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Abstract 

Language modeling plays a critical role for automatic speech recognition. 
Typically, the n-gram language models suffer from the lack of a good 
representation of historical words and an inability to estimate unseen parameters 
due to insufficient training data. In this study, we explore the application of latent 
semantic information (LSI) to language modeling and parameter smoothing. Our 
approach adopts latent semantic analysis to transform all words and documents into 
a common semantic space. The word-to-word, word-to-document and 
document-to-document relations are, accordingly, exploited for language modeling 
and smoothing. For language modeling, we present a new representation of 
historical words based on retrieval of the most  relevant document. We also 
develop a novel parameter smoothing method, where the language models of seen 
and unseen words are estimated by interpolating the k nearest seen words in the 
training corpus. The interpolation coefficients are determined according to the 
closeness of words in the semantic space. As shown by experiments, the proposed 
modeling and smoothing methods can significantly reduce the perplexity of 
language models with moderate computational cost. 

Keywords: language modeling, parameter smoothing, speech recognition, and 
latent semantic analysis. 

1. Introduction 

Language models have been successfully developed for speech recognition, optical character 
recognition, machine translation, information retrieval, etc. Many studies in the field of speech 
recognition have focused on this topic [Jelinek 1990, Jelinek 1991]. As shown in Figure 1, a 
speech recognition system is composed of syllable-level and word-level matching processes, in 
which the acoustic model λ  and language model τ  are applied, respectively. In theory, the 
speech recognition procedure combines the acoustic model and language model according to the 
Bayes rule. Let O denote the acoustic data, and let l

l wwwW 11 },,{ == L  denote a string of l 
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words. The speech recognition task aims to find the most likely word string Ŵ  by maximizing 
the a posteriori probability given the observed acoustic data O: 

)()(maxarg)(maxargˆ WPWOPOWPW
WW

τλ== ,               (1) 

where )(WPτ  is the a priori probability of the occurring word string W, and )( WOPλ  is the 
probability of observing data O given the word string W. The parameters τ  and λ  are the 
language model and speech hidden Markov models (HMM’s), respectively. Hereafter, we will 
neglect the notation τ  in )(WPτ

. The language model )Pr(W  aims to measure the probability 
of word occurrence. This model is employed to predict the word occurrence given the history 
words. In an n-gram model, we assume that the probability of a word depends only on the 
preceding n-1 words. The N-gram model )Pr(W  is written as 
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The sequence },,{ 11 −= qq wwH L  is referred to as the history qH  for word qw . To estimate 
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This probability estimation is called the maximum likelihood estimation (MLE). The bigram 

model      and trigram model  are  employed 

in most speech recognition systems. However, when a word sequence ),,( 12 qqq www −−  is not 
occurs in the training data, the trigram model ),Pr( 12 −− qqq www  could not be estimated. We may 
apply parameter smoothing to find the unseen trigram model. In the literature, several smoothing 
methods have been proposed to deal with the data sparseness problem [Katz 1987, Kawabata and 
Tamoto 1996, Lau et al. 1993, Zhai and Lafferty 2001]. Also, maximum a posteriori adaptation of 
the language model has been presented to resolve the problem of domain mismatch between 
training and test corpora [Bellegarda 2000a, Federico 1996, Masataki et al. 1997]. Besides the 
problems of data sparseness and domain mismatch, the n-gram model is inferior in terms of 
characterizing long-distance word relationships. For example, the trigram model is unable to 
characterize word dependence beyond the span of three successive words. In [Lau et al. 1993, 
Zhou and Lua 1999], the trigram model was improved by extracting word relationships from the 
document history. This approach was exploited to search the trigger pair, BA ww → , where the 
appearance of Aw  in the document history significantly affects the probability of occurring Bw . 
The trigger pairs provide long distance information because the triggering and triggered words 
might be separated by several words. However, trigger pair selection neglects the possibility of 
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low-frequency word triggers, which might contain useful semantic information. The LSA method 
was developed to resolve this problem. 
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Figure 1. A schematic diagram of a speech recognition system. 

 

In this paper, a new language modeling and smoothing method is proposed based on the 
framework of latent semantic analysis (LSA). The traditional n-gram model is weak in terms of 
characterizing the information in historical words. This weakness is compensated for herein by 
using the LSA framework, where word-to-word, word-to-document and document-to-document 
similarities are found in the semantic space. With the use of LSA, all the words are mapped to a 
common semantic space, which is constructed via the singular value decomposition (SVD) of a 
word-by-document matrix. Bellegarda [1998, 2000a, 2000b] applied the LSA framework to the 
n-gram model such that the resulting word error rate and perplexity were substantially reduced.  
The LSA representation of the history suffers from a drawback in that the representation of the 
history carries insufficient information at the beginning of a text document. To overcome this 
problem, we propose a relevance retrieval framework to represent the history. For language 
model smoothing, we estimate unseen language models by using the seen models corresponding 
to the k nearest neighbor words. Because this smoothing method extracts synonym and semantic 
information, it can be also referred to as “semantic smoothing.” In the following section, we 
briefly introduce the framework of LSA. Section 3 addresses the proposed language modeling 
and smoothing approaches. The LSA framework is applied to relevance feedback language 
modeling and k nearest neighbor language smoothing. Section 4 describes the experimental 
setup and reports the results for the perplexity and computational cost. Finally, we draw 
conclusions in Section 5. 
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2. Latent semantic analysis 

In the literature [Berry et al. 1995, Deerwester et al. 1990, Ricardo and Berthier 2000], latent 
semantic analysis (LSA) has been widely applied to vector space based information retrieval. 
During the past few years, LSA has also been applied to language model adaptation [Bellegarda 
1998, Bellegarda 2000a, Novak and Mammone 2001]. Latent semantic analysis is a dimension 
reduction technique that projects the query and document into a common semantic space 
[Deerwester et al. 1990, Ding 1999]. This projection reduces the document vector from a high 
dimensional space to a low dimensional space, which is referred as the latent semantic space. 
The goal is to represent similar documents as close points in the latent semantic space, based on 
an appropriate metric. This metric can capture the significant associations between words and 
documents. Given an M × N matrix A, with M terms and N documents, NM ≥  and rank (A) = 
R. The weighted count jia ,  of matrix A is the number of occurrences of each word iw  in a 
document jd , calculated as follows: 
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Here, jic ,  is the number of terms iw  occurring in document jd , jn  is the total number of 
words in jd , and iε  is the normalized entropy of iw  in the collection of data consisting of N 
documents, i.e., 
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where ∑=
j jii ct .

 is the total number of times iw  occurs in the collection of data. A value of 

iε  that is close to one occurs in case of Ntc iji =, . This means that the word iw  is 
distributed across many documents throughout the corpus. A value of iε  that is close to zero, 
i.e., the case in which iji tc =, , indicates that the word iw  is present in only a few documents. 
Hence, in (4), iε−1  represents a global indexing weight for the word iw , and jji nc ,  
indicates that the word iw  occurs in frequently in document jd . 

Latent semantic analysis is a conceptual-indexing method, which uses singular value 
decomposition (SVD) [Berry et al. 1995, Golub and Van Loan 1989] to find the latent semantic 
structure of word to document association. SVD decomposes the matrix A into three 
sub-matrices: 

TVUA Σ= ,            (6) 

where U and V are orthogonal matrices, R
TT IVVUU == , and Σ  is a diagonal matrix. As 

shown in Figure 2, the first R columns of U and V, and the first R diagonal elements of Σ  can 
be used to approach A with R=)rank(A  by means of T

RRRR VUA Σ= , where RA  is a 
representative matrix A. The result of SVD is a set of vectors representing the location of each 
term and document in the reduced R-dimensional LSA space [Berry 1992]. For a given training 
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corpus, TAA  characterizes all the co-occurrences between words, and AAT  characterizes all 
the co-occurrences between documents. That is, a similar pattern of occurring words ji ww  and  
can be inferred from the ),( ji  cell of TAA , and a similar pattern of words contained in 
documents ji dd  and  can be inferred from the ),( ji  cell of AAT  [Bellegarda 1998, 
Bellegarda 1997, Bellegarda 2000a, Chen and Goodman 1999]. This LSA approach performs 
well when a major portion of the meaningful semantic structure [Deerwester et al. 1990] is 
captured.  
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Figure 2. A diagram of the truncated SVD. 

3. New language modeling and smoothing techniques 

3.1 LSA Parameter Modeling 
N-gram language models are useful for modeling the local dependencies of word occurrences 
but not for capturing global word dependencies. The modeling process leads to the estimation of 
the conditional probability )Pr( 1

1
−

+−
q

nqq ww , which characterizes the linguistic regularity in a span 
of n words. When the window size n is limited, the n-gram is weak in terms of capturing long 
distance dependencies. Long distance correlation between words is commonly found in 
language and is caused by closeness in meaning; e.g., the words “stock” and “fund” are both 
likely to occur in financial news. To deal with long distance modeling, the LSA approach can be 
applied to extract large span semantic knowledge. Our motivation lies in the fact that there 
exists some latent structure in the occurrence patterns of words across documents. Hence, the 
n-gram language model can be improved by employing LSA to perform large span prediction of 
word occurrence. 

Let the word qw  denote the predicted word, let 1−qH  denote the history for qw , and let 
)Pr( 1−qq Hw  be the associated language model probability. Using the n-gram language model, 

we find that },,,{ 1211 +−−−− = nqqqq wwwH L  is the relevant history composed of the preceding 
n-1 words. The LSA language model is expressed by 
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)Pr(),Pr()Pr( 111 −−− == qqqqqq wSHwHw d ,           (7) 

where the conditioning on S reflects the fact that the probability depends on the particular 
vector space arising from the SVD representation, and where )Pr( 1−qqw d  is computed 
directly based on the closeness of qw  and 1−qd  in the semantic space S. The vector 1−qd  can 
be viewed as an additional pseudodocument vector for matrix A [Bellegarda 1998, Bellegarda 
2000a, Bellegarda 2000b]. The representation 1−qv  for the pseudodocument vector 1−qd  in 
the space S is given by    

1
11

−
−− Σ= Udv T

qq .                                                              (8) 

By referring to (4), we can obtain the pseudodocument vector qd  recursively in the LSA space 
via [Bellegarda 2000a, Bellegarda 2000b] 
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To clarify (8) and (9), we provide their derivations in the Appendix. 

However, at the beginning of a text document, it is difficult to capture long distance word 
dependencies for calculating )Pr( 1−qqw d  due to the shortness of the history 1−qH . To 
overcome this weakness, we present here a new method for estimating the pseudodocument 
vector 1−qd . Our method aims to retrieve the most likely relevance document 1

ˆ
−qd  from the 

training documents Ndd ,,1 L  so as to represent the pseudodocument vector 1−qd . The LSA 
probability )Pr( 1−qqw d  is replaced by )ˆPr( 1−qqw d . Accordingly, the pseudodocument 1

ˆ
−qd  

is estimated by 
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Here, 1−qd  is obtained recursively from (9). The probability )Pr( 1−qi dd is determined by 
finding the cosine of the angle between the vectors id  and 1−qd  in the latent semantic space; 
i.e., by using the vectors Σiv  and Σ−1qv  in 
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When q is increased, the most likely document vector 1
ˆ

−qd  moves around in the LSA space. 
Assuming that 1

ˆ
−qd  is semantically homogeneous, we can expect the resulting trajectory to 

eventually settle down in the vicinity of the document cluster corresponding to the closest 
semantic content.  

 In this study, the LSA language model is exploited by integrating the effects of histories 
obtained from the conventional n-gram component },,,{ 121
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n
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qH d  [Bellegarda 1998, Bellegarda 2000a]. The new language model 
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is written as 

  

.

)Pr(

)ˆPr(
),,,Pr(

)Pr(

)ˆPr(
),,,Pr(

                     

)ˆPr(),,,Pr(

)ˆPr(),,,Pr(

),Pr()Pr(

),Pr()Pr(

),Pr(

),Pr(
),Pr()Pr(

1

111

1

111

1111

1111

)(
1

)(
1

)(
1

)(
1

)(
1

)(
1

)(
1

)(
1

)(
1

)(
1)(

1
)(
11

∑

∑

∑

∑

−

+−−−

−

+−−−

−+−−−

−+−−−

−−−

−−−

−−

−−
−−−

=

=

=

==

i

i

i

i

w i

qi

nqqqi

q

qq
nqqqq

w
iqnqqqi

qqnqqqq

w

n
qi

l
q

n
qi

n
qq

l
q

n
qq

w

n
q

l
qi

n
q

l
qql

q
n

qqqq

w

w
wwww

w

w
wwww

wwwww

wwwww

HwHHw

HwHHw

HHw

HHw
HHwHw

d

d

d

d

L

L

L

L

            (12) 

In (12), we assume that )ˆPr(),Pr( 1
)(
1
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n
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l
q wHwH −−− = d . The probability )ˆPr( 1−qqw d  is 

computed based on the representations of qw  and 1
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−qd  in the semantic space S, which are 
provided by 2/1Σqu  and 2/1

1ˆ Σ−qv , respectively. The LSA probability is calculated as 
follows: 
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3.2 LSA Parameter Smoothing 
In the real world, a training corpus is not sufficient to estimate the n-gram model for all word 
occurrences },,,{ 11 qqnq www −+− L . To overcome the problem of insufficient data, the parameter 
smoothing method can be used to estimate the joint probabilities of unseen word occurrences 
and, simultaneously, smooth those of seen word occurrences in the training corpus. It is 
common to interpolate the n-gram and (n-1)-gram for the purpose of language model smoothing. 
Jelinek-Mercer smoothing [Jelinek and Mercer 1980] is represented as follows: 
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The well-known Witten-Bell smoothing approach [Written and Bell 1991] incorporates the 
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interpolation coefficient 
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into (14) of Jelinek-Mercer smoothing to generate 
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In this paper, we will present a novel smoothing method in which the language models of 
seen and unseen word occurrences are estimated by interpolating the LSA language model of a 
word occurrence and of the k nearest word occurrences. Let us consider the words “car,” 
“automobile,” “driver,” and “elephant”. “Car” and “automobile” are synonyms. “Driver” is 
related and “elephant” is unrelated to “car” and “automobile.” If the words “car” and 
“automobile” do not appear in the given documents, we may collect many documents containing 
related words, e.g., the motor, vehicle, engine, etc. The statistics of these nearest seen words can 
be used to estimate the language model of the unseen words. When the bigram model is used, the 
smoothed model )r(P~ 1−qq ww  is estimated by interpolating the LSA bigram )Pr( 1−qq ww  of the 

word pair occurrence ),( 1−qq ww  and those of the other k occurrences )ˆ,( q
jq ww , kj ≤≤1 , where 

the  k nearest words q
jŵ  to word qw  are determined according to the LSA probabilities: 
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The interpolation is performed as follows: 
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respectively. As seen in (20), the weighting coefficient q
jβ  is proportional to the LSA 

probability of the word pair )ˆ,( q
jq ww  and has the property 1
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the word q
jŵ  is to the current word qw , the higher is the weighting coefficient that q

jβ  
produces. Also, it is reasonable to adopt the interpolation coefficient qα  in (21), which is 
proportional to the closeness between qw  and 1−qw  in the semantic space. The smoothing 
method proposed in (19) should be performed when the current word qw  is trained using 
LSA. Different from the Jelinek-Mercer and Witten-Bell smoothing methods that adopt the 
maximum likelihood language model, the proposed smoothing technique is combined with the 
LSA framework, and the probabilities )Pr( 1−qq ww  and )ˆPr( q

jq ww  are computed via the 
LSA procedure. 

4. Experiments 

We evaluated the performance of the proposed language model through experiments. Two 
databases were employed. The first database was the CKIP balanced corpus of Modern Chinese 
(http://godel.iis.sinica.edu.tw), which was collected by Academia Sinica in Taiwan, ROC. 
Totally, this database has twenty-five million Chinese characters and a vocabulary size of 
80,000 words. In addition, we collected 9,372 news documents during 2001 and 2002 from the 
news websites of CNA (http://www.cna.com.tw),  ChinaTimes  (http://news.chinatimes. 
com) and UDNnews (http://www.udnnews.com.tw). We randomly sampled 9,148 
documents for training and the remaining 224 documents for testing. The news documents were 
divided into eight categories, including technology, society, international, leisure, politics, 
finance, entertainment, and sports news. The numbers of training and testing documents in the 
eight news categories are listed in Table 1. We chose the most frequent 32,941 words to 
construct our dictionary. Using the LSA procedure, we built a 32,941*9,148 word by document 
matrix A  using training data. The SVD algorithm was applied with different numbers of 
singular values. In this study, we used MATLAB for the SVD operation and compared the 
performance of LSA language modeling, with the number of singular values R  set at 25, 50, 
75, and 100.  

The measure of perplexity was adopted to evaluate the different language models. The 
computational costs were reported for comparison. Here, the computation time was measured in 
minutes by testing 224 documents using a personal computer with a Pentium IV-1.6GHz 
processor and 256 MB RAM. The bigram model was employed in the experiments. 

Table 1. Numbers of training and testing documents for the eight news categories. 

 Technology Social International Leisure Politics Financial Entertain Sports 

Training data 289 2,658 330 1,106 1,299 2,605 430 431 

Testing data 30 24 23 24 24 49 23 27 

http://godel.iis.sinica.edu.tw
http://www.cna.com.tw
http://news.chinatimes
http://www.udnnews.com.tw
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4.1 Perplexity 
Perplexity is an important parameter used to evaluate the performance of language models. 
Consider an information source containing of word sequence, lwww ,,, 21 K , each of which is 
chosen from a vocabulary V . The entropy of a source emitting the words lwww ,,, 21 K  is 
defined as 

),,,Pr(log),,,Pr(1lim 2121
21
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If the source is ergodic, the entropy in (22) is equivalent to  
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Since the n-gram language model is used, E can be estimated as follows: 
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Given testing documents with l words, the perplexity is calculated as follows: 
EPerplexity
~

2= .                         (25) 

In general, the entropy E~  is the average difficulty or uncertainty of each word using the 
language model. The lower measured the perplexity, the better the speech recognition accuracy 
that can be achieved. 

4.2 Evaluation of Different Language Modeling and Smoothing Methods 
In the experiments, we evaluated different language modeling and smoothing methods in terms 
of perplexity and computation time. First of all, we investigated the effect of the SVD 
dimension in the proposed LSA bigram model. No parameter smoothing was performed. In 
Figures 3 and 4, we compare the perplexity and computation time for different SVD dimensions. 
Here, the computation time was a measure of the SVD operation of a 32,941*9,148 word by 
document matrix A . We found that an SVD dimension of 25 was appropriate for constructing 
the semantic space. In the subsequent evaluation, the SVD dimension was fixed at 25 for the 
proposed LSA bigram and LSA smoothing. Next, we examined the effect of the parameter k  
in the proposed LSA smoothing method. LSA smoothing of seen and unseen bigrams was 
performed by combining the bigrams corresponding to the k  nearest words. In Figure 5, we 
show the results for perplexity versus the k nearest neighbor words when LSA smoothing was 
applied to the standard bigram and proposed LSA bigram. The values 5=k , 10, 30 and 50 
were examined. When proposed LSA modeling and smoothing was used, the lowest perplexity 
of 81 was achieved by using 5=k . The perplexity of the standard bigram with LSA smoothing 
was calculated as 102. We then fixed 5=k  in the subsequent comparison experiment. 
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Figure 3. Comparison of perplexity results for different SVD dimensions. 
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Figure 4. Comparison of computation times for different SVD dimensions. 
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Figure 5. Perplexity versus the k nearest neighbor words when LSA smoothing was 

applied to the standard bigram and proposed LSA bigram. 

Furthermore, different language modeling and smoothing methods were compared, and the 
results are shown in Table 2. Besides the standard bigram, we implemented Bellegarda ’s LSA 
bigram [Bellegarda 1998] and the proposed LSA bigram to evaluate the effect of language 
modeling. The main difference is that proposed LSA bigram aims to retrieve the most likely 
relevance document vector in order to represent the historical words. In addition, the language 
models with and without parameter smoothing were examined. The algorithms of Witten-Bell 
smoothing and the proposed LSA smoothing were also used for the purpose of comparison. The 
Witten-Bell smoothed bigram is estimated by interpolating with the corresponding unigram. 
The proposed LSA smoothing combines the bigrams corresponding to the k nearest seen words 
in the training corpus. We can see that the baseline bigram model has a perplexity of 158.3. The 
perplexity was reduced to 128.7 and 124.4 by applying Bellegarda’s LSA bigram and proposed 
LSA bigram, respectively. However, when Witten-Bell smoothing was incorporated, the 
perplexity is greatly reduced from 158.3 without smoothing to 122.6 with smoothing. When the 
proposed LSA bigram with Witten-Bell smoothing were used, the perplexity could be improved 
to 108.7. This indicates the importance of adopting a smoothing algorithm in the language 
model. Furthermore, when the proposed LSA smoothing was used, the perplexity was reduced 
to 102, which is better than the perplexity of 122.6 obtained using Witten-Bell smoothing. This 
is because the Witten-Bell smoothing method estimates the n-gram model by using the 
(n-1)-gram, while the proposed LSA smoothing approach always adopts nearest n-gram models 
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without using the (n-1)-gram. Among the different combinations, the lowest perplexity of 81 
was achieved by applying the proposed LSA bigram with LSA smoothing. Compared to 
baseline system, the perplexity could be improved by up to 48.8%. The computation times of the 
different methods were also compared. The results show that the computation overhead of using 
a smoothing algorithm is slight. The computation load of the LSA bigram is much higher than 
that of the standard bigram. This result indicates that the smoothing algorithm can lead to 
greater improvement in perplexity with a lower computation cost than can be achieved by 
modifying the language model. 

Table 2. Comparison of perplexity and computation time for different language 
modeling and smoothing methods. 

Language Model 

Modeling Method Smoothing Method 
Perplexity 

Reduction 
Rate (%) 

Computation 
Time (minutes) 

Bigram N/A 158.3 N/A 48.3 

Bigram Witten-Bell Smoothing 122.6 22.6 51.3 

Bellegarda’s LSA Bigram N/A 128.7 18.7 176.7 

Proposed LSA Bigram N/A 124.4 21.4 161.2 

Proposed LSA Bigram Witten-Bell Smoothing 108.7 31.3 163.3 

Bigram LSA Smoothing 102 35.6 52.2 

Proposed LSA Bigram LSA Smoothing 81 48.8 163.4 

 

5. Conclusion 

Statistical n-gram modeling is limited in terms of its ability to represent the historical words and 
estimate the unseen parameters of an inadequate training corpus. In this paper, we have 
presented new language modeling and smoothing methods that are based on the framework of 
latent semantic analysis. The concept of relevance retrieval has been adopted in order to exploit 
a new language modeling approach, where the most likely pseudodocument is retrieved to 
represent the historical words. The language model is estimated according to the closeness of 
the current word vector and the historical pseudodocument vector in the common LSA space. 
To overcome the problem of insufficient training data, we perform LSA smoothing, where the 
bigram of the current word is computed by interpolating with the bigrams corresponding to the 
k nearest words. The weighting coefficients of the k nearest words are proportional to the 
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closeness to the current word in the LSA space. From the results of experiments in which 
Chinese news documents were evaluated, we found that the language modeling performance 
could be greatly improved by applying the proposed LSA parameter modeling and smoothing 
algorithms. The proposed methods outperformed Bellegarda’s LSA bigram and Witten-Bell 
smoothing. Compared to the baseline bigram model, the perplexity was reduced by up to 48.8%. 
Also, the perplexity improvement and computation efficiency that could be achieved through 
parameter smoothing were better than that which could be achieved through parameter 
modeling. This approach can be easily extended to the trigram model and other languages. In the 
future, we will explore theoretical rules for determining the SVD dimension for LSA. We will 
also investigate the effect of the amount of training data on the LSA framework. We are 
currently applying the proposed language model to information retrieval and large vocabulary 
continuous speech recognition.  

Appendix 

Derivations of Equations (8) and (9) 

In (8), the pseudodocument vector 1−qd  is the (q-1)th column vector of matrix A . From SVD, 
we know T

qq 11 −− Σ= vUd . Because U  is orthogonal and Σ  is diagonal, the representation 

1−qv  in semantic space S  is obtained by 
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Also, from (4), we can derive the recursive formula for qia ,  corresponding to word iw  and 
document qd  
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By extending this formula using vector representation, we obtain (9) by 
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where the “1” appears at coordinate i in the above vector. 
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