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Abstract 

In this paper, a framework for integrated synthesis of Mandarin, Min-nan, and 
Hakka speech is proposed. To show its feasibility, an initial integrated system has 
been built as well. Through integration, a model only trained with Min-nan 
sentences is used to generate pitch-contours for all three languages, same rules are 
used to generate syllable duration and amplitude values, and the same program 
module implementing the method, TIPW, is used to synthesize the three languages’ 
speech waveforms. Also, in this system, each syllable of a language has just one 
recorded signal waveform, i.e. no chance of unit selection. Under such a restricted 
situation, the synthetic speech signals still have noticeable naturalness level and 
signal clarity. 

Keywords: Speech Synthesis, Pitch Contour Model, TIPW, Time Axis Warping. 

1. Introduction 

There are many languages in Taiwan, including Mandarin, Min-nan, Hakka, and others spoken 
by smaller population groups. Mandarin has been more extensively studied than the other 
languages because it is the official language. However, the successful construction of a 
synthesis model or system for Mandarin does not imply that the same modeling method can be 
directly applied to another language. Developing speech synthesis systems for other languages 
is strongly desired because Mandarin is not the mother tongue of most people in Taiwan, and 
all languages except Mandarin face the crisis of disappearance. 

If systems developed or speech data collected previously can only be used for Mandarin, 
then further resources (effort and money) are inevitably needed to study other languages. Such 
a situation will become more severe if a corpus-based approach [Chou 1999; Chu et al. 2003] 
is adopted. In addition, there will be inconsistency in prosody and timbre among 

                                                 
∗ Department of Computer Science and Information Engineering, National Taiwan University of Science 

and Technology, 43 Keelung Rd., Sec. 4, Taipei, Taiwan 
E-mail: {guhy, M9315058, M9215001}@mail.ntust.edu.tw 



 

 

372                                                        Hung-Yan Gu et al. 

independently developed speech synthesis systems for different languages. Therefore, a better 
approach is to construct a more generalized system that can synthesize not only Mandarin but 
also Min-nan and Hakka speech. Such an approach, if successfully realized, can not only save 
resources but also obtain much higher consistency among the synthesized speech for different 
languages. Another advantage is that an improvement, when made to a system component, can 
immediately benefit all the languages supported. 

Mandarin, Min-nan, and Hakka are all syllable prominent languages, and are all tonal 
languages. Hakka has many accents found in users in Taiwan, of which “four-country” and 
“sea-land” are the primary ones. If not specified, the sea-land accent is the default accent 
representing Hakka in this paper. This is because it has more lexical tone and more unique 
syllables than the four-country accent has, and the authors believe the speech signal of the 
sea-land accent is more difficult to synthesize. As to the number of different syllables (not 
distinguishing lexical tones), Mandarin has 405, Min-nan has 833, and Hakka has 783 [Yu 
1999]. The languages also vary in the numbers of different lexical tones, being 5, 7, and 7, 
respectively, for Mandarin, Min-nan, and Hakka. Since the numbers, 405, 833, and 783, are 
not large, syllable is commonly chosen as the speech unit for synthesis processing. Actually, 
in this system, each syllable (tone not distinguished) of a language has only one recorded 
utterance. That is, no extra units are available to do unit selection, and each syllable’s 
waveform must be manipulated to synthesize speech signals with different required prosodic 
characteristics. 

Note that the focus of this study is in the system framework of an integrated speech 
synthesis system for the three languages. To show the feasibility of the proposed framework, a 
workable integrated synthesis system is built. This system is just in its initial phase. Therefore, 
there will be many unsolved problems in the details. Most of these problems belong to text 
analysis since signal synthesis is the major concern in this research while text analysis is just a 
minor concern. In general, a speech synthesis system can be divided into three subsystems, i.e., 
(a) text analysis, (b) prosodic parameter generation, and (c) speech waveform synthesis [Shih 
et al. 1996; Wang 1998]. The framework for the integrated synthesis system is also divided 
into such subsystems. The main processing flow of this framework is shown in Figure 1. The 
first two processing blocks are for text analysis, the middle two blocks are for prosodic 
parameter generation, and the last two blocks are for signal waveform synthesis. The synthesis 
system built is an integrated system, not a bundle of three independent systems for the three 
languages. This is because the program modules in the three subsystems are all shared in 
synthesizing the three languages’ speech. For example, the model for pitch-contour parameter 
generation is shared (or adapted) between Mandarin and Hakka, although it is originally 
trained with Min-nan sentences. The explanations for why the program modules can be shared 
are given in the following sections. 
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In the subsystem of text analysis, the first block in Figure 1, “Text Analysis A”, parses 
the input text to recognize tags and slice the text string into a sequence of Chinese-character or 
alphanumeric-syllable tokens. Then, each Chinese-character token is tried in the second block 
(Text Analysis B), to check if it can be looked up in a pronunciation dictionary in order to 
determine the comprising character’s pronunciation syllable. For the subsystem of prosodic 
parameter generation, the pitch-contour parameters of a syllable are determined by a mixed 
model of ANN (artificial neural network) [Chen et al. 1998; Lee et al. 1991] and SPC-HMM 
(syllable pitch-contour hidden Markov model) [Gu et al. 2000] in the third block of Figure 1. 
As to the parameters, amplitude and duration, their values are determined with a rule-based 
method [Chiou et al. 1991; Shiu 1996] in the fourth block of Figure 1. For the subsystem of 
signal waveform synthesis, a piece-wise linear time-warping function is first constructed in 
the fifth block of Figure 1. Then, the method of TIPW (time-proportioned interpolation of 
pitch waveform) [Gu et al. 1998] is used in the sixth block to synthesize speech waveforms. 
TIPW is an improved variant of PSOLA [Modulines 1990]. To show that the integrated 
system has noticeable performance in naturalness and signal clarity, the authors have set up a 
web page, http://guhy.csie.ntust.edu.tw/hmtts/, to demonstrate synthetic speech for the three 
languages. However, for the purpose of online testing, 
http://guhy.csie.ntust.edu.tw/hmtts/speak.html is preferable. 

text input 

text-analysis A 

text-analysis B 

pronunciation 
dictionary 

syllable pitch-contour 
generation (ann, hmm) 

 amp. & dur. value 
generation (rule-based) 

ANN & HMM 
model paramtr 

time-warping mapping 
(phone boundary mark) 

signal waveform 
synthesis (TIPW) 

speech signal 

speech-units: 
waveform, pitch peaks, 

phone boundaries. 

Figure 1. Main processing flow. 
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2. Text Analysis 

In Min-nan and Hakka, there are still many spoken words whose corresponding ideographic 
words are not known. Therefore, the authors made a decision that, in the input text, Chinese 
characters may be interleaved with syllables spelled in alphanumeric symbols. For example, 
“cit-4 tou-5 人” is a Min-nan word whose first two syllables are spelled in alphanumeric 
symbols. This decision implies that the input text must first be parsed into a sequence of 
Chinese-character and alphanumeric-syllable tokens. For example, “今天 mai-3 ki-3” is 
parsed into “今天”, “mai-3”, and “ki-3”. The number at the end of a syllable indicates the 
lexical tone of the syllable. This parsing processing is executed in the first block of Figure 1. 

In addition, the authors have defined several kinds of tags to help carry some necessary 
controlling information. For example, the tag, “@>2”, may be placed between two sentences 
to command that the sentences behind the tag will be synthesized to Hakka speech until 
another language-selection tag is encountered. Such a language-selection tag is needed 
because it is intended that the sentences of an article may be alternatively synthesized to 
different languages’ speech. Another kind of tag is “@>dxxx”. This tag may also be placed 
between two sentences to change the speaking rate of the sentences behind it. The part, “xxx”, 
in the tag represents three decimal digits to specify how many milliseconds on average a 
syllable will be synthesized to. In addition to the two tags explained, several other kinds of 
tags are also defined. The details are listed in Table 1. The parsing of such tags is also 
executed in the first block of Figure 1. 

Table 1. Tags and their meanings. 

Tag symbol Explanation 
@>x language selection, x may be 0, 1, or 2. 

0: Mandarin, 1: Min-nan, 2: Hakka 
@>dxxx speaking rate, syllable average duration in xxx milliseconds.  
@>txxx average tone height, in xxx Hz. 
@>vxxx vocal track extended (or shrunken) to xxx percents of 

original length. 
<, > word-constructing tag, e.g., <cit-4 tou-5> 
* breath-break tag 

After an input sentence is parsed into a sequence of tokens, the pronunciation syllables 
for each Chinese character token are determined in the second block of Figure 1. According to 
the language-selection tag, the corresponding pronunciation dictionaries are consulted to 
check if the prefix part of a token can be found in the dictionaries. A dictionary consisting of 
longer words is tried before a dictionary consisting of shorter words. Currently, the authors 
have collected 55,000, 12,000, and 19,000 multi-syllabic words, respectively, for Mandarin, 
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Min-nan, and Hakka. Note that input text is usually composed in Mandarin written words. 
Therefore, use of the dictionary plays a role of word translation. For example, “今天” (today) 
in Mandarin is translated as “今仔日”, in Min-nan, which is pronounced as, “gin-1 a-2 rit-8”. 
Another example, “筷子” (chopstick) in Mandarin is translated to “箸” which is pronounced 
as, “di-7”. These examples also show that the words obtained after translation may have 
longer or shorter lengths. 

After a word is found in a dictionary or a block of syllables bounded with the tags, “<” 
and “>”, is parsed out, one knows the boundaries of a word and its syllabic composition. Then, 
tone-sandhi rules for the currently selected language can be applied to the compositional 
syllables of the word. This is executed in the second block of Figure 1. Note that different 
languages have very different tone-sandhi rules. For example, in a word of Mandarin, if two 
adjacent syllables are both of the third tone, then the former one must have its tone changed to 
the second tone. As another example, consider the tone-sandhi rule applied to a word of 
Min-nan that every syllable of a word except the final one must have its tone changed to its 
inflected tone. 

3. Prosodic Parameter Generation 

The prosodic parameters of a syllable include pitch-contour, duration, amplitude, and leading 
pause. The generation of prosodic parameter values plays a very important role because it 
determines the level of naturalness of synthesized speech. Therefore, much effort has been 
devoted to investigate models (or methods) for generating prosodic parameter values [Chen et 
al. 1998; Gu et al. 2000; Lee et al. 1993; Wu et al. 2001; Yu et al. 2002]. 

Among these prosodic parameters, pitch-contour is the most important one for obtaining 
a higher naturalness level. Therefore, the authors have spent considerable effort in 
investigating different kinds of models, HMM [Gu et al. 2000], ANN, and a mixed model of 
both [Gu et al. 2005b]. In the third block of Figure 1, a mixed model of HMM and ANN is 
used to generate pitch-contours. Here, model mixing means taking a weighted sum of two 
pitch-contours generated respectively by HMM and ANN. Note that, in this study, 
pitch-contour models, HHM and ANN, are both trained with Min-nan spoken sentences. Then, 
through tone mapping, the Min-nan trained and mixed model is adapted to generate 
pitch-contours for Hakka and Mandarin. By such a sharing of pitch-contour model, the effort 
in training other languages’ pitch-contour models can be saved. 

In contrast to pitch-contour, duration and amplitude are thought to be minor factors for 
naturalness. Hence, only a rule-based method is used in the fourth block of Figure 1 to 
generate their values [Chiou et al. 1991; Shiu 1996]. The authors program three sets of rules 
for the three layers, syllable layer, word layer, and breath-group layer. In the syllable layer, a 
syllable containing different vowel phonemes, /a/, /i/, /u/, /e/, or /o/, is assigned different 
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amplitude values, 0dB, -4dB, -3dB, -2dB, or -1dB. In the word layer, the first syllable of a 
word is emphasized 0.5 dB in amplitude. Finally, in the breath-group layer, the first two 
syllables of a group are emphasized 1dB and 0.5dB respectively. In addition, the last two 
syllables of the last breath-group of a sentence are deemphasized 0.5dB and 1dB respectively. 
By interaction of these rules in the three layers, the generated amplitude and duration values 
appear to have some randomness, and can present a certain level of naturalness. 

3.1 Syllable Pitch Contour HMM 
A syllable at the beginning of a sentence is usually uttered with higher pitch than one at the 
end, i.e., the phenomenon of declining. With respect to this phenomenon, the authors imagine 
that there are three prosodic states corresponding to sentence-initial, sentence-middle, and 
sentence-final. However, how to assign a sentence’s syllables to these states is not explicitly 
known. Therefore, the authors imagine these prosodic states are hidden and will simulate them 
by the hidden states of a left-to-right hidden Markov model [Rabiner et al. 1993]. Besides the 
influence of prosodic states, the lexical tones of a syllable and its adjacent syllables also have 
strong influences. Therefore, the authors take into account the lexical-tones of a syllable and 
its adjacent syllables, and call such an HMM as syllable pitch-contour HMM (SPC-HMM). 

The height and shape of a syllable’s pitch-contour are mainly influenced by the lexical 
tones of the syllable and its immediately adjacent syllables. Therefore, the authors decide to 
combine the t-th syllable’s lexical tone and pitch-contour VQ (vector quantization) code with 
its left and right adjacent syllables’ lexical tones to define the t-th observation symbol, Ot, as 

1 1392 56 8 ,
          0 6,  0 7.

t t t t t

t t

O X X X V
X V

− += ⋅ + ⋅ + ⋅ +

≤ ≤ ≤ ≤
 (1) 

where Xt is the lexical-tone number of the t-th syllable, and Vt is the pitch-contour VQ code of 
the t-th syllable in a training sentence. Actually, the number, Xt, is indirectly obtained, i.e. 
lexical-tone number eight is mapped to six beforehand, and then the lexical-tone number is 
decreased by one. In Equation (1), the number, eight, is multiplied because there are eight 
codewords in each tone’s pitch-contour VQ codebook. The numbers, 56 and 392, may be 
viewed as 7×8 and 7×7×8, respectively, and 7 is the number of different lexical tones in 
Min-nan and 8 is the number of code-words in a VQ codebook. When t=1, i.e. staying at the 
first syllable of a training sentence, Xt-1 is undefined. In this case, the definition of Ot is 
modified to 7×7×7×8 + 56 Xt + 8 Xt+1 + Vt. Similarly, the definition of Ot for the last syllable 
of a sentence must also be modified [Gu et al. 2000]. 

Before VQ encoding, the pitch-contour of each syllable from a training sentences is first 
time normalized and then pitch-height normalized [Gu et al. 2000]. Time normalization means 
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placing 16 measuring points equally spaced in time. Then, a pitch-contour is represented as a 
vector of 16 frequency values (in log Hz scale), called a frequency vector. After time 
normalization, these frequency vectors must be normalized in pitch-height to eliminate the 
influence of the speaker’s mood at the time of recording. Totally, the authors have recorded 
643 Min-nan training sentences that are comprised of 3,696 syllables. 

Next, consider the generating of pitch-contours by using SPC-HMM. When a sentence is 
input, it will be analyzed first by the textual analysis components. Hence, its 
pronunciation-syllable sequence is available. For example, for the short sentence, “我來啊” (I 
have come), of Min-nan, its corresponding syllable sequence is “qua-1 lai-5 a-7”. Then, one 
can encode the three adjacent syllables’ lexical tones partially (because VQ code, Vt, is not 
known yet) according to Equation (1). Since each lexical tone has 8 codewords in its 
pitch-contour VQ codebook, each syllable of the sentence has 8 possible encoded observation 
symbols corresponding to it. For example, for the second syllable “lai-5”, its possible encoded 
observation symbols are 392(1-1)+56(5-1)+8(7-1)+Vt, i.e. the value range from 264 to 271 
since the value of Vt is not determined yet. Therefore, in the synthesis phase (or testing phase), 
besides the time (syllable index within a sentence) and state (prosodic-state index) axes, a 
third axis to index the 8 possible observation-symbol candidates, must be added. Then, the 
conventional two-dimensional (time and state) DP (dynamic programming) algorithm for 
speech recognition is extended to a three-dimensional DP algorithm and used to search the 
most probable path [Gu et al. 2000]. The main part of the extended algorithm is shown in 
Equation (2), 

1 ,
1 0 7

( , )   max    max  ( , )   ( ),     0 2,  0 7,k
t t i n n t

n i n j
n k i j a b O n kδ δ −

− ≤ ≤ ≤ ≤

⎡ ⎤
= ⋅ ⋅ ≤ ≤ ≤ ≤⎢ ⎥

⎣ ⎦
 (2) 

where k
tO  represents the k-th possibly encoded observation symbol at time t, n and i are state 

indices, ,i na  is state-transition probability, ( )nb •  is symbol-observing probability at state n, 
and ( , )t n kδ  is the largest obtainable probability of a best path that stays at state n and selects 
the k-th observation symbol at time t. According to the best path found, the state value and k 
value of k

tO  at each time point, t, can then be determined. Accordingly, the pitch-contour 
VQ code, Vt, for the t-th syllable of the sentence is set to the value of k determined at time t. 

3.2 Syllable Pitch Contour ANN 
The architecture of the artificial neural network used here is shown in Figure 2. It is designed 
to be a recurrent type ANN in order to have the prosodic state kept internally. The input layer 
of the ANN has 8 ports to receive contextual parameters. For the hidden and recurrent hidden 
layers, the numbers of nodes are both set to be 30, according to experiment results. After a 
syllable’s contextual parameters are input and processed, a pitch contour represented as a 16 
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dimensional frequency vector is output in the output layer. This frequency vector can be 
interpreted as a sequence of 16 frequency values along a pitch-contour. 

 8  con tex tu a l p ara m eters 

16  d im . p itch -con tou r  
Figure 2. The architecture of the ANN studied here. 

Here, the contextual parameters, i.e. the inputs to the ANN, are appropriately selected to 
provide essential contextual information and to lower the quantity of required training 
sentences. In detail, the contextual parameters are as listed in Table 2. As there are seven 
lexical tones in Min-nan, 3 bits are enough to represent them. The numbers of different 
syllable initials and finals are 18 and 61, respectively. Hence, 5 and 6 bits, respectively, are 
used to represent current syllable’s initial and final types. As to the parameter of the previous 
syllable’s final, the authors first group the 61 possible finals into 12 classes, using only 4 bits 
to represent the 12 final classes. Similarly, the authors first group the 18 possible initials into 6 
classes, and use only 3 bits to represent the 6 initial classes for the next syllable’s initial. 
Grouping is made here because the quantity of recorded training sentences is not large enough 
to let the ANN learn the influences of the detailed combinations of current syllable and 
previous (or next) syllable. Syllable initial and final classes grouped here are detailed in Table 
3 and 4, respectively. The last item in Table 2, the time-progress index, is intended to carry 
timing information. If the current syllable is the k-th syllable of a sentence of N syllables in 
length, then the value of time-progress index is set to the floating-point number k/N. 

Table 2. Contextual parameters. 

Items Tone of 
previous 
syllable

Final 
class of 
previous 
syllable 

Tone of 
current 
syllable 

Initial of 
current 
syllable

Final of 
current 
syllable

Tone of 
next 

syllable

Initial 
class of 

next 
syllable 

Time 
progress 

index 

Bits 3 4 3 5 6 3 3 void 
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Table 3. Syllable-initial classes. (General Phonetic Symbol System) 

Classes 1 2 3 4 5 6 

Initials 
(null), m, 
n, l, r, ng, 

q, v 
h, s b, d, g z c p, t, k 

Table 4. Syllable-final classes. (General Phonetic Symbol System) 

Classes Finals Classes Finals 

1 (null) 7 -i, -u, -ui, -iu 
2 -a, -ia, -ua 8 -ing, -eng, -in, -un, -en 
3 -o, -io, -ior 9 -ang, -iang, -uang, -ong, -iong, -an, -uan 
4 -er, -ier 10 -am, -iam, -im, -om 

5 -e, -ue 11 -ah, -eh, -ih, -oh, -uh, -auh, -erh, -iah,    
-ierh, -ioh, -uah, -ueh 

6 -ai, -uai, -au, -iau 12 -ap, -iap, -ip, -op, -at, -et, -it, -uat, -ut, -ak,  
-iak, -ik, -iok, -ok 

3.3 Adaptation of Pitch Contour Model 
Here, the pitch-contour model trained with Min-nan sentences is used as the working model. 
This working model can be adapted in a way to generate pitch contours for a target (Mandarin 
or Hakka) language’s sentences. In detail, a lexical-tone sequence, X1X2, …, Xn, extracted 
from a target language’s sentence is first mapped to a lexical tone sequence, Y1Y2, …, Yn, for 
the working language. Then, the mapped lexical tones are used instead as the input for the 
working model. The pitch-contours, R1R2, …, Rn, generated by the working model are treated 
as the output of the adapted model for the sequence, X1X2, …, Xn. 

The reasons why this adaptation method may work are explained in detail in [Gu et al. 
2005a]. In brief, slight differences in frequency-height or boundary-part shape between two 
pitch-contour curves need not be worried about for correct recognition of the carried lexical 
tone. The authors also think it is reasonable to approximate a pitch-contour curve in a target 
language with a curve-shape class trained in the working language that is of similar shape in 
the central part. Note that each lexical tone of the working language is usually trained to have 
several representative curve-shape classes, e.g. 8 code-words in each lexical tone’s VQ 
codebook. Hence, for a pitch-contour curve from a target language, one can select from the 
curve-shape classes trained for the mapped lexical tone to pick out the curve that is most 
similar. Then, the possible decrease in naturalness due to differences in frequency-height or 
boundary-part shape can be minimized. 
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Note that some syllable initials and finals of Mandarin (e.g., /yu/) and Hakka (e.g., /oi, 
eu/) are not found in Min-nan. With respect to this, it may make one suspect if the adaptation 
method can indeed work. However, in SPC-HMM, the definition of observation symbol in 
equation (1) does not include syllable initials and finals. This indicates that pitch-contour is 
only insignificantly influenced by syllable initials and finals according to previous studies [Gu 
et al. 2000; Gu et al. 2005b]. Although the information of syllable initial and final is used in 
the pitch-contour ANN, the authors still think that the factors of syllable initial and final are 
insignificant according to previous experiments for evaluating classification methods of 
Min-nan initials and finals [Gu et al. 2005b]. Anyway, to solve the problem of mismatched 
initials and finals between the two languages, the authors let the program automatically select 
a similar one (more same letters in spelling) to replace a finial or initial not found in Min-nan. 
For example, /yu/ is replaced with /u/, and /oi, eu/ are replaced with /ai, au/ respectively. The 
authors think such replacements are acceptable. 

The mappings from Hakka tones to Min-nan tones are listed in Table 5. The mapping 
from sea-land Hakka to Min-nan, Table 5(a), can be said to be a nice one-to-one mapping 
because both have the same number of lexical tones, and for each lexical tone of Hakka one 
can find a lexical tone in Min-nan that has almost same pitch-contour shape. The mapping 
from four-country Hakka to Min-nan, Table 5(b), is also straightforward. If tone number 7 is 
removed from Min-nan, then this mapping is still a nice one-to-one mapping. 

Table 5. Tone mapping from Hakka to Min-nan. 
(a) sea-land Hakka to Min-nan 

Hakka tone number 1 2 3 4 5 7 8 

Mapped Min-nan tone 
number 2 5 3 8 1 7 4 

Example Chinese 
characters 衫 短 褲 寬 人 鼻 直 

      (b) four-country Hakka to Min-nan 

Hakka tone number 1 2 3 4 5 8 

Mapped Min-nan tone 
number 5 2 1 4 3 8 

Example Chinese 
characters 夫 虎 富 福 湖 復 

The mapping from Mandarin tones to Min-nan tones is listed in Table 6. Three of the 
Mandarin lexical tones, i.e. high-level, rising, and falling, also exist as Min-nan lexical tones. 
Besides these three tones, the low-level tone of Min-nan and the low-dipping tone of 
Mandarin are perceived to be almost identical. Therefore, the low-dipping tone of Mandarin 
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can be mapped to the low-level tone of Min-nan. The neutral tone of Mandarin has a shorter 
duration than the other tones. This contrast also exists in Min-nan, i.e. both abrupt tones have 
shorter durations. In addition, the low-abrupt tone of Min-nan has a low pitch-height, just as 
the neutral tone has. Hence, the neutral tone of Mandarin can be mapped to the low-abrupt 
tone of Min-nan. 

Table 6. Tone mapping from Mandarin to Min-nan. 

Mandarin tone number 1 2 3 4 5 

Mapped Min-nan tone number 1 5 3 2 4 

Example Chinese characters 加 油 打 氣 的 

Here, to show the abilities of the adapted pitch-contour models, the authors take the 
Mandarin chunk, “花店的老闆” (boss of a flower shop), as an example. The sequence, 
X1X2, …, Xn, is hence, 1, 4, 5, 2, 3. And after lexical-tone mapping, the sequence, Y1Y2, …, 
Yn, is obtained as 1, 2, 4, 5, 3. Then the mapped sequence and relevant contextual information 
are fed into the HMM and ANN models, respectively. The pitch-contours output by the two 
models are shown in Figure 3. The solid line is generated by the HMM model, the dotted line 
is generated by the ANN model, and the gray line is a mixture of the former two. Basically, 
these lines can all be recognized in their carried lexical tones. On the other hand, apparent 
differences in pitch heights can also be seen in the middle three syllables. Due to this 
phenomenon, the authors think the mixed pitch contour would be the better choice. 

 

 
 

闆

的
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MIX 
花
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Figure 3. Pitch contours generated by adapted models. 
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4. Signal Waveform Synthesis 

In this system, each syllable of a language has only one utterance recorded in a level tone 
(high or medium level). Therefore, the original syllable waveform must be manipulated to 
obtain synthesized waveforms with different prosodic characteristics. The synthesis method 
used here is TIPW [Gu et al. 1998]. TIPW is an improved variant of PSOLA, i.e. the effects of 
chorus and reverberation are largely reduced. Besides, TIPW is capable of adjusting vocal 
track length through re-sampling [Gu 2001]. 

Originally, TIPW was developed for synthesizing Mandarin speech. Thus, it does not 
support the synthesis of signal waveform with suddenly changed amplitude that is often found 
at the ending portion of an abrupt-tone syllable, e.g. /zit8/. Nevertheless, abrupt-tone syllables 
are very frequently used in Min-nan and Hakka. One method to overcome this difficulty is to 
treat the end portion of an abrupt-tone syllable as a stop consonant. Then, the same method 
used in synthesizing a stop consonant at the syllable initial portion can also be adopted to 
solve this problem. 

4.1 A Fluency-Improving Method 
In addition, the authors have made another improvement to TIPW. This improvement 
significantly increases the fluency of the synthesized speech. In an ordinary speech synthesis 
system, the subsystem of prosodic-parameter generating only determines the duration value, 
Es, of a syllable to be synthesized. The detailed dividing of syllable duration, Es, to its 
comprising phonemes is, however, not controlled by the prosody subsystem. Furthermore, the 
subsystem of signal waveform synthesis usually extends (or shrinks) the original speech 
waveform to an intended time length in a linear manner. According to this study, linear 
extending (or shrinking) of time length is a major cause of a decrease in much of the fluency 
of synthesized speech. 

Consider an example syllable, /man/. Suppose that, in its original recorded waveform, the 
three phonemes, /m/, /a/, and /n/, occupy Dm, Da, and Dn milliseconds, respectively, and Ds = 
Dm + Da + Dn. A phenomenon that can be observed is that the ratio, (Dm+Dn)/Ds, will 
become smaller when /man/ is uttered within a sentence instead of being uttered in isolation. 
Currently, the authors are studying a simple method to simulate this phenomenon. In further 
research, the authors will study it with a more systematic method. The method used here is as 
depicted in Figure 4. That is, a piece-wise linear function is used to map the time-axis of a 
synthetic syllable waveform to the time-axis of its original waveform. In Figure 4, the 
symbols, 
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tEm Ea En

Dm

Da

t’ 

Dn

 
Figure 4. Piece-wise linear mapping function. 

Em, Ea, and En represent the time lengths of the three phonemes, /m/, /a/, and /n/ in the 
synthesized waveform while Dm, Da, and Dn represent these three phonemes’ time lengths in 
the original waveform. In this system, the values of Em, Ea, and En are determined by the 
following procedure: 

 

r = 0.6; 

while ( r >= 0.1 ) { 

   Em = (Dm/Ds) * r * Es; 

   En = (Dn/Ds) * r * Es; 

   Ea = Es – Em – En; 

   if (Ea > Es*0.4) break; 

   r = r – 0.05; 

} 

Eb = Em + En; 

if (Em > 0 && Em/Eb < 0.35) { Em = 0.35*Eb;  En=Eb-Em; } 

if (En > 0 && En/Eb < 0.35) { En = 0.35*Eb;  Em=Eb-En; } 

 

If the structure of a syllable is the same as /san/ or /an/, i.e. without voiced initial consonant, 
then the values of Dm and Em can be set to zero directly. Similarly, if the structure of a 
syllable is the same as /ma/, i.e. without a voiced ending consonant, then the values of Dn and 
En can be set to zero directly. Apparently, to apply the procedure given above, the boundary 
points between adjacent phonemes must be labeled beforehand in order to compute the values 
of Dm, Da, and Dn, and to construct the mapping function. 
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4.2 Example Waveforms 

4.2.1 TIPW Synthesis Method 
Since the synthesis method, TIPW, is not as popular as PSOLA, the authors will illustrate its 
processing steps with signal waveforms. To obtain a complete view of TIPW, including a 
detailed explanation of the method, see [Gu et al. 1998]. Here, let the two adjacent pitch 
periods in Figure 5(a) be around the mapped (using the piece-wise linear mapping function) 
time point, τm, in a recorded syllable. The first step of TIPW is to determine the weights, w1 
and w2, for the left and right pitch periods. The value of w2 is computed as (τm -τ1) / (τ2 -τ1) 
where τ1 and τ2 are time points of the left and right pitch periods’ centers respectively. The 
value of w1 is simply 1 - w2. By weighting the two pitch periods with w1 and w2 respectively, 
one can obtain the two waveforms shown in Figure 5(b). Here, weighting a signal waveform 
with a weight, w, means that the value of each signal sample in the waveform is multiplied by 
the weight, w. 

The second step is to window the pitch waveforms with two Hanning (or cosine) window 
halves. Here, windowing a signal waveform x(n) with a window function f(n) means that the 
result sample value at time n is x(n)⋅f(n), i.e. one-to-one multiplying. The two waveforms in 
Figure 6(a) are obtained by windowing the left pitch period in Figure 5(b) with two symmetric 
half Hanning windows. Here, the window length, L, is set to the smaller of L1 and Lm where 
L1 is the left pitch period’s length and Lm is the length of the period to be synthesized. The 
detailed formula for the two window functions used in the left and right sides, respectively, of 
Figure 6(a) are: 

( )( )   0.5  0.5cos ,     0,  1,  2,  ...,  1,n
left Lf n n Lπ= + ⋅ = −  (3) 

( )( )   0.5  0.5cos ,     0,  1,  2,  ...,  1.n
right Lf n n Lπ= − ⋅ = −  (4) 

After windowing, the signal samples’ values will be depressed in proportion to the window 
function’s curve height. This can be seen from Figure 6(a). Similarly, the two waveforms in 
Figure 6(b) are obtained by windowing the right pitch period in Figure 5(b) with two 
symmetric half Hanning windows. However, the window length is now set to the smaller of L2 
and Lm. Note that the window length determination rules are important because they can 
prevent the effects of reverberation and dual-tones. 

Then, as the last step, the four waveforms in Figure 6(a) and Figure 6(b) are overlapped 
and added to obtain a synthesized pitch period whose waveform is shown in Figure 7. Here, 
“overlapped” means that the four waveforms’ locations on the time axis are left or right 
shifted in order that they have same starting or ending times. In detail, the two waveforms on 
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the left side of Figures 6(a) and 6(b) are left aligned to have same starting time, 0, in terms of 
the time axis of Figure 7. In contrast, the two waveforms on the right side of Figures 6(a) and 
6(b) are right aligned to have same ending time, Lm-1. “Added”, as used here, means that at 
each time point n, the four waveforms’ four signal-sample values are added together to 
become the signal sample at time n for the resulted waveform. 

(a) original pitch periods 
 

(b) weighted pitch periods 

τ1 τ2

τm

w1=0.35 w2=0.65

L1 L2

 
Figure 5. Original and weighted waveforms of two adjacent pitch periods. 

(a) two half-windowed waveforms from the left pitch period 
 

(b) two half-windowed waveforms from the right pitch period 

Hanning window halves

 
Figure 6. Hanning windowed pitch waveforms. 

Lm

0 Lm 
 

Figure 7. Synthesized pitch waveform. 
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4.2.2 Piece-wise Linear Mapping 
To demonstrate the effect of the piece-wise linear mapping function, take the Mandarin word, 
“農田” (farmland) as an example and show its signal waveforms obtained from the original 
recording and the synthesis processing. The waveform in Figure 8 is a direct concatenation of 
the recorded waveforms of /nong-1/ and /tien-1/ while the waveform in Figure 9 is synthesized 
by this system. From Figure 8, it can be observed that the /ng/ part in /nong/ and the /n/ part in 
/tien/ both occupy a large portion of the syllable duration. However, through the remedying of 
the piece-wise linear mapping function, this phenomenon is largely reduced, and the fluency 
of the synthesized speech is improved greatly. It can be seen from Figure 9 that the duration 
ratios of /ng/ to /nong/ and /n/ to /tien/ now apparently become smaller. 

 

ngn n t

/nong-1/ /tien-1/

 
Figure 8. Direct concatenation of the recorded syllables, /nong-1/ and /tien-1/. 

 

 
 

ngn n t

農/nong-2/ 田/tien-2/

 
Figure 9. A synthetic waveform for /nong-2 tien-2/. 

5. Experiments and Results 

After the integrated system is implemented and ready to run, perception tests are conducted. 
The first issue of concern is the naturalness levels of Mandarin and Hakka pitch-contours 
generated by the Min-nan trained pitch contour models. Therefore, three short articles written 
in Mandarin, Hakka and Min-nan, respectively, are fed as inputs into the system. Then, the 
output speeches are played to each of the persons participating in the tests. Here, ten persons 
studying in university were invited to evaluate the synthetic speeches. For each person, two 
pairs of speech files were played, (Sn, Sm) and (Sn, Sh). Sn, Sm, and Sh represent synthetic 
Min-nan, Mandarin, and Hakka speeches, respectively. Then, the person was requested to give 
a score of -2, -1, 0, 1, or 2 for each pair. Here, 2 and -2 mean “better”, 1 and -1 mean “slightly 
better”, and 0 means “almost identical”. As to the sign, positive sign means the latter is more 
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natural, and negative sign means the former is more natural. According to the scores given by 
the ten persons, the averaged scores are computed to be -0.6 for Mandarin and -0.2 for Hakka. 
That is, the synthetic Hakka speech was perceived to be almost as natural as the synthetic 
Min-nan speech. But the synthetic Mandarin speech was perceived to be less natural than the 
Min-nan speech. This is because the pitch-contours generated for Mandarin were perceived to 
have a slightly strange accent. 

Another issue of concern is the fluency of the synthetic speech. Hence, two synthesis 
conditions are considered here for synthesizing a short Mandarin article. In the first condition, 
the mapping function, used in waveform synthesis, between the synthetic syllable’s time axis 
and the recorded syllable’s time axis is forced to be linear. In the other condition, the mapping 
function shown in Figure 4 is adopted. The two synthetic speeches obtained under the two 
conditions were played to each of the participating persons to compare their fluency. Again, 
each person was requested to give a score of -2, -1, 0, 1, or 2. The meanings of these numbers 
are as mentioned above. The average score was computed to be 0.4. That is, the fluency of the 
synthetic speech under the second condition was better than the one under the first condition. 

6. Concluding Remarks 

In this paper, the authors intend to promote the idea of synthesizing Mandarin, Min-nan, and 
Hakka speech with an integrated system. To show it is feasible, a possible system framework 
and some feasible implementation methods for the system components are proposed. 
According to the system framework and implementation methods presented, the authors have 
built an integrated speech synthesis system for the three languages. Then, speech files output 
from the system were used to perform perception tests. The initial results show that the lexical 
tone carried in the synthetic Mandarin and Hakka speeches can all be correctly recognized 
even though the pitch-contour models are trained with Min-nan sentences. As to naturalness 
level, the synthetic Hakka speech is perceived to be more natural than the synthetic Mandarin 
speech. How to interpret this phenomenon, though, is left to further studies. 
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