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Abstract

GANs have been shown to perform exceed-
ingly well on tasks pertaining to image gen-
eration and style transfer. In the field of
language modelling, word embeddings such
as GLoVe and word2vec are state-of-the-art
methods for applying neural network models
on textual data. Attempts have been made to
utilize GANs with word embeddings for text
generation. This study presents an approach
to text generation using Skip-Thought sen-
tence embeddings with GANs based on gra-
dient penalty functions and f-measures. The
proposed architecture aims to reproduce writ-
ing style in the generated text by modelling the
way of expression at a sentence level across
all the works of an author. Extensive exper-
iments were run in different embedding set-
tings on a variety of tasks including condi-
tional text generation and language generation.
The model outperforms baseline text genera-
tion networks across several automated eval-
uation metrics like BLEU-n, METEOR and
ROUGE. Further, wide applicability and ef-
fectiveness in real life tasks are demonstrated
through human judgement scores.

1 Introduction

Inducing a particular style in generated text is a
promising development which can lead to pro-
ducing acceptable responses in dialogue genera-
tion, image captioning and artificial chat bot sys-
tems. In unsupervised text generation, estimat-
ing the distribution of real text from a corpus is
a challenging task. Recent approaches using ad-
versarial training have addressed this issue by try-
ing to overcome the exposure bias that models
trained for maximum likelihood suffer from. This
work proposes an approach for text generation us-
ing a Generative Adversarial Network (GAN) with
Skip-Thought vectors (STGAN). GANs (Goodfel-
low et al., 2014) are a class of neural networks

53

that explicitly train a generator to produce high-
quality samples by pitting the generator against
an adversarial discriminative model. GANs out-
put differentiable values and the task of discrete
text generation is challenging because of the non-
differentiable nature of generating discrete sym-
bols. Hence, in the present work, the GANs are
trained with sentence embedding vectors as a dif-
ferentiable input. The sentence embeddings are
produced using Skip-Thought (Kiros et al., 2015),
a neural network model for learning fixed length
representations of sentences.

People’s way of expression and communication
intention is more diverse across utterances than the
vocabulary. To imitate this, the proposed STGAN
architecture models the variability at the utterance
level in a corpus rather than at word or character
level. The effectiveness of this approach is evalu-
ated on automated corpus-based metrics: BLEU-n
(Papineni et al., 2002), METEOR (Banerjee and
Lavie, 2005) and ROUGE (Lin, 2004) using dif-
ferent embeddings: Average GloVe (Pennington
et al., 2014), Vector Extrema GloVe (Pennington
etal., 2014) and Skip-Thought (Kiros et al., 2015).
We perform an empirical study with human judge-
ments to assess both the quality and the style re-
production in the generated text.

2 Related Works

Deep neural network architectures have demon-
strated strong results on natural language gener-
ation tasks such as dialogue response generation
and machine translation. Early techniques for gen-
erating text conditioned on some input informa-
tion were template or rule-based engines (McRoy
et al., 2000), or probabilistic models such as n-
gram. In the recent past, state-of-the-art results
on these tasks have been achieved by recurrent
(Press et al., 2017; Mikolov et al., 2010) and con-

Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Student Research Workshop, pages 53—60

Minneapolis, Minnesota, June 3 - 5, 2019. (©2017 Association for Computational Linguistics



volutional neural network models trained for like-
lihood maximization. Very recently, attempts have
been made to generate text using purely generative
adversarial training (Arjovsky et al., 2017).

Unsupervised learning with deep neural net-
works in the framework of encoder-decoder mod-
els has become the state-of-the-art methods for ap-
proaching NLP problems (Young et al., 2017). Re-
cent text generation models have used a wide va-
riety of GANs such as policy-gradient based se-
quence generation framework (Yu et al., 2016).
Fedus et al. (2018) have used an actor-critic con-
ditional GAN to fill in missing text conditioned
on the surrounding text for natural language gen-
eration tasks. GANs have also been used for text
style transfer by Yang et al. (2018) where language
models act as the discriminator and by Chen et al.
(2018) with the introduction of a new f-measure
termed as feature-mover’s distance.

Using adversaries of word and character level
embeddings for text generation has been explored
by Rajeswar et al. (2017). Models trained us-
ing generative adversarial networks or variational
autoencoders have been shown to learn repre-
sentations of continuous structures by leverag-
ing deep latent variables such as text embed-
dings (Zhao et al., 2017). This work explores in-
jecting sentence embeddings produced using the
Skip Thought architecture (Kiros et al., 2015) into
GANES in different setups.

3 Skip-Thought Generative Adversarial
Network

In literature corpora such as fantasy and science
fiction novels, the vocabulary does not vary sig-
nificantly across the authors, but the manner of ex-
pression does, which is intuitively best captured at
the level of sentences than words. The approach,
hence, that this work takes in generating sentences
with the writing style of one author is to make the
adversarial model approximate the distribution of
all sentences (rather than words or characters) in a
latent space using skip-thought architecture. Pre-
vious attempts on text generation have used the
character and word-level embeddings instead with
GANSs (Rajeswar et al., 2017).

This section introduces Skip-Thought Genera-
tive Adversarial Network with a background on
neural network models that it is based on. The
Skip-Thought model (Kiros et al., 2015) produces
embedding vectors for sentences present in train-
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ing corpus. These vectors constitute the real distri-
bution for the discriminator network. The gener-
ator network produces sentence vectors similar to
those from the encoded real distribution. The gen-
erated vectors are sampled over the course of train-
ing and then decoded to produce sentences using
a Skip-Thought decoder conditioned on the same
text corpus.

3.1 Skip-Thought Vectors

Skip-Thought is an encoder-decoder framework
with an unsupervised approach to train a generic,
distributed sentence encoder. The encoder maps
sentences sharing semantic and syntactic prop-
erties to similar vector representations and the
decoder reconstructs the surrounding sentences
of an encoded passage. The sentence encoding
approach draws inspiration from the skip-gram
model in producing vector representations using
previous and next sentences.

The Skip-Thought model uses an RNN encoder
with GRU activations (Chung et al., 2014) and an
RNN decoder with conditional GRU. This com-
bination is identical to the RNN encoder-decoder
of Cho et al. (2014) used in neural machine
translation.

Skip-Thought Architecture

For a given sentence tuple (s;_1, S;, Si+1), let w!

denote the 7-th word in sentence s; and x! denote

its word embedding. The model is described as:
Encoder. Encoded vectors for a sentence s;

with N words w’, w'*!,...,w™ are computed by it-

erating over the following sequence of equations:

rt = o(W,x* 4+ U,ht 1)

z® = o(W,x* + U,ht 1)

h* = tanh(Wx* + U(r* ® h*71))
ht = (1 -2t @ht1 42t @Rt

where h! is a hidden state at each time step and
interpreted as a sequence of words wil,...,w?, k! is
the proposed state update at time ¢, z* is the update
gate and r' is the reset gate. Both update gates take
values between zero and one.

Decoder. A neural language model conditioned
on the encoder output h; serves as the decoder.
Bias matrices C,, C,., C' are introduced for the up-
date gate, reset gate and hidden state computation
by the encoder. Two decoders are used in parallel,



Training Corpus — Real

o>

Skip Thought
Encoder

Generator

Samplei

Generated
Samples

EI E Sampled generated

W=

Discriminator

Skip Thought
Decoder

new
sentences

Figure 1: Skip-Thought Generative Adversarial Network model architecture

one each for sentences s; 1 and s;_1. The follow-
ing equations are iterated over for decoding:

r' = o(Wax*1 + Udn*! + C,hy)

zt — U(ngtfl + U(Zihtfl + C,hy)

ht = tanh(Wex* 1 + U9(x* ©® h* 1) + Chy)
hi,=01-z)oh" ! +z*ORht

Objective. For the same tuple of sentences, ob-
jective function is the sum of log-probabilities for
the forward and backward sentences conditioned
on the encoder representation:

> logP(whyy|wily, hi)+
t

> logP(w}_|wi’y, hi)
t

3.2 Generative Adversarial Networks

Generative Adversarial Networks (Goodfellow
etal., 2014) are deep neural net architectures com-
prised of two networks, contesting with each other
in a zero-sum game framework. For a given data,
GANSs can mimic learning the underlying distri-
bution and generate artificial data samples similar
to those from the real distribution. Generative Ad-
versarial Networks consists of two players: a Gen-
erator and a Discriminator. The generator G tries
to produce data close to the real distribution P(x)
from some stochastic distribution P(z) termed as
noise. The discriminator D’s objective is to differ-
entiate between real and generated data G(z).
The two networks - generator and discriminator
compete against each other in a zero-sum game.
The minimax strategy dictates that each network
plays optimally with the assumption that the other
network is optimal. This leads to Nash equilibrium
which is the point of convergence for GAN model.
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Objective. Goodfellow et al. (2014) have for-
mulated the minimax game for a generator G, dis-
criminator D adversarial network with value func-
tion V(G, D) as:

Inén max V(D,G) = Eppyoya@logD(z) ] +
E.p.(z)llog (1 — D(G(2)))]

3.3 Model Architecture

The STGAN architecture (Figure 1) has two com-
ponents: Skip Thought encoder-decoder and a
generative adversarial network. The model uses
a deep convolutional generative adversarial net-
work, similar to the one used in DCGAN (Rad-
ford et al., 2015). During the training, the genera-
tor network is updated twice for each discrimina-
tor network update to prevent fast convergence of
the discriminator network.

The Skip-Thought encoder for the model en-
codes sentences using 2400 GRU units (Chung
et al., 2014) with a word vector dimensionality
of 620. The encoder combines the sentence em-
beddings to produce 4800-dimensional combine-
skip vectors with the first 2400 dimensions being
uni-skip model and the last 2400 bi-skip model.
This work uses the 4800-dimensional vectors as
they have been found to be the best performing in
experiments '. For training of the STGAN, the
Skip-Thought encoder produces sentence embed-
ding vectors which are labelled as real samples for
GAN discriminator.

The decoder uses greedy decoding by taking
the argmax over the softmax output distribution
for a given time-step which also acts as input for
next time-step. It reconstructs sentences condi-
tioned on a sentence vector by randomly sampling

'https://github.com/ryankiros/
skip-thoughts/
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from the predicted distributions with a preset beam
width. A 620 dimensional RNN word embedding
is used for the decoder with 1600 hidden GRU de-
coding units. All experiments are performed using
the Adam optimizer (Kingma and Ba, 2014) with
gradient clipping and a batch size of 16.

Each sentence is appended with a start token
<s> and an end token </s> before encoding.
During the process of training generator network
with these embeddings, some generated vectors
are randomly sampled. The sampled vectors are
decoded using pretrained Skip-Thought decoder to
produce a probability distribution over the vocab-
ulary in order to reconstruct sentences. The de-
coding is terminated when the stop token </s> is
encountered during reconstruction.

3.4 Improving Training and Loss

The training process of a GAN is notably difficult
(Salimans et al., 2016) and several improvement
techniques such as batch normalization, feature
matching, historical averaging (Salimans et al.,
2016) and unrolling GAN (Metz et al., 2016) have
been suggested for making the training more sta-
ble. Training the Skip-Thought GAN often results
in mode dropping (Arjovsky and Bottou, 2017;
Srivastava et al., 2017) with a parameter setting
where it outputs a very narrow distribution of
points. To overcome this, it uses minibatch dis-
crimination by looking at an entire batch of sam-
ples and modeling the distance between a given
sample and all the other samples present in that
batch.

The minimax formulation for an optimal dis-
criminator in a vanilla GAN is Jensen-Shannon
Distance between the generated distribution and
the real distribution. Arjovsky et al. (2017) used
Wasserstein distance or earth mover’s distance to
demonstrate how replacing distance measures can
improve training loss for a GAN. Gulrajani et al.
(2017) have incorporated a gradient penalty reg-
ularizer term in WGAN objective for discrimina-
tor’s loss function. The experiments in this work
use the above f-measures to improve performance
of Skip-Thought GAN on text generation.

4 Results and Discussion

4.1 Conditional Generation of Sentences.

GANSs can be conditioned on certain attributes to
generate real valued data (Mirza and Osindero,
2014; Radford et al., 2015). In this experiment,
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both the generator and discriminator are condi-
tioned on the Skip-Thought encoded vectors.

The data used for this setup consists of 250,000
sentences chosen from the BookCorpus dataset
(Zhu et al., 2015) with a training/test/validation
split of 5/1/1. All the sentences belong to one se-
ries of fantasy novels by a particular author of En-
glish language. This selection implies that the au-
thor’s word choice, sentence structure, figurative
language, and sentence arrangement are consistent
and well-represented across the dataset. Condi-
tioning on this high-level outline gives more ro-
bustness to the model in terms of generated sam-
ples.

The decoded sentences form the evaluation
set for measuring performance of different mod-
els under corpus level BLEU-n (Papineni et al.,
2002), METEOR (Banerjee and Lavie, 2005)
and ROUGE(Lin, 2004) metrics. Table 1 com-
pares these results for the proposed STGAN
against standard LSTM and Attention Bidirec-
tional LSTM models in two settings - using Skip
Thought vectors and using tied GloVe (Penning-
ton et al., 2014) embeddings. For this experiment,
GloVe Average is obtained by averaging GloVe
embeddings of all the words composing a given
sentences while GloVe Extreme is computed by
taking the most extreme value for each dimen-
sion across embeddings of all the words. All the
three models used in the experiment: LSTM, At-
tention BiLSTM and Wasserstein GAN take the
above three embeddings as input in separate runs
and output vectors which are decoded to recon-
struct sentences using the corresponding embed-
ding’s decoder.

Table 2 shows improvements in metric scores
when using Wasserstein distance and gradient
penalty regularizer as discussed in section 3.4.
WGAN-GP gives the strongest across-the-board
performance in both the GloVe and Skip-Thought
settings, so we use this as the basis for the rest
of our experiments. The METEOR scores are re-
portedly better for other models because though it
does not rely on embeddings but it includes no-
tions of synonymy and paraphrasing to compute
alignment between hypothesis and reference sen-
tences (Sharma et al., 2017).

4.2 Language Generation.

Language generation is performed on a dataset
comprising simple English sentences referred to



MODEL EMBEDDING BLEU-1 | BLEU-2 | BLEU-3 | BLEU-4 | METEOR | ROUGE
GLOVE AVERAGE 0.874 0.792 0.621 0.582 0.681 0.692
LSTM GLOVE EXTREME 0.874 0.791 0.616 0.580 0.677 0.685
SKIP THOUGHT 0.885 0.807 0.633 0.585 0.683 0.692
GLOVE AVERAGE 0.904 0.836 0.645 0.583 0.695 0.698
ATTENTION BILSTM | GLOVE EXTREME 0.886 0.827 0.643 0.581 0.689 0.696
SKIP THOUGHT 0.900 0.827 0.651 0.589 0.692 0.715
GLOVE AVERAGE 0.879 0.807 0.668 0.585 0.694 0.702
WGAN -GP GLOVE EXTREME 0.853 0.799 0.666 0.579 0.689 0.697
SKIP THOUGHT 0.903 0.836 0.682 0.594 0.692 0.731

Table 1: Evaluation of models on word-overlap based automated metrics when trained with different embeddings.
Skip-Thought gives better results than GloVe for BLEU-n and ROUGE metrics, while the METEOR scores are
comparable to that when using averaged GloVe embedding with Attention BiLSTM generator.

MODEL BLEU-2 BLEU-3 METEOR ROUGE
GLOVE ST GLOVE ST GLOVE ST GLOVE ST
GAN 0.710 | 0.745 | 0.593 | 0.607 | 0.667 | 0.670 | 0.654 | 0.649
WGAN 0.786 0.833 0.645 0.669 0.681 0.681 0.681 0.675
WGAN-GP 0.807 | 0.836 | 0.668 | 0.682 | 0.694 | 0.692 | 0.702 | 0.731

Table 2: BLEU-2, BLEU-3 METEOR and ROUGE metric scores across GAN models with different f-measures.

GloVe: GLoVe Average, ST: Skip-Thought, WGAN: Wasserstein GAN, GP: Gradient Penalty

as CMU-SE? (Rajeswar et al., 2017). The CMU-
SE dataset consists of 44,016 sentences with a
vocabulary of 3,122 words. The vectors are ex-
tracted in batches of same-lengthed sentences for
encoding. The samples represent how mode col-
lapse is manifested when using least-squares dis-
tance (Mao et al., 2016) f-measure without mini-
batch discrimination. Table 3(a) contains sen-
tences generated from a vanilla STGAN which
mode collapse is observed, while 3(b) contains
examples wherein it is not observed when using
minibatch discrimination. Table 3(c) shows gen-
erated samples from STGAN when using Wasser-
stein distance f-measure as WGAN (Arjovsky
et al., 2017)) and 3(d) contains samples when us-
ing a gradient penalty regularizer term as WGAN-
GP (Gulrajani et al., 2017). The two models gen-
erate longer human-like sentences and over a more
diverse vocabulary.

4.3 Human Scores and Correlations

The performance of this approach to generate new
sentences has been evaluated in reproducing writ-

https://github.com/clab/sp2016.
11-731/tree/master/hwéd/data

ing style of a particular author. The participant
group consisted of 14 individuals, who were fa-
miliar with writing style of the said author by hav-
ing read all but a few of the literary works of the
author. The setup prevents them from being cer-
tain whether a sentence in question has or has not
appeared in any work of the author that they have
already read. To form the evaluation set of sen-

Evaluation Metrics Correlation

1.00

BLEU-1

BLEU-2

BLEU-3

BLEU-4

METEOR

ROGUE

BLEU-1 BLEU2 BLEU-3 BLEU-4 METEOR ROGUE HumanScr

Figure 2: Pearson’s correlation coefficient between au-
tomated computed metrics and human scores. Human
scores correlate well with BLEU-3 and ROUGE scores.
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Model

Generated Samples

a. GAN (Mode collapse) Lt ?
Lit?

Lit?

. it ? how would it ?

. it ? how would it ?

b. GAN (minibatch) . it a bottle ?

. a glass bottle ?

. a glass bottle it ?
. it my hand a bottle ?
the phone my hand it

c. Skip Thought WGAN

. we have new year s holidays, always.

. here you can nt see your suitcase ,

. please show me how much is a transfer?

. 1 had a police take watch out of my wallet .

. here i collect my telephone card and telephone number

d. Skip Thought WGAN-GP

1
2
3
4
5
1
2
3
4
5.
1
2
3
4
5
1
2
3
4
5

. my passport and a letter card with my card , please

. here on my telephone, mr. kimuras registration cards address.
. i can nt see some shopping happened .

. get him my camera found a person s my watch .

. delta airlines flight six zero two from six p.m. to miami, please?

Table 3: Sentences sampled from STGAN when training on CMU-SE Dataset; mode collapse is overcome by using
minibatch discrimination. Sample quality in terms of length and diversity further improved by using Wasserstein
distance f-measure with gradient penalty regularizer. WGAN: Wasserstein GAN, GP: Gradient Penalty

Real | Fake % real | % fake
Real 30 51 37.04% | 62.96%
Fake | 48 75 39.02% | 60.98%
Table 4: Weighted human scores for sentences.

|rating — 3| is weight given to each sentence’s rating.
39.02% of the generated samples were marked as real.

tences, the generated samples were mixed with
real sentences from the author’s writing. 10 sen-
tences from this mixed pool were chosen at ran-
dom to be presented to each person. The par-
ticipants were asked to mark on a scale of 1 to
5 if they thought that a sentence seemed to be-
long to the author’s works or was generated from a
model, with 1 being certainly from the author and
5 being certainly from a model. Table 4 shows
the weighted scores computed as |rating — 3|
to account for the degree of uncertainty addressed
by a participant when rating. The models per-
forms well with 39.02% of the generated sam-
ples being marked as written by the author while
a greater 62.96% of the actual sentences from
author’s writing being marked as fake generated

58

ones. Figure 2 compiles Pearson’s correlation co-
efficients between the obtained human scores and
Skip-Thought GAN scores.

5 Conclusion

This work presents a simple and effective model
for text generation based on adversarial training
using sentence embeddings. It shows how the use
of sentence-level embeddings allows modelling
the way of expression of an author in generated
text in a better way than when using word-level
embeddings. A performance comparison across
several metrics is made between different GAN
architectures with improved training stability and
attention augmented LSTM models. Finally, it
discusses how the automated corpus-based eval-
uations correlate with human judgements. In fu-
ture, this work aims to be applied for synthesizing
images from text, exploring complementary archi-
tectures to projects like neural-storyteller’ where
skip-thought embeddings are already used to per-
form image captioning with story-style transfer.

*https://github.com/ryankiros/
neural-storyteller
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