space, we

sort all terms ti according to their 𝑓𝑎𝑣𝑔
𝑋 𝑡𝑖 , 𝑓𝑚𝑎𝑥

𝑋 𝑡𝑖 , or 𝑓𝑚𝑖𝑛
𝑋 𝑡𝑖 , and their rankings varied

from 1 to n are treated the additional features.

The term-topic co-occur features are nearly identical to the term-term co-occur features

with an exception that term-topic co-occur features are used in measuring the relationship

between ti and query topic T-{𝑡𝑖}. The co-occur features can be quickly computed from the

indices of IR systems with caches.

Term-term & term-topic context features: The co-occurrence features are reliable for

estimating the relationship between high-frequency query terms. Unfortunately, term ti is

probably not co-occurring with T-{ti} in the document collection at all. The context features

are hence helpful for low-frequency query terms that share common contexts in search results.

75

More specifically, we generate the context vectors from the search results of ti and tj (or

T-{ti}), respectively. The context vector is composed of a list of pairs <document ID,

relevance score>, which can be obtained from the search results returned by IR systems. The

relationship between ti and tj (or T-{ti}) is captured by the cosine similarity between their

context vectors. Note that to extract the context features, we are required to retrieve

documents. The retrieval performance may affect the quality of the context features and the

process is time-consuming.

3. Experiments

3.1 Experiment Settings

Table 1. Adopted dataset after data clean. Number of each setting is shown in each row for

NTCIR-4 and NTCIR-5

 NTCIR-4 NTCIR-5

 <desc> <desc>

#(query topics) 58 47

#(distinct terms) 865 623

#(terms/query) 14.9 13.2

Table 2. Number of training instances. (x : y) shows the number of positive and negative

MAP gain instances are x and y, respectively

 Indri TFIDF Okapi

Original 674(156:518) 702(222:480) 687(224:463

) Upsample 1036(518:51

8)

960(480:480) 926(463:463

) Train 828(414:414) 768(384:384) 740(370:370

) Test 208(104:104) 192(96:96) 186 (93:93)

We conduct extensive experiments on NTCIR-4 and NTCIR-5 English-English ad-hoc IR

tasks. Table 1 shows the statistics of the data collections. We evaluate our methods with

description queries, whose average length is 14.9 query terms. Both queries and documents

are stemmed with the Porter stemmer and stop words are removed. The remaining query

terms for each query topic form a query term space T. Three retrieval models, the vector

space model (TFIDF), the language model (Indri) and the probabilistic model (Okapi), are

constructed using Lemur Toolkit [21], for examining the robustness of our methods across

different frameworks. MAP is used as evaluation metric for top 1000 documents retrieved.

To ensure the quality of the training dataset, we remove the poorly-performing queries whose

average precision is below 0.02. As different retrieval models have different MAP on the

same queries, there are different numbers of training and test instances in different models.

We up-sample the positive instances by repeating them up to the same number as the

negative ones. Table 2 summarizes the settings for training instances.

3.2 Performance of Regression Function

We use 5-fold cross validation for training and testing our regression function r. To avoid

inside test due to up-sampling, we ensure that all the instances in the training set are different

from those of the test set. The 𝑅2 statistics (𝑅2∈[0, 1]) is used to evaluate the prediction

accuracy of our regression function r:

76

 𝑅2 =
 (𝑦𝑖𝑖 − y 𝑖)

2

 (𝑦𝑖𝑖 − y)2
 ,

(11)

where R
2
 explains the variation between true label 𝑦𝑖=(𝑝𝑓 𝑇 − 𝑝𝑓(𝑇 − {𝑡𝑖}))/𝑝𝑓(𝑇) and

fit value y 𝑖=wf(ti)+b for each testing query term ti∈T, as explained in Section 2.2. y is the

mean of the ground truth.

Table 3. R
2
 of regression model r with multiple combinations of training features. L:

linguistic features; C1: co-occurrence features; C2: context features

Performance of

Regression

Model r

One Group of Features Two Groups of Features Three Four (3+1) All

L C1 C2 L&C1 L&C2 C1&C2 L&C1 &C2 m-Cl m-SCS

R
2

Indri 0.120 0.145 0.106 0.752 0.469 0.285 0.975 0.976 0.975 0.976

TFIDF 0.265 0.525 0.767 0.809 0.857 0.896 0.932 0.932 0.932 0.932

Okapi 0.217 0.499 0.715 0.780 0.791 0.910 0.925 0.926 0.925 0.926

Avg. 0.201 0.390 0.529 0.781 0.706 0.697 0.944 0.945 0.944 0.945

Table 3 shows the R
2
 values of different combinations of features over different retrieval

models, where two other features are taken into account for comparison. Content load (Cl)

[14] gives unequal importance to words with different POS. Our modified content load (m-Cl)

sets weight of a noun as 1 and the weights of adjectives, verbs, and participles as 0.147 for IR.

Our m-SCS extends the simplified clarity score (SCS) [9] as a feature by calculating the

relative entropy between query terms and collection language models (unigram distributions).

It can be seen that our function r is quite independent of retrieval models. The performance

of the statistical features is better than that of the linguistic features because the statistical

features reflect the statistical relationship between query terms in the document collections.

Combining both outperforms each one, which reveals both features are complementary. The

improvement by m-Cl and m-SCS is not clear due to their similarity to the other features.

Combining all features achieves the best R
2
 value 0.945 in average, which guarantees us a

large portion of explainable variation in y and hence our regression model r is reliable.

3.3 Correlation between Feature and MAP

Yet another interesting aspect of this study is to find out a set of key features that play

important roles in document retrieval, that is, the set of features that explain most of the

variance of function r. This task can usually be done in ways fully-addressed in regression

diagnostics and subset selection, each with varying degrees of complexity. One common

method is to apply correlation analysis over the response and each predictor, and look for

highly-correlated predictor-response pairs.

Three standard correlation coefficients are involved, including Pearson's product-moment

77

correlation coefficient, Kendall's tau, and Spearman's rho. The results are given in Fig. 3,

where x-coordinate denotes features and y-coordinate denotes the value of correlation

coefficient. From Fig. 3, two context features, “cosine” and “cosineinc”, are found to be

positively- and highly-correlated (ρ>0.5) with MAP, under Pearson's coefficient. The

correlation between the term-term context feature (cosine) and MAP even climbs up to 0.8.

For any query term, high context feature value indicates high deviation in the result set

caused by removal of the term from the query topic. The findings suggest that the drastic

changes incurred in document ranking by removal of a term can be a good predictor. The

tradeoff is the high cost in feature computation because a retrieval processing is required.

The co-occurrence features such as PMI, LLR, and χ
2
 also behave obviously correlated to

MAP. The minimum value of LLR correlates more strongly to MAP than the maximum one

does, which means that the independence between query terms is a useful feature.

Fig. 3. Three correlation values between features and MAP on Okapi retrieval model

In the linguistic side, we find that two features “size” and “phrase” show positive,

medium-degree correlation (0.3<ρ<0.5) with MAP. Intuitively, a longer term might naturally

be more useful as a query term than a shorter one is; this may not always be the case, but

generally it is believed a shorter term is less informative due to the ambiguity it encompasses.

The same rationale also applies to “phrase”, because terms of noun phrases usually refer to a

real-world event, such as “911 attack” and “4th of July”, which might turn out to be the key

of the topic. We also notice that some features, such as “noun” and “verb”, pose positive

influence to MAP than others do, which shows high concordance to a common thought in

NLP that nouns and verbs are more informative than other type of words. To our surprises,

NE features such as “person”, “geo”, “org” and “time” do not show as high concordance as

the others. This might be resulted from that the training data is not sufficient enough. Features

“idf” and “m-SCS” whose correlation is highly notable have positive impacts. It supports that

the statistical features have higher correlation values than the linguistics ones.

3.4 Evaluation on Information Retrieval

In this section, we devise experiments for testing the proposed query formulation algorithms.

The benchmark collections are NTCIR-4 and NTCIR-5. The experiments can be divided into

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

1

ac
ro

n
ym

n
o

u
n

ve
rb ad

j

ad
v

p
er

so
n

o
rg

ge
o

ti
m

e

si
ze

p
h

ra
se llr

llr
m

in

llr
m

ax

llr
m

in
_r

llr
m

ax
_r

p
m

i

p
m

iin
c

p
m

im
in

p
m

im
ax

p
m

im
in

_r

p
m

im
ax

_r x2

x2
in

c

x2
m

in

x2
m

ax

x2
m

in
_

r

x2
_m

ax
_r tf id

f

co
si

n
e

co
si

n
ei

n
c

co
si

n
e_

m
in

co
si

n
e_

m
ax

co
si

n
e_

m
in

_r

co
si

n
e_

m
ax

_r

m
_C

l

m
_S

C
S

pearson kendall spearman

78

two parts: the first part is a 5-fold cross-validation on NTCIR-4 dataset, and in the second

part we train the models on NTCIR-4 and test them on NTCIR-5. As both parts differ only in

assignment of the training/test data, we will stick with the details for the first half

(cross-validation) in the following text.

The result is given in Table 4. Evaluation results on NTCIR-4 and NTCIR-5 are presented

in the upper- and lower-half of the table, respectively. We offer two baseline methods in the

experiments: “BL1” puts together all the query terms into one query string, while “BL2” only

consider nouns as query terms since nouns are claimed to be more informative in several

previous works. Besides, the upper bound UB is presented in the benchmark: for each topic,

we permute all sub queries and discover the sub-query with the highest MAP. As term

selection can also be treated as a classification problem, we use the same features of our

regression function r to train two SVM classifiers, Gen-C and Red-C. Gen-C selects terms

classified as “effective” while Red-C removes terms classified as “ineffective”. Gen-R and

Red-R denote our Generation and Reduction algorithms, respectively. The retrieval results

are presented in terms of MAP. Gain ratios in MAP with respect to the two baseline methods

are given in average results. We use two-tailed t-distribution in the significance test for each

method (against the BL1) by viewing AP values obtained in all query session as data points,

with p<0.01 marked ** and p<0.05 marked *.

Table 4. MAP of baseline and multiple proposed methods on NTCIR-4 <desc> regression

model. (+x, +y) shows the improvement percentage of MAP corresponding to BL1 and BL2.

TFIDF and Okapi models have PRF involved, Indri model does not. Best MAP of each

retrieval model is marked bold for both collections.

Settings Metho

d

Indri TFIDF Okapi Avg.

NTCIR-

4

<desc>

Queries

UB 0.2233 0.3052 0.3234 0.2839

BL1 0.1742 0.2660 0.2718 0.2373

BL2 0.1773 0.2622 0.2603 0.2332

Gen-C 0.1949

**

0.2823

**

0.2946

**

0.2572(+8.38%,+10.2)

%) Gen-R 0.1954

**

0.2861

**

0.2875

*

0.2563(+8.00%,+9.90)

%) Red-C 0.1911*

*

0.2755

**

0.2854

**

0.2506(+5.60%,+7.46)

%) Red-R 0.1974

**

0.2773

**

0.2797 0.2514(+5.94%,+7.80)

%) NTCIR-

5

<desc>

Queries

UB 0.1883 0.2245 0.2420 0.2182

BL1 0.1523 0.1988 0.1997 0.1836

BL2 0.1543 0.2035 0.1969 0.1849

Gen-C 0.1699

**

0.2117* 0.2213

*

0.2009(+9.42%,+8.65)

%) Gen-R 0.1712

**

0.2221

*

0.2232

*

0.2055(+11.9%,+11.1)

%) Red-C 0.1645

**

0.2194

*

0.2084 0.1974(+7.51%,+6.76)

%) Red-R 0.1749

**

0.2034

**

0.2160

*

0.1981(+7.89%,+7.13)

%) From Table 4, the MAP difference between two baseline methods is small. This might be

because some nouns are still noisy for IR. The four generation and reduction methods

79

significantly outperform the baseline methods. We improve the baseline methods by 5.60% to

11.9% in the cross-validation runs and on NTCIR-5 data. This result shows the robustness

and reliability of the proposed algorithms. Furthermore, all the methods show significant

improvements when applied to certain retrieval models, such as Indri and TFIDF;

performance gain with Okapi model is less significant on NTCIR-5 data, especially when

reduction algorithm is called for. The regression methods generally achieve better MAP than

the classification methods. This is because the regression methods always select the most

informative terms or drop the most ineffective terms among those that are not selected yet.

The encouraging evaluation results show that, despite the additional costs on iterative

processing, the performance of the proposed algorithms is effective across different

benchmark collections, and based on a query term space T, the algorithms are capable of

suggesting better ways to form a query.

[4] proposed a method for selecting Good Expansion Terms (GET) based on an SVM

classifier. Our approach is also applicable to selection of query expansion terms. Given the

same set of candidate expansion terms which are generated by conventional approaches such

as TF and IDF, GET-C runs the Gen-C method whereas GET-R runs the Gen-R on the

expansion set (with the NTCIR-4 5-fold cross validation regression model). Table 5 shows

the MAP results of the two methods and the baseline method (BL), which adds all expansion

terms to original queries. From Table 5, GET-R outperforms GET-C under different retrieval

models and data sets, and both methods improve MAP by 1.76% to 3.44% compared to the

baseline. Moreover, though extra terms are introduced for query formulation, we can see that

certain MAP results in Table 4 still outperform those in Table 5 (marked italic). It is therefore

inferred that, it is still important to filter out noisy terms in original query even though good

expansion terms are selected. Finally, note that we use the NTCIR-4 5-fold cross validation

regression model, which is trained to fit the target performance gain in NTCIR-4 dataset,

rather than instances in the query expansion terms set. However, results in Table 5 show that

this model works satisfactorily in selection of good expansion terms, which ensures that our

approach is robust in different environments and applications such as query expansion.

Table 5. MAP of query expansion based on GET-C and GET-R model. (%) shows the

improvement percentage of MAP to BL. Significance test is tested against the baseline

results.

Settings Method Indri TFIDF Okapi Avg.

NTCIR-4

<desc>

BL 0.2470 0.2642 0.2632 0.2581

GET-C 0.2472** 0.2810** 0.2728** 0.2670

(+3.44%) GET-R 0.2610** 0.2860** 0.2899** 0.2789

(+8.05%) NTCIR-5

<desc>

BL 0.1795 0.1891 0.1913 0.1866

GET-C 0.1868 0.1904 0.1927 0.1899

(+1.76%) GET-R 0.1880* 0.1918* 0.1945* 0.1914

(+2.57%)

80

We further investigate the impact of various ranking schemes based on our proposed

algorithms. The ranking scheme in the Generation algorithm (or the Reduction algorithm)

refers to an internal ranking mechanism that decides which term shall be included in (or

discarded away). Three types of ranking schemes are tested based on our regression function r.

“max-order” always returns the term that is most likely to contribute relevance to a query

topic, “min-order” returns the term that is most likely to bring in noise, and “random-order”

returns a randomly-chosen term. Figure 4 shows the MAP curve for each scheme by

connecting the dots at (1, MAP
(1)

), … , (n, MAP
(n)

), where MAP
(i)

 is the MAP obtained at

iteration i. It tells that the performance curves in the generation process share an interesting

tendency: the curves keep going up in first few iterations, while after the maximum (locally

to each method) is reached, they begin to go down rapidly. The findings might informally

establish the validity of our assumption that a longer query topic might encompass more

noise terms. The same “up-and-down” pattern does not look so obvious in the reduction

process; however, if we take the derivative of the curve at each iteration i (i.e., the

performance gain/loss ratio), we might find it resembles the pattern we have discovered. We

may also find that, in the generation process, different ranking schemes come with varying

degrees of MAP gains. The ranking scheme “max-order” constantly provides the largest

performance boost, as opposed to the other two schemes. In the reduction process,

“max-order” also offers the most drastically performance drop than the other two schemes do.

Generally, in the generation process, the best MAP value for each setting might take place

somewhere between iteration n/2 to 2n/3, given n is the size of the query topic.

0

0.05

0.1

0.15

0.2

1 2 3 4 5 6 7 8 9 10

max-oder

min-order

random

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5 6 7 8 9 10

max-order

min-order

random

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

max-order

min-order

random

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

max-order

min-order

random

TFIDF TFIDF

Indri Indri

81

Fig. 4. MAP curves based on regression model for description queries of NTCIR-4 on Indri,

TFIDF, and Okapi models, each with three selection order. X coordinate is # of query terms;

Y coordinate is MAP.

4. Discussions and Conclusions

In this paper, we propose an approach to measure and predict the impact of query terms,

based on the discovery of linguistic, co-occurrence, and contextual features, which are

analyzed by their correlation with MAP. Experimental results show that our query

formulation approach significantly improves retrieval performance.

The proposed method is robust and the experimental results are consistent on different

retrieval models and document collections. In addition, an important aspect of this paper is

that we are able to capture certain characteristics of query terms that are highly effective for

IR. Aside from intuitive ideas that informative terms are often lengthy and tagged nouns as

their POS category, we have found that the statistical features are more likely to decide the

effectiveness of query terms than linguistics ones do. We also observe that context features

are mostly correlated to MAP and thus are most powerful for term difficulty prediction.

However, such post-retrieval features require much higher cost than the pre-retrieval features,

in terms of time and space.

The proposed approach actually selects local optimal query term during each iteration of

generation or reduction. The reason for this greedy algorithm is that it is inappropriate to

exhaustively enumerate all sub-queries for online applications such as search engines. Further,

it is challenging to automatically determine the value of parameter k in our algorithms, which

is selected to optimize the MAP of each query topic. Also, when applying our approach to

web applications, we need web corpus to calculate the statistical features for training models.

5. References

[1] Allan, J., Callan, J., Croft, W. B., Ballesteros, L., Broglio, J., Xu, J., Shu, H.: INQUERY at

TREC-5. In: Fifth Text REtrieval Conference (TREC-5), pp. 119--132 (1997)

[2] Amati, G., Carpineto, C., Romano, G.: Query Difficulty, Robustness, and Selective

Application of Query Expansion. In: 26th European Conference on IR Research, UK (2004)

[3] Bendersky M., Croft, W. B.: Discovering key concepts in verbose queries. In: 31st annual

international ACM SIGIR conference on Research and development in information retrieval,

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

max-order

min-order

random

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4 5 6 7 8 9 10

max-order

min-order

random

Okapi Okapi

82

pp. 491--498 (2008)

[4] Cao, G., Nie, J. Y., Gao, J. F., & Robertson, S.: Selecting good expansion terms for

pseudo-relevance feedback. In: 31st annual international ACM SIGIR conference on

Research and development in information retrieval, pp. 243--250 (2008)

[5] Carmel, D., Yom-Tov, E., Soboroff, I.: SIGIR WORKSHOP REPORT: Predicting Query

Difficulty - Methods and Applications. WORKSHOP SESSION: SIGIR, pp. 25--28 (2005)

[6] Carmel, D., Yom-Tov, E., Darlow, A., Pelleg, D.: What makes a query difficult? In: 29th

annual international ACM SIGIR, pp. 390--397 (2006)

[7] Carmel, D., Farchi, E., Petruschka, Y., Soffer, A.: Automatic Query Refinement using Lexical

Affinities with Maximal Information Gain. In: 25th annual international ACM SIGIR, pp.

283--290 (2002)

[8] Chang, C. C., Lin, C. J.: LIBSVM: http://www.csie.ntu.edu.tw/~cjlin/libsvm (2001)

[9] He, B., Ounis, I.: Inferring query performance using pre-retrieval predictors. In: 11th

International Conference of String Processing and Information Retrieval, pp. 43--54 (2004)

[10] Jones, R., Fain, D. C.: Query Word Deletion Prediction. In: 26th annual international ACM

SIGIR, pp. 435--436 (2003)

[11] Kumaran, G., Allan, J.: Effective and efficient user interaction for long queries. In: 31st

annual international ACM SIGIR, pp. 11--18 (2008)

[12] Kumaran, G., Allan, J.: Adapting information retrieval systems to user queries. In:

Information Processing and Management, pp. 1838-1862 (2008)

[13] Kwok, K., L.: A New Method of Weighting Query Terms for Ad-hoc Retrieval. In: 19th

annual international ACM SIGIR, pp. 187--195 (1996)

[14] Lioma, C., Ounis, I.: Examining the Content Load of Part of Speech Blocks for Information

Retrieval. In: COLING/ACL 2006 Main Conference Poster Sessions (2006)

[15] Mandl,T., Womser-Hacker, C.: Linguistic and Statistical Analysis of the CLEF Topics. In:

Third Workshop of the Cross-Language Evaluation Forum CLEF (2002)

[16] Mothe, J., Tanguy, L: ACM SIGIR 2005 Workshop on Predicting Query Difficulty -

Methods and Applications (2005)

[17] Vapnik, V. N.: Statistical Learning Theory. John Wiley & Sons (1998)

[18] Yom-Tov, E., Fine, S., Carmel, D., Darlow, A., Amitay, E.: Juru at TREC 2004:

Experiments with Prediction of Query Difficulty. In: 13th Text Retrieval Conference (2004)

[19] Zhou, Y., and Croft, W. B.: Query Performance Prediction in Web Search Environments. In:

30th Annual International ACM SIGIR Conference, pp. 543--550 (2007)

[20] Zhou, Y., Croft, W. B.: Ranking Robustness: A Novel Framework to Predict Query

Performance. In: 15th ACM international conference on Information and knowledge

management, pp. 567--574 (2006)

[21] The Lemur Toolkit: http://www.lemurproject.org/

83

http://www.csie.ntu.edu.tw/~cjlin/libsvm
http://www.lemurproject.org/

84

