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Abstract

MiniJudge is free online open-source software to help theoretical syntacticians collect and analyze

native-speaker acceptability judgments in a way that combines the speed and ease of traditional

introspective methods with the power and statistical validity afforded by rigorous experimental design.

This paper shows why MiniJudge is useful, what it feels like to use it, and how it works.

1. Introduction

Linguistics is a science because linguists test hypotheses against empirical data, but this testing is done

in a much more informal way than in almost any other science. Theoretical syntacticians, for example,

violate protocols standard in the rest of the cognitive sciences by acting simultaneously as experimenter

and subject, and by showing little concern with the issues of experimental design and quantitative

analysis deemed essential in most sciences. Linguists recognize that their informally-collected data are

often inconclusive; controversial native-speaker judgments are commonplace problems in both

research and teaching. From my conversations with syntacticians, I get the sense that they would

appreciate a tool for collecting judgments more reliably, yet this tool should be one that permits them to

maintain their traditional focus on theory rather than method.

This is where MiniJudge comes in. MiniJudge (www.ccunix.ccu.edu.tw/~lngproc/MiniJudge.htm)

is software to help theoretical syntacticians design, run, and analyze linguistic judgment experiments

quickly and painlessly. Because MiniJudge experiments involve testing the minimum number of

speakers and sentences in the shortest amount of time, all while sacrificing the least amount of

statistical power, I call them "minimalist" experiments. In this paper I first argue why a tool like

MiniJudge is necessary. I then walk through a sample MiniJudge experiment on Chinese. Finally, I

reveal MiniJudge's inner workings, which involve some underused or novel statistical techniques.

Currently the only implementation of MiniJudge is MiniJudgeJS, which is written in JavaScript, HTML,

and the statistical language R (www.r-project.org).

2. Balancing speed and reliability in syntactic judgment collection

Though some readers may wonder why we should bother with judgments when we can simply analyze

corpora, judgments and corpus data are actually complementary performance windows into linguistic

competence, with their own strengths and weaknesses (see e.g. Penke & Rosenbach, 2004). The



question is how we can extract the maximum value out of judgments in the easiest possible way.

2.1. Experimental syntax

Phillips and Lasnik (2003:61) are entirely right to emphasize that the "[g]athering of native-speaker

judgments is a trivially simple kind of experiment, one that makes it possible to obtain large numbers

of highly robust empirical results in a short period of time, from a vast array of languages." Even

Labov (1996:102), who generally favors corpus data, admits that "[f]or the great majority of sentences

cited by linguists," native-speaker intuitions "are reliable." Yet as Phillips and Lasnik (2003:61) also

point out, "it is a truism in linguistics, widely acknowledged and taken into account, that acceptability

ratings can vary for many reasons independent of grammaticality." Unfortunately, in actual practice

linguists don't take the distinction between "acceptability" and "grammaticality" as seriously as they

know they should, and their "trivially simple methods" become merely simple-minded (Schütze, 1996).

Since the problem of detecting competence in performance is precisely the problem faced by

experimental cognitive scientists every day (e.g., testing vision theories with optical illusions), a

reasonable response to the syntactician's empirical challenges would be to adopt the protocols standard

in the rest of the experimental cognitive sciences: multiple stimuli and subjects (naive ones rather than

the bias-prone experimenters themselves), systematic controls, factorial designs, continuous response

measures, filler items, counterbalancing, and statistical analysis. When judgments are collected with

these more careful protocols, they often reveal hitherto unsuspected complexity. Recent examples of

the growing experimental syntax literature include Sorace & Keller (2005) and Featherston (2005);

Cowart (1997) is a user-friendly handbook.

2.2. Minimalist experimental syntax

Full-fledged experimental syntax is complex, forcing the researcher to spend a lot of time on work that

is not theoretically very interesting. The complexity of an experiment should actually be proportional to

the subtlety of the effects it is trying to detect. Very clear judgments are detectable with traditional

"trivially simple" methods; very subtle judgments may require full-fledged experimental methods. But

in the vast area in between, a compromise seems appropriate, where methods are powerful enough to

yield statistically valid results, yet are simple enough to apply quickly: a minimalist experimental

syntax (see Table 1).

Table 1. Defining characteristics of minimalist experimental syntax
Binary yes/no judgments No counterbalancing of sentence lists
Experimental sentences only (no fillers) Maximum of two binary factors
Very few sentence sets (about 10) Random sentence order
Very few speakers (about 10-20) Order treated as a factor in the statistics

While conducting a minimalist experiment is much simpler than conducting a full-fledged

judgment experiment (an explicit guide is given in Myers 2006), some steps may still be overly

complex and/or intimidating to the novice experimenter, in particular the design of the experimental

sentences and the statistical analysis. The purpose of the MiniJudge software is to automate these steps.



3. Using MiniJudge

To show how MiniJudge is used, I describe a recent application of it to a morphosyntactic issue in

Chinese; for another example, see MJInfo.htm#resultshelp, reachable through the MiniJudge homepage.

MiniJudge has also been used to run syntax experiments on English and Taiwan Sign Language, as

well as to run pilots for larger studies and to help teach basic concepts in experimental design.

3.1. Goal of the experiment

He (2004) presents an interesting observation regarding the interaction of compound-internal phrase

structure and affixation of the plural marker men. Part of his paradigm is shown in Table 2, where V =

verb and O = object (based on his (2) & (4), pp. 2-3).

Table 2. The VOmen paradigm of He (2004)
[+men] [-men]

[+VO] *zhizao yaoyan zhe men
make rumor person PLURAL

zhizao yaoyan zhe
make rumor person

[-VO] yaoyan zhizao zhe men
rumor make person PLURAL

yaoyan zhizao zhe
rumor make person

He's analysis is not relevant here; the question is simply whether or not his observation about the

judgment pattern in Table 2 is empirically correct. As a non-native speaker of Chinese, I have no

intuitions myself. When I have informally asked colleagues and students to double-check the

judgments, I have received a mixed response, with some ruling out men or VO entirely, but this misses

the point, since He's claim concerns the ungrammaticality of the VOmen form relative to all the others.

Some speakers shown He's starred and non-starred examples are willing to agree with his judgments,

but it's likely that the star pattern has biased them. It may also be that He's generalization works for the

few examples he cites, but fails in general. My goal, then, was to use MiniJudge to generate more

examples to test systematically on native speakers.

3.2. The MiniJudgeJS interface

MiniJudgeJS is simply a JavaScript-enabled HTML form. Input and output are handled entirely by text

areas; generated text includes code to run statistical analyses in R. Like the rest of the MiniJudge

family, MiniJudgeJS divides the experimental process into the steps listed in Table 3.

Table 3. The steps used by MiniJudge
I. Design experiment II. Run experiment III. Analyze experiment
Choose experimental factors Choose number of speakers Download and install R
Choose set of prototype sentences Write instructions for speakers Enter raw results
Choose number of sentence sets Print or email survey forms Generate data file
Segment prototype set (optional) Save schematic survey file Save data file
Replace segments (optional) Generate R code
Save master list of test sentences Paste R command code into R



3.3. Designing the experiment

A MiniJudge experiment begins by choosing the experimental factors. In the case of the VOmen claim,

the paradigm in Table 2 is derived via two binary factors: [±VO] (VO vs. OV) and [±men] (with or

without men suffixation). As noted above, He's observation doesn't relate to each factor separately, but

rather to an interaction: the combination of the factor values [+VO] and [+men] is claimed to result in

lower acceptability, relative to overall judgments for [+VO] and for [+men].

The next step is to enter the prototype set of sentences (a pair if one factor, a quartet if two factors).

Similar to the example sets shown in syntax papers and presentations, the prototype set serves multiple

purposes. Most fundamentally, it helps to make the logic of factorial experimental design intuitive for

novice experimenters. Syntacticians are not always aware of the importance of contrasting sentences

that differ only in theoretically relevant factors, or of the central role played by interactions in many

syntactic claims (for further discussion of the relevance of factors and interactions in syntax

experiments, see MJInfo.htm#factorial and MJInfo.htm#interact).

Another purpose of the prototype set is that it can be used to help generate further sentence sets

that maintain the same factorial contrasts but vary in irrelevant lexical properties. In the case of the

present experiment, the claim made in He (2004) says nothing about the particular verb, object, or head

that is used. Thus the judgment pattern claimed for Table 2 above should also hold for the sets shown in

Table 4 below, regardless of any additional influences from pragmatics, frequency, suffixlikeness (zhe

vs. the others), or freeness (ren vs. the others); the stars here represent what He might predict (lexical

content for the new sets was chosen with the help of Ko Yu-guang and Zhang Ning).

Table 4. Extending the VOmen paradigm of He (2004)
[+men] [-men]

[+VO] *chuanbo bingdu yuan men
spread virus person PLURAL

chuanbo bingdu yuan
spread virus person

[-VO] bingdu chuanbo yuan men
virus spread person PLURAL

bingdu chuanbo yuan
virus spread person

[+VO] *sheji shipin ren men
design ornaments person PLURAL

sheji shipin ren
design ornaments person

[-VO] shipin sheji ren men
ornaments design person PLURAL

shipin sheji ren
ornaments design person

MiniJudge partly automates the process of creating new sentence sets by dividing up the prototype

sentences into the largest repeating segments and replacing them with user-chosen substitutes. The

prototype segments for Table 2 are shown in the first row of Table 5. The user only has to find parallel

substitutes for four segments, rather than having to construct whole new sentences while keeping track

of the factorial design (Table 5 also shows the segments needed to generate the new sets in Table 4).

The segmentation and set generation processes are designed to work equally well in English-like and

Chinese-like orthographies. Of course, since MiniJudge knows no human language, it sometimes

makes strange errors, so users are allowed to correct its output, or even to generate new sets manually.



Table 5. Prototype segments and new segments for the VOmen experiment
Set 1 (prototype) segments: zhizao yaoyan zhe men
Set 2 segments: chuanbo bingdu yuan men
Set 3 segments: sheji shipin ren men

After the user has corrected and approved the master list of sentences, it can be saved to a file for

use in reports (as I am doing here). In the present experiment, the master list contained 48 sentences

(12 sets of 4 sentences each). This is an unusually large number of sentences for a MiniJudge

experiment; significant results have been found with experiments with as few as 10 sentences.

3.4. Running the experiment

In order to run a MiniJudge experiment, the user must make three decisions. The first concerns the

maximum number of speakers to test. It is possible to get significant results with as few as 7 speakers,

but in the present experiment, I generated 30 surveys. As it turned out, only 18 surveys were returned.

The second decision concerns whether surveys will be distributed by printed form or by email. In

MiniJudgeJS, printing surveys involves saving the them from a text area and printing them with a word

processor. MiniJudgeJS cannot send email automatically, so emailed surveys must be individually

copied and pasted. In the present experiment, I emailed thirty students, former students, or faculty of

my linguistics department who did not know the purpose of the experiment.

The final decision concerns the instructions, which the user may edit from a default. MiniJudgeJS

requires that judgments be entered as 1 (yes) vs. 0 (no); in the current version, if surveys are to be

collected electronically, these judgments must be typed before each sentence ID number. Chinese

instructions for the VOmen experiment were written with the help of Ko Yu-guang.

Surveys themselves are randomized individually to prevent order confounds, as is standard in

psycholinguistics. The randomization algorithm, taken from Cowart (1997:101), results in every

sentence having an equal chance to appear at any point in the experiment (by randomization of blocks),

while simultaneously distributing sentence types evenly and randomly.

Each survey starts with the instructions, followed by a speaker ID number (e.g., "##02"), and

finally the survey itself, with each sentence numbered in the order seen by the speaker. Because the

speakers' surveys intentionally hide the factorial design, the experimenter must save this information

separately in a schematic survey file. This file is meant to be read only by MiniJudgeJS; as an example,

the first line of the schematic survey file for the present experiment is explained in Table 6.

Table 6. The structure of the schematic survey information file for the VOmen experiment
File line: 01 20 05 01 -VO -men
Explanation: speaker ID

number
sentence ID
number

set ID
number

order in
survey

value of first
factor

value of
second factor

After completed surveys have been returned, the experimenter pastes them into a text area in any

order (as long as each survey still contains its ID number), and pastes the schematic survey information

back into another text window. MiniJudgeJS extracts judgments from the surveys and creates a data file



in which each row represents a single observation, with IDs for speakers, sentences, and sets,

presentation order of sentences, factor values (1 for [+] and -1 for [-]), and judgments. As an example,

the first three lines of the data file for the VOmen experiment are shown in Table 7.

Table 7. First three lines of data file for the VOmen experiment
Speaker Sentence Set Order VO men Judgment
1 20 5 1 -1 -1 1
1 45 12 2 1 1 0

3.5. Analyzing the results

For novice experimenters, the most intimidating aspect of psycholinguistic research is statistical

analysis. MiniJudge employs quite complex statistical methods that are unfamiliar even to most

psycholinguists, yet hides them behind a user-friendly interface. Data from a MiniJudge experiment are

both categorical and repeated-measures (grouped within speakers). Currently the best available

statistical model for repeated-measures categorical data is generalized linear mixed effect modeling

(GLMM), which can be thought of as an extension of logistic regression (see e.g. Agresti et al., 2000).

GLMM poses serious programming challenges, so MiniJudgeJS passes the job to R, the world's

foremost free statistical package (R Development Core Team, 2005). R is an open-source near clone of

the proprietary program S (Chambers & Hastie, 1993), and like S, is a full-featured programming

language. Its syntax is a mixture of C++ and Matlab, and of course it has a wide variety of built-in

statistical functions, including many user-written packages. The specific R package used by

MiniJudgeJS for GLMM is lme4 (and its prerequisite package Matrix), authored by Douglas Bates

and Deepayan Sarkar, and maintained by Douglas Bates. R has a simple GUI interface, and by default,

the Windows version nativizes (e.g., in Chinese Windows, menus and basic messages are in Chinese).

However, since R is a command-line program, and its outputs can be unintelligible without

statistical training, MiniJudgeJS handles the interface with it. The user merely enters the name of the

data file, decides whether or not to test for syntactic satiation (explained below in section 3.5.2), and

pastes the code generated by MiniJudgeJS into the R window. After the last line has been processed by

R, the code either will generate a warning (that the file was not found or was not formatted correctly),

or if all went well, will display a simple interpretive summary report. A much more detailed technical

report is also saved automatically; this report is explained, step by step for the novice user, in

MJInfo.htm#resultshelp.

3.5.1 A null result?

When the data file containing the 18 completed surveys in the VOmen experiment was analyzed using

the R code generated by MiniJudgeJS, the summary report in Figure 1 was produced. There are three

parts: a table showing the number of yes judgments for each category, a listing of significant patterns

(if any), and a statement about whether there was any significant confound between items and factors

(discussion of this last point is reserved for section 4.3.5).



Number of YES judgments for each category:

[+V] [-V] Total V = VO
[+m] 23 74 97 m = men
[-m] 89 163 252
Total 112 237 349

Significance summary (p < .05):

The factor VO had a significant negative effect.
The factor men had a significant negative effect.
Order had a significant negative effect.
There were no other significant effects.

The above results do not take cross-item variability into account because
no confound between items and factors was detected (p > .2).

Figure 1. Default results summary generated by MiniJudgeJS for the VOmen experiment

The negative effects of the [VO] and [men] factors mean that items containing VO or men were

judged worse, on average. These patterns are also clear from the table showing the number of yes

judgments (in the total row and total column, respectively). However, as discussed in 3.1, these patterns

are not what the empirical claim of He (2004) is concerned with. What we expected to see was a

significant interaction between [VO] and [men], but this was not found. Instead, inspection of the

technical results file shows that the p value for the interaction was 0.89, clearly non-significant.

However, this is not a refutation of He's claim, but merely a null result. Indeed, the number of yes

judgments trends in the predicted direction: for VO forms, non-men forms were judged better than men

forms by a ratio of almost 4:1 (89/23 = 3.87), about twice as high as the ratio for OV forms (163/74 =

2.20). That is, it was worse to affix men to VO forms than to OV forms, just as He claimed.

One possible cause of a null result is a confound with a nuisance variable. A clue to what this

nuisance variable might be here is the significant negative effect of order, which means that judgments

got worse (i.e., there was a rising probability of judging a form as unacceptable) as the experiment

progressed. This shift in judgments suggests that further analysis may be advisable, as described next.

3.5.2 Syntactic satiation

Though MiniJudge factors out raw order effects in its default analysis, it is possible that order also

interacts with one or more factors. Testing for interactions with continuous variables without a specific

theoretical reason may make it more difficult to interpret main effects (see e.g. Bernhardt & Jung,

1979), but MiniJudge offers the option to test for interactions with order because it helps in the

detection of syntactic satiation. This is the phenomenon (known informally as "linguist's disease") in

which linguistic intuitions are dulled by repeated testing, making it harder to be confident in one's

judgments. Following the logic proposed in Myers (2006), MiniJudge tests for satiation by looking for

negative interactions with order: early on, the [±F] contrast is strong, but later it's weak.

Snyder (2000) argues that satiation could provide a new window into grammar and/or processing,

since different types of syntactic violations differ in whether or not they satiate. Snyder suggests two

possible reasons for such differences. On the one hand, satiation may be caused by processing, not



grammar, thus providing a diagnostic for performance effects (a position taken by Goodall 2004). On

the other hand, satiability may differ due to differences between the components of competence itself,

thus permitting a new grammatical classification tool (a position taken by Hiramatsu 2000).

Although He (2004) makes no predictions relating to satiation, the unexpected null result noted in

section 3.5.1 suggests that it may be worthwhile trying out a more complex analysis that includes

interactions with order. Running this analysis simply involves telling MiniJudgeJS that we want to test

for satiation (by clicking a checkbox), and then pasting the generated code into R. Doing this with the

VOmen data resulted in the two new lines in Figure 2 being added to the significance summary.

The interaction between VO and men had a significant positive effect.
The interaction of VO * men with Order had a significant negative effect

(satiation).

Figure 2. New lines in results summary when satiation was tested in the VOmen experiment

As hoped, factoring out the interactions with order revealed a significant interaction between the

factors [VO] and [men]. This shows that the ratio difference seen in Figure 1 is indeed statistically

reliable (the detailed report file shows p = 0.02), thus vindicating He's empirical claim. This new

analysis also detected satiation in the VOmen effect; it was this interaction with order that had obscured

evidence for the VOmen effect in the default analysis.

This experiment thus not only provided reliable evidence in favor of the empirical claim made by

He (2004), but it also revealed three additional patterns not reported by He: overall lower acceptability

for VO forms relative to OV forms, overall lower acceptability of men forms, and the satiability of the

VOmen effect. Detecting satiation, and the VOmen effect it obscured, depended crucially on the use of

careful experimental design and statistical analysis, and would have been impossible using traditional

informal methods. Despite this power, the MiniJudge experiment was designed, run, and analyzed

within a matter of days, rather than the weeks required for full-fledged experimental syntax.

4. The inner workings

MiniJudgeJS, as with all future versions in the MiniJudge family, is free and open source. The

JavaScript and R code can be modified freely by downloading the HTML file and opening it in a text

editor, and both are heavily commented to make them easier to follow. In this section I give overviews

of the programming relating to material generation and statistical analysis.

4.1. Material generation

As described in section 3.3, MiniJudgeJS can assist with the generation of additional sentence sets.

This involves two major phases: segmenting the prototype sentences into the largest repeated

substrings, and substituting new segments for old segments in the new sentence sets.

The first step is to determine whether the prototype sentences contain any spaces. If they do, words

are treated as basic units, and capitalization is removed from the initial word and any sentence-final

punctuation mark is also set aside (for adding again later). If there are no spaces (as in Chinese),



characters are treated as basic units. Next, the boundaries between prototype sentences are demarcated

to indicate that cross-sentence strings can never be segments. The algorithm for determining other

segment boundaries requires the creation of a lexicon containing all unique words (or characters) in the

prototype corpus. If the algorithm detects that items from the corpus and from the lexicon match only if

one of the items is lowercase, this item is recapitalized. Versions of the prototype sentences with

"word-based" capitalization is later used when old segments are replaced by new ones.

The most crucial step in the segmentation algorithm is to check each word (or character) in the

lexicon to determine whether or not it has at least two neighbors on the same side in the corpus. For

example, suppose the prototype set consisted of the sentences "A dog loves the cat. The cat loves a

dog." The lexical item "loves" has two neighbors on the left: "dog" and "cat". Thus a segment boundary

should be inserted to the left of "loves" in the corpus. Similarly, the right neighbor of "loves" is

sometimes "the" and sometimes "a"; hence "loves" will be treated as a whole segment. By contrast, the

lexical item "cat" always has the same item to its left (once sentence-initial capitalization is removed):

"the". Similarly, the right neighbor of "the" is always "cat". Thus "the cat" will be treated as a segment,

and the same logic applies to "a dog". The prototype segments are thus "a dog", "loves", "the cat".

The final phase involves substituting the user-chosen new segments for the prototype segments.

This is done using JavaScript's built-in regular expression functions, which only became available with

Netscape 4 and Internet Explorer 4.

4.2. Statistical analysis

The statistical analyses conducted by MiniJudgeJS involve several innovations: the use of GLMM, the

inclusion of order and interactions with order as factors, the use of JavaScript to communicate with R,

the use of R code to extract key values from R's technical output so that a simple report can be

generated, and the use of R code to compare by-subject and by-subject-and-item analyses to decide

whether the latter is really necessary. In this section I describe each of these innovations in turn.

4.3.1 GLMM

As explained in section 3.5, generalized linear mixed effect modeling (GLMM) is conceptually akin to

logistic regression, which is at the core of the sociolinguistic variable-rule analyzing program

VARBRUL and its descendants (Mendoza-Denton et al. 2003), but unlike logistic regression, GLMM

regression equations also include random variables (e.g., the speakers); see Agresti et al. (2000). One

major advantage of a regression-based approach is that no data are thrown away. Moreover, since each

observation is treated as a separate data point, GLMM is usually not affected much by missing data, but

only if they are missing non-systematically (this is why participants in MiniJudge experiments are

requested to judge all sentences, guessing if they're not sure).

Though GLMM is the best statistical model currently available for repeated-measures categorical

data, it does have some limitations. First, R's implementation of GLMM tests significance using z

scores, which are reliable only if the number of observations is greater than 50 or so, but in actual

practice, 50 judgments are trivial to collect (e.g., 5 speakers judging 10 sentences each). Second, like



regression in general, GLMM assumes that the correlation between the dependent and independent

variables is not perfect, so it is paradoxically unable to confirm the significance of perfect correlations.

Third, like logistic regression (but unlike ANOVA or ordinary regression), it is impossible to calculate

GLMM coefficients and p values perfectly; they can only be estimated. Unfortunately, the best way to

estimate GLMM values is extremely complicated and slow, so R uses "simpler" yet less accurate

estimation methods. Currently, R provides two options for estimating GLMM coefficients: the faster

but less accurate penalized quasi-likelihood approximation, and the slower but more accurate Laplacian

approximation. MiniJudgeJS uses the latter.

The function in the lme4/Matrix packages used for GLMM is lmer, which can also handle

linear mixed-effect modeling (i.e., repeated-measures linear regression). The syntax is illustrated in

Figure 3, which shows the commands used to run the final analyses described above in section 3.5.2.

"Factor1" and "Factor2" are variables whose values are set in the R code to represent the actual factors.

The use of categorical data is signaled by setting the distribution family to "binomial". The name of the

loaded data file is arbitrarily called "minexp" (for minimalist experiment). The first function treats only

subjects as random, while the second function treats both subjects and items as random. The choice to

test for satiation or not is determined by the user; based on this choice, JavaScript generates different

versions of the R code. The choice to run one-factor or two-factor analyses is determined by the R code

itself by counting the number of factors in the data file. Both analyses in Figure 3 are always run, and

then compared with another R function described below in 4.3.5.

glmm1 = lmer(Judgment ~ Factor1 * Factor2 * Order + (1|Speaker), data = minexp,
family = "binomial", method = "Laplace")

glmm2 = lmer(Judgment ~ Factor1 * Factor2 * Order + (1|Speaker) + (1|Sentence),
data = minexp, family = "binomial", method = "Laplace")

Figure 3. R commands for computing GLMM when testing satiation in a two-factor experiment

4.3.2 Order as a factor

MiniJudgeJS includes order as a factor whether or not the user tests for satiation, to compensate for the

fact that MiniJudge experiments use no counterbalanced lists of sentences across subgroups of speakers.

List counterbalancing is used in full-fledged experimental syntax so that speakers don't use an explicit

comparison strategy when judging sentences from the same set (a comparison strategy may create an

illusory contrast or have other undesirable consequences). However, comparison can only occur when

the second sentence of a matched pair is encountered. If roughly half of the speakers get sentence type

[+F] first and half get [-F] first, then on average, judgments for [+F] vs. [-F] are only partially

influenced by a comparison strategy. The comparison strategy (if any) will be realized as an order

effect: early judgments (when comparison is impossible) will be different from later judgments. Thus

factoring out order effects in the statistics serves roughly the same purpose as counterbalanced lists.

4.3.3 JavaScript as an R interface

JavaScript is much more powerful than many programmers realize. In fact, a key inspiration for

MiniJudgeJS was the Logistic Regression Calculating Page (http://statpages.org/logistic.html), a



JavaScript-enabled HTML file written by John C. Pezzullo. Using only basic platform-universal

JavaScript, the page collects data, reformats it, estimates logistic regression coefficients via a highly

efficient maximum likelihood estimation algorithm, and generates chi-square values and p values. Thus

a JavaScript-only version of MiniJudgeJS is conceivable, without any need to pass work over to R.

Unfortunately, the necessary statistical programming is quite formidable.

Instead, in MiniJudgeJS the role of JavaScript in the statistical analysis is mainly as a user-friendly

GUI. Since the statistics needed for a MiniJudge experiment is highly standardized, very little input is

needed from the user, but the potential to use JavaScript to interface with R in more flexible ways is

there. This would help fix a major limitation with R, whose command-line interface is quite

intimidating for novice users, and whose online help leaves a lot to be desired (cf. Fox, 2005).

Of course, using JavaScript as an interface has its limitations, the most notable of which are the

built-in security constraints that prevent JavaScript from being able to read or write to files, or to

communicate directly with other programs. For example, it's impossible to have JavaScript run R in the

background, to save users the bother of copying and pasting in R code. This is why we are currently

exploring other versions of MiniJudge. One that has made some progress is MiniJudgeJava, written by

Chen Tsung-ying in Java using its own platform-independent GUI tools. Interfacing with R is likely to

remain tricky, however, unless we create something like MiniJudgeR, written in R itself, or figure out

how to program GLMM directly in JavaScript.

4.3.4 R code to simplify output

GLMM is a high-powered statistical tool, unlikely to be used by people who don't already have a

strong background in statistics, and so the outputs generated by R are not understandable without such

a background. Since MiniJudge is intended for statistical novices, extra programming is needed to

translate R output into plain language. For MiniJudgeJS, the most crucial portion of R's output for

GLMM is the matrix containing the regression coefficient estimates and p values, like that shown in

Figure 4 (from the VOmen experiment, without testing for satiation). The trick is to extract the

estimates (the signs of which provide information about the nature of the pattern) and the p values

(which indicate significance) in order to generate a simple summary containing no numbers at all.

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.0810381 0.2330613 -0.3477 0.728057
Factor1 -0.8090969 0.0886143 -9.1305 < 2.2e-16
Factor2 -0.9741367 0.0891447 -10.9276 < 2.2e-16
Order -0.0192680 0.0059976 -3.2126 0.001315
Factor1:Factor2 0.0119932 0.0877194 0.1367 0.891250

Figure 4. GLMM output generated by lmer for the VOmen experiment without testing for satiation

Unfortunately, the output of the lmer function is a list object, containing only the parameters used

to compute the estimates and p values, not the values themselves. Thus the R code generated by

MiniJudgeJS "sinks" lmer's displayed output to an offline file, and then reads this file back in as a



string (the offline file becomes the permanent record of the detailed analysis). The string is then

searched for the string "(Intercept)" which always appears at the upper left of the value matrix. The

coefficient is the first value to the right of this, and the p value is the fourth value (skipping "<", if any).

If the p value associated with a factor or interaction is less than 0.05, a summary line is generated

that gives the actual factor name and the sign of the estimate, as in Figures 1 and 2 above. The R code

generates the summary table counting the number of yes judgments for each category (see Figure 1)

directly from the data file itself.

4.3.5 By-subject and by-item analyses

MiniJudgeJS runs both by-subject and by-subject-and-item analyses, but it reports only the first in the

main summary unless it finds that the more complex analysis is really necessary. This approach differs

from standard psycholinguistic practice, where both by-subject and by-item analyses are always run. A

commonly cited reason for always running a by-item analysis is that it is required to test for generality

across items, just as a by-subject analysis tests for generality across subjects. However, this logic is

based on a misinterpretation of Clark (1973), the paper usually cited as justification.

First, it is wrong to think that by-item analyses check to see if any item behaves atypically (i.e., is

an outlier). For parametric models like ANOVA, it is quite possible for a single outlier to cause an

illusory significant result, even in a by-item analysis (categorical data analyses like GLMM don't have

this weakness). To test for outliers, there's no substitute for checking the individual by-item results

manually. MiniJudge helps with this by reporting the by-sentence rates of yes judgments in a table

saved as part of the offline analysis file; items with unusually low or high acceptability relative to

others of their type stand out clearly. In the case of the VOmen experiment, this table did not seem to

show any outliers.

The second problem with the standard justification for performing obligatory by-item analyses, as

Raaijmakers et al. (1999) emphasize, is that the advice given in Clark (1973) actually applies only to

experiments without matched items, such as an experiment comparing a random set of sentences with

transitive verbs ("eat" etc) with a random set of sentences with unrelated intransitive verbs ("sleep" etc).

Such sentences will differ in more than just the crucial factor (transitive vs. intransitive), so even if a

difference in judgments is found, it may actually relate to uninteresting confounded properties (e.g., the

lexical frequency of the verbs). However, if lexically matched items are used, as in the VOmen

experiment, there is no such confound, since items within each set differ only in terms of the

experimental factor(s). If items are sufficiently well matched, taking cross-item variation into account

won't make any difference in the analysis (except to make it much more complicated), but if they are

not well matched, ignoring the cross-item variation will result in misleadingly low p values.

Nevertheless, if we only computed models that take cross-item variation into account, we might

lose useful information. After all, a high p value does not necessarily mean that there is no pattern at all,

only that we have failed to detect it. Thus it may be useful to know if a by-speaker analysis is

significant even if the by-sentence analysis is not. Such an outcome could mean that the significant by-

speaker result is an illusion due to an uninteresting lexical confound, but it could instead mean that if



we do a better job matching the items in our next experiment, we will be able to demonstrate the

validity of our theoretically interesting factor. Thus MiniJudge runs both types of analyses, and only

chooses the by-subjects-and-items analysis for the main report if a statistically significant confound

between factors and items is detected. The full results of both analyses are saved in an off-line file,

along with the results of the statistical comparison of them.

The R language makes it quite easy to perform this comparison. The model in which only speakers

are treated as random is a special case of the model in which both speakers and sentences are treated as

random. This means the two GLMM models can be compared by a likelihood ratio test using ANOVA

(see Pinheiro & Bates, 2000). As with the output of the lmer function, the output of the lme4

package's anova function makes it difficult to extract p values, so again the output is "sunk" to the

offline analysis file to be read back in as a string. Only if the p value is below 0.05 is the more complex

model taken as significantly better. If the p value is above 0.2, MiniJudgeJS assumes that items and

factors are not confounded and reports only the by-subjects-only analysis in the main summary.

Nevertheless, MiniJudgeJS, erring on the side of caution, gives a warning if 0.2 > p > 0.05. In any case,

both GLMM analyses are available for inspection in the offline analysis file. Each analysis also

includes additional information, generated by lmer, that may help determine which one is really more

reliable, including variance of the random variables and the estimated scale (compared with 1); these

details are explained in MJInfo.htm#resultshelp.

In the case of the VOmen experiment, the comparison of the two models showed that the by-

subjects-only model was sufficient (p = 1). This is unsurprising, given that the materials were almost

perfectly matched, and that the by-items table showed no outliers among the sentence judgments.

The final problem with the standard justification for automatic by-item analyses is one that even

Raaijmakers et al. (1999) fail to point out. Namely, since repeated-measures regression models make it

possible to take cross-speaker and cross-sentence variation into account at the same time, without

throwing away any data, they are superior to standard models like ANOVA. To learn more about how

advances in statistics have made some psycholinguistic traditions obsolete, see Baayen (2004).

5. Conclusions

MiniJudge, currently implemented only in the form of MiniJudgeJS, is software for theoretical

syntacticians without any experimental training who want to collect and interpret judgments quickly

and reliably. Though MiniJudgeJS is limited in some ways, in particular in how it interfaces with R, it

is still quite easy to use, as testing by my students has demonstrated. Moreover, it is unique, offering

syntacticians power that they cannot obtain any other way. Behind this power are original programming

and statistical techniques. Finally, MiniJudgeJS is an entirely free, open-source program (as will be all

future versions). Anyone interested is invited to try it out, save it for use offline, and contribute to its

further development.
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