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Abstract 

In a text-to-speech (TTS) conversion system based on the time-domain 

pitch-synchronous overlap-add (TD-PSOLA) method, accurate estimation of pitch periods 

and pitch marks is necessary for pitch modification to assure an optimal quality of the 

synthetic speech. In general, there are two major issues on pitch marking: pitch detection 

and location determination. In this paper, an adaptable filter, which serves as a bandpass 

filter, is proposed for pitch detection to transform the voiced speech into a sine-like wave. 

Based on the sine-like wave, a peak-valley decision method is investigated to determine 

the appropriate part (positive part and negative part) of the voiced speech for pitch mark 

estimation. At each pitch period, two possible peaks/valleys are searched and the dynamic 

programming is performed to obtain the pitch marks. Experimental results indicate that 

our proposed method performed very well if correct pitch information is estimated. 

1. Introduction 
In past years, the approach of concatenative synthesis has been adopted by many 

text-to-speech (TTS) systems [1]–[6]. The concatenative synthesis uses real recorded 

speech segments as the synthesis units and concatenates them together during synthesis. 

Also, the time-domain pitch-synchronous overlap-add (TD-PSOLA) [6] method has been 

employed to perform prosody modification. This method modifies the prosodic features of 

the synthesis unit according to the target prosodic information. Generally, the prosodic 

information of the speech includes pitch (the fundamental frequency), intensity, and 

duration, etc. For a synthesis scheme based on TD-PSOLA method, it is necessary to 

obtain a pitch mark for each pitch period in order to assure an optimal quality of the 

synthetic speech. The pitch mark is a reference point for the overlap of the speech signals. 
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It is useful to have a speech synthesizer with various voices for speech synthesis. 

Sometimes it is also important for a service-providing company to have a synthesizer with 

the voice of its own employee or the speaker of its favorite. For conventional TTS 

systems, however, it is a professional but tedious job to create a new voice. Recently, 

corpus-based TTS systems have been appreciated which use a large amount of speech 

segments. Some approaches selected the speech segments as the candidates of synthesis 

units. Establishing the synthesis units includes speech segmentation, pitch estimation, 

pitch marking, and so on. However, pitch marking is very labor-intensive among them if 

there involved no automatic mechanism. 

In general, there are two major issues on pitch marking: pitch detection and location 

determination. Compared to pitch detection [7]-[14], few papers have been presented for 

pitch marking [15][16], which is also a difficult problem because of the great variability 

of the speech signals. Moulines et al. [15] proposed a pitch-marking algorithm based on 

the detection of abrupt changes at glottal closure instants. At each period, they assumed 

that the speech waveform could be represented by the concatenation of the response of 

two all-pole systems. On the other hand, Kobayashi et al. [16] used dyadic wavelet for 

pitch marking. The glottal closure instant was detected by searching for a local peak in the 

wavelet transform of the speech waveform. 

In this paper, we propose a pitch-marking method based on an adaptable filter and a 

peak-valley estimation method. The block diagram is shown in Fig. 1. The input signals 

are constrained to the voiced speech because only the periodic parts are interested. We 

introduce an adaptable filter, which serves as a bandpass filter, to transform the voiced 

speech into a sine-like wave. The autocorrelation method is then used to estimate the pitch 

periods on the sine-like wave. Also, a peak-valley decision method is presented to 

determine which part of the voiced speech is suitable for pitch mark estimation. The 

positive part (the speech with positive amplitude) and the negative part (the speech with 

negative amplitude) are investigated in this method. This is motivated from Fig. 2(a), 

which displays an example of waveform having the negative part reveals explicit 

periodicity. In general, it could synthesize better speech quality if the pitch marks are 

labeled at the positions of extreme points (peaks and valleys) of the speech. At each pitch 

period, two possible peaks/valleys are searched. Finally, the pitch marks are obtained by 

the dynamic programming by calculating the pitch distortion.  
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Figure 1: Block diagram of the proposed pitch-marking method. 

2. Pitch Detection Using an Adaptable Filter Followed by 

Autocorrelation Method 
The proposed adaptable filter serves as a bandpass filter in which its pass band is from 

50 Hz to the detected fundamental frequency, up to 500 Hz, of the voiced speech. The 

adaptable filter is achieved by the following three steps.  

Step 1. It computes the FFT (Fast Fourier Transform) to transform the voiced speech 

into the frequency domain. 

Step 2. The fundamental frequency, f0, is detected by searching the first peak of the 

spectral contour.  

Step 3. The IFFT (Inverse FFT) is invoked over the passband between 50 Hz and f0 

to obtain the filtered speech. 
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Figure 2: Results of the adaptable filter and pitch mark determination. (a) Waveform of 

the voiced speech with explicit periodicity on the negative part. (b) Waveform of the 

filtered speech. (c) Detected pitch marks. (d) Spectral contour (note that the frequency 

axis is not linearly plotted). 

  

An example of the adaptable filter is displayed in Fig. 2. Panel (a) and (b) shows the 

waveforms of the original speech and the filtered speech, respectively. It can be seen that 

the filtered speech is generally a sine-like wave that reveals clear periodicity than that on 

the original speech waveform. For a frame in the middle of the voiced speech, the spectral 

contour is depicted in panel (d). Note that the frequency axis is not linearly plotted for the 

reason of inspecting the first spectral peak. The first peak was found at 168 Hz, which is 

the fundamental frequency. Finally, the pitch periods are obtained by analyzing the 

filtered speech using the conventional autocorrelation method. 

3. Pitch Mark Determination Using a Peak-Valley Decision Method and 

Dynamic Programming 
3-1 Peak-Valley Decision 
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From observations, we found that the voiced speech, s[·], is synchronous with the 

filtered speech, o[·], either at peaks or at valleys. For the case illustrated in Fig. 2 (a) and 2 

(b), they are synchronous at valleys having explicit periodicity instead of those at peaks. 

As a result, the pitch marks could be easily determined at the negative part than those at 

the positive part. In the following, peak-valley decision method calculates two costs by 

summing the amplitudes of s[m], where m represents the position of the local extreme 

point of o[·] over each pitch period: 
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where the symbols are defined as follows: 

peakC : Cost estimated at the peaks of o[·]. 

valleyC : Cost estimated at the valleys of o[·]. 

peakN : Total number of the peaks of o[·]. 

valleyN : Total number of the valleys of o[·]. 

][nPospeak : Position of the n-th peak of o[·]. 

][nPosvalley : Position of the n-th valley of o[·]. 

The peak-valley decision is made as follows: If peakC > valleyC then the positive part (peak) 

of s[·] is adopted for the evaluation of pitch mark. Otherwise, the negative part (valley) of 

s[·] is adopted. 

 

3-2 Pitch mark determination Based on Dynamic Programming 

Once the adoption of the peak or valley has been decided, say peak, the positions of 

pitch marks are determined by picking the peaks of s[·]. For the i-th pitch period, Pi, two 

highest peaks in the corresponding voiced speech are searched. Suppose the highest and 

the second highest peaks are located at Li1 and Li2, respectively. It might occur that the 

second one is absent. For this case, we let Li2 = Li1. For all the detected peaks, the 

determination of pitch mark is then performed based on dynamic programming. The 

distortion of pitch period, di(j,k), and its accumulation, Ai(j), are defined as follows: 

),(),( )1( kjgPLLkjd ikiiji +−−= − , for i=2,…,PN                     (3) 
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where PN is the total number of pitch period and j, k=1,2. In Equation (3), ),( kjg  is a 

penalty function represented as 
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The penalty function is introduced here due to the preference of the highest peak.  

The search path of the dynamic programming is illustrated in Fig. 3. The peak 

locations (pitch marks) can be obtained by back tracing the peak sequence corresponding 

to the smallest value of Ai(1) and Ai(2). An example of the results of pitch marking is 

shown in Fig. 2(c). Similar procedures described above can be applied to the case of 

“valley”. 

Peak 2

Peak 1

...

1 2 3 4 PNPN-1  
Figure 3: Illustration of the peak-picking search path of the dynamic programming. 

4. Experiments and Results 
4-1  Experimental environment 

A continuous speech database was established which provides the basic synthesis 

units of our Mandarin Chinese TTS system. This database is composed of 70 phrases and 

their lengths are between 4 to 6 Chinese characters. It includes an amount of 436 tonal 

syllables comprising the required 413 basic synthesis units. A native female speaker read 

them in normal speaking style. The speech signals were then digitized by a 16-bit A/D 

converter at a 44.1k Hz sampling rate. The syllable segmentation was manually done in 

order to obtain the precise boundaries of voiced speech and unvoiced speech. The total 

duration of the 436 voiced speech is about 2.1 minutes. For each syllable, the voiced 

speech was used to test the proposed methods. The frame size used in the adaptable filter 

was set to 4096 speech samples (92.8 ms). 

For the voiced speech, the waveforms along with the pitch marks obtained from our 
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pitch-marking program were visually displayed. The pitch marks were then checked and 

corrected by an experienced person through a friendly interface. For the evaluation of the 

experiments, we obtained 436 sets of human-labeled pitch marks, denoted as H, which 

comprises 23868 pitch marks. 

4-2  Performance of the pitch marking method 

The results of the peak-valley decision were verified by human judgment on visual 

displays. A success rate of 99.1% is obtained (4 of the 436 results were disagreed). For the 

female speaker, we found that 97.2% of the voiced segments reveal clear periodicity on 

the negative parts. 

The proposed method generated 23860 pitch marks, denoted as I, without any 

duplication. The success rate of the pitch marking method is defined as follows: 
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As shown in Table 1, a success rate of 97.2% is obtained (baseline), in contrast with the 

95% and 97% success rates of the methods of [15] and [16], respectively. However, we 

found that most of the errors are resulted from the incorrect results of pitch detection. 

Most of the pitch errors are due to large changes of pitch locating at the boundaries of the 

voiced speech. Providing correct pitch information, our method leads to a success rate of 

99.5%. 

 

Table 1: Success rate of the pitch-marking method. 

Condition Baseline Using correct pitch  

Success rate 97.2% 99.5% 

 

5 Conclusions 
In this paper, a preliminary work on pitch marking has been proposed. We present the 

adaptable filter combined with the autocorrelation method for pitch detection. On the 

other hand, a peak-valley decision method is introduced to select either the positive or the 

negative parts for evaluation of pitch mark. Also, a dynamic-programming-based pitch 

mark determination method is demonstrated where two peaks/valleys are searched at each 

period. In the experiments, our pitch-marking method achieves 97.2% success rate. 



 8

Furthermore, a high success rate of 99.5% is obtained providing correct pitch information. 
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