Extraction of Message Sequence Charts from
Software Use-Case Descriptions

Girish K. Palshikar Nitin Ramrakhiyani

Sangameshwar Patil

Sachin Pawar Swapnil Hingmire
{gk.palshikar,nitin.ramrakhiyani}@tcs.com
{sangameshwar.patil, sachin7.p, swapnil.hingmire}@tcs.com
TRDDC, TCS Research and Innovation, India

Vasudeva Varma
vv@iiit.ac.1in

IIIT Hyderabad, India

Abstract

Software Requirement Specification docu-
ments provide natural language descriptions of
the core functional requirements as a set of
use-cases. Essentially, each use-case contains
a set of actors and sequences of steps describ-
ing the interactions among them. Goals of use-
case reviews and analyses include their cor-
rectness, completeness, detection of ambigu-
ities, prototyping, verification, test case gen-
eration and traceability. Message Sequence
Charts (MSC) have been proposed as an ex-
pressive, rigorous yet intuitive visual represen-
tation of use-cases. In this paper, we describe
a linguistic knowledge-based approach to ex-
tract MSCs from use-cases. Compared to ex-
isting techniques, we extract richer constructs
of the MSC notation such as timers, conditions
and alt-boxes. We apply this tool to extract
MSC:s from several real-life software use-case
descriptions and show that it performs better
than the existing techniques.

1 Introduction

Software Development Life Cycle (SDLC) pro-
cesses generate large and complex natural lan-
guage text documents, which provide a rich play-
ground for NLP tecnhiques. In particular, NLP
techniques have been extensively applied to ana-
lyze requirements specifications for early detec-
tion of problems such as ambiguity and incom-
pleteness during reviews and inspections; e.g.,
(Gervasi and Zowghi, 2005; Chantree et al., 2006;
Kiyavitskaya et al., 2008; Yang et al., 2011; Ferrari
et al., 2017a; Rosadini et al., 2017). Another line
of research is concerned with automatically trans-
lating software requirements in natural language

130

Pushpak Bhattacharyya
pb@cse.iitb.ac.in
IIT Patna, India

to various formal models, in order to provide as-
sistance in downstream SDLC tasks like prototyp-
ing, verification, test case generation and trace-
ability. Specifically, use-cases provide a textual
description of the core functional requirements as
sequences of interactions among actors. Hence,
Message Sequence Charts (MSC) have been pro-
posed as an expressive, rigorous yet intuitive vi-
sual representation of use-cases (Feijs, 2000; Kof,
2008; Yue et al., 2015).

In extracting the MSC from a use-case descrip-
tion, we have to first identify actors, which refer
to human users, physical objects, systems, sub-
systems and components. Next, we need to iden-
tify interactions among the actors in the form of
messages of the MSC. The actor which initiates
an interaction i.e. sends a message is called the
sender and the actors which receive (or experi-
ence) the interaction are called receivers. NLP
techniques face various challenges in these steps.
Firstly, an actor (or an interaction) may be referred
in different ways (actor or event co-reference).
Secondly, since there is no standardized way of
writing use-cases, there is tremendous variety in
expressing various aspects of the functionality;
e.g., main and alternate flows. While restrictions
such as templates or structured English have been
imposed for writing use-cases e.g., (Arora et al.,
2015), we assume that a use-case is written as a
sequence of numbered steps in the main flow, and
an alternate flow for any steps in the main flow is
specified separately. We impose no linguistic re-
striction in writing each step in the use-case. Fi-
nally, MSC is a rich notation with many complex
facilities apart from representing actors and mes-
sages. Some of these include alt-boxes, conditions

Proceedings of NAACL-HLT 2019, pages 130-137
Minneapolis, Minnesota, June 2 - June 7, 2019. (©2019 Association for Computational Linguistics

Use Case: Move to Station

Actors: Supervisory System, AGV system, motor, vehicle, arrival sensor, robot arm

Main Flow:

1. The Supervisory System sends a message to the AGV system requesting it to move
to a factory station and load a part.
2. The AGV System commands the motor to start moving.

3. The motor notifies the AGV System that the vehicle has started moving.
4. The AGV System sends a Departed message to the Supervisory System.

5. The arrival sensor notifies the AGV System that it has arrived at factory
station.
6. The AGV System determines that this station is the destination station and

commands the motor to stop moving.

7. The motor notifies the AGV System that the vehicle has stopped moving.

8. The AGV System commands the robot arm to load the part within 10 seconds.
9. The arm notifies the AGV System that the part has been loaded.

10. The AGV System sends an Arrived message to the Supervisory System.

Alternate Flow:

1. Step 6 to Step 10: If the vehicle arrives at a different station from the
destination station , the vehicle passes the station without stopping and sends a
Passed factory station without stopping message to the Supervisory System.

Table 1: Sample use-case description

and timers. It is challenging to detect appropri- sentence in the form of relation tuples represent-
ate parts of the input text which can be mapped to ing a relation between its subject and one or more
these constructs. Table 1 shows an example use- objects. We use OpenlE to extract candidate mes-

case and Figure 1 shows the corresponding MSC. sages and their senders / receivers. We further use

WordNet and dependency parsing! for filtering the

Friemel el el e e s OpenlE candidates and obtaining the final set of
) [| [] [] [»] [messages to be depicted on the MSC.

sends (m¢ssage) to

The MSC representation supports richer con-
structs such as timers, conditions and alt-boxes.
Timers represent start and end of specific time du-
rations related to the messages and are shown by
hourglass shaped markers. For instance, to capture
the information that part loading should be com-
pleted in 10 seconds (Step 8 in Table 1), a timer

requegting (to move [to a factory sthtion)

commands to start (thoving)
—

notifies (vdhicle has startpd moving)
e

sends (mgssage) to

notifies (afrived at factofy station)

alt

destimation station > can be used. Accordingly, Figure 1 shows a timer
omminds to stop (oving) of duration 10 seconds on the timeline of the actor
o Sllesdle e Copretinovne) “the AGV system”. Conditions represent state or
1,10 secondy ¥ . — - situation of one or more actors and are shown as
R PO text labels inside hexagonal boxes. In Figure 1, a

ey condition is shown on the timeline of the actors -

sends (mfssage) to “the AGV system” and “the motor” denoting the

I D R state of the system to be at the destination station.
e pp Alt-boxes are used to represent an alternate control

pusses efion) flow with respect to a certain condition applicable

fends (Passed factory station to a set of actors. They are denoted using demar-

cating lines separating the normal and alternate set
of messages. In the example (Table 1), based on
the condition of the station at which the vehicle
has arrived, the step mentioned as alteranate flow
or the steps 6 to 10 of the normal flow need to be

In this paper, we describe our approach to ex- fo]jowed. This branching is depicted using the alt-
tract MSCs from use-cases based on Open In-

formation Extraction (OpenlE) (Mausam, 2016). 'In this paper, we use the Stanford CoreNLP (Manning
OpenlE extracts structured information from a et al., 2014) pipeline for dependency parsing.

Figure 1: MSC corresponding to the use-case descrip-
tion in Table 1

131

box shown in Figure 1.

The paper is organized as follows. Section 2
covers the related work; Section 3 describes the
MSC extraction approach; Section 4 describes the
experiments and discusses one of the use-cases in
detail; Section 5 concludes the paper.

2 Related Work

Feijs (2000) studies the relationship between nat-
ural language use cases and message sequence
charts. He uses context-free generative grammars
for natural language description of use-cases that
use object-oriented system development methods.
However, this study focuses on simple sentences
and sentences with coordination and subordina-
tion. Moreover, this study does not discuss empir-
ical evaluation of the use-case to MSC conversion.

Kof (2007a) proposes a method for representing
a software requirement document using a MSC.
This method takes a software requirement docu-
ment and a list of valid actors as its inputs. For a
verb in a sentence it generates a message such that
the valid actor appearing before the verb is identi-
fied as the sender, the valid actor appearing imme-
diately after the verb is identified as the receiver
and the text starting from the verb and ending be-
fore the receiver is identified as the message label.
Kof (2007b) further extends this approach to in-
clude sentences with multiple verbs, conjunctions
and passive voice. Kof (2007a) also proposes a set
of heuristics to handle missing sender or receiver
of a message. A key limitation of this method
is that it ignores syntactic as well as semantic
relations between the verb and its corresponding
sender or receiver. Hence it is possible that some
of the <sender, message label, receiver> tuples
may not be valid semantically. It is important to
note that Kof (2007a; 2007b) do not focus on other
features of MSC such as conditions, timers and alt-
boxes.

3 MSC Extraction

In this section, we describe our approach for cre-
ation of an MSC for a given use-case description.
The approach involves running OpenlE based
extraction on the input use-case text and process-
ing it further for extracting the MSC elements
namely actors and messages. Additionally, the
approach applies a set of linguistic rules to extract
conditions, alt boxes and timers.

132

Processing input using OpenlE: Use-case
descriptions generally use well-written English.
Over such text, generation of candidate messages
requires a simple relation and argument extractor.
We thus propose use of the OpenlE framework
which provides tuples of the form (left_argument,
relation, right_argument_1, right_argument 2, . ..)
along with confidence scores with each tuple.
We first process the input use-cases through
the OpenlE technique described in (Mausam
et al., 2012; Mausam, 2016) and obtain a list of
candidate messages.

Defining Actors in Software Engineering Use-
Cases: In general (Bedi et al., 2017; Patil et al.,
2018; Palshikar et al., 2019), the notion of actors
in MSC is based on named entities of the types
- PERSON, LOCATION and ORGANIZATION.
However, in the software requirements domain,
these may not be the only entities interacting with
each other. This criteria is extended and is pro-
posed to include:

PERSONS (Human SYSTEM users), OR-
GANIZATIONS and LOCATIONS

SYSTEMS (such as Supervisory System, Li-
brary System)

Persistent components of SYSTEMS (such as
servers, databases, customer accounts)

Persistent processes in the SYSTEM (such as
schedulers, daemons)

SYSTEM components (GUI elements like
buttons, menus, and similar)

Also, as part of the definition of actors, it is im-
portant to exclude the following entities seen in
software requirements text.

e Attributes of the above entities (such as user-
names, passwords)

e Transient entities and business processes
(such as requests, responses, registration pro-
cess)

To realize this definition of actors we propose a
WordNet based approach and check if a candidate
actor is a valid actor. We refer to this verification
while identifying messages.

We consider all noun phrases as candidate ac-
tors and then filter them based on two criteria. If

the head word of the noun phrase has certain spe-
cific senses as part of its WordNet hypernym hier-
archy, we consider it as a valid actor. These spe-
cific senses are gathered manually through obser-
vation and consist of ‘“Physical Object” (sense 1),
“thing” (sense 4 and sense 12), “matter” (sense 3),
“substance” (sense 1 and 4) and “Causal agent”
(sense 1). This filters out abstract entities which
are not actors such as request, response and
message.

To allow computer and system related nouns

which are abstract in nature and have none of
the above specified senses in their hypernym path,
we apply the second criteria. We allow nouns
with head words having the following senses in
their hypernym hierarchy: “Computer”, “Com-
puter File” and “database”.
Identifying Messages: For identifying messages,
we begin by considering output of the OpenlE tool
on the use-case text which gives us a set of tu-
ples in each sentence. These candidate message
tuples are given input to the message identifica-
tion approach and the list of filtered messages with
their senders and receivers are obtained as output.
The message identification approach is described
in Algorithm 1.

The algorithm iterates over the set of OpenlE
tuples. For each tuple, it checks if the left argu-
ment is a valid actor which is the sender of the
message. The valid actor check is based on the
proposed definition of actors. If the left argument
is not a valid actor the tuple is ignored. This en-
sures that each message has a valid sender.

For each right argument, if it has a single
dependency subtree and is a valid actor, the tuple
is regarded as a valid message. If the subtree is not
a valid actor but is dependent to the relation it is
appended to the relation string. In the case when
there are multiple subtrees in a right argument,
subtrees with their head words as valid actors are
considered receivers of the message.

Extracting Conditions: We consider a text
fragment in a use-case as a condition, if it denotes
a state or property and the set of associated actors
are those that are “involved” in that condition.
A condition text is often either a verb phrase
(VP) (has stopped moving), a noun phrase (NP)
(power failure) or an adjective phrase (ADJP),
though sometimes a prepositional phrase (PP)
is also observed. Since not all VPs or NPs are

Algorithm 1: identi fy_messages

Input: T = Set of tuples given by OpenlE for a
sentence. T = t; t_confidence >= threshold
where each t = (left argument, rel, right
arguments...)

Output: set of messages M with each message m

having three attributes: sender, message label
(msg_label) and set of receivers

1 foreach tuplet € T do
2 m := ()
3 if t.left_arg is a valid actor then
4 | m.sender := t.left arg
5 else
6 | continue
7 m.msg_label := t.rel
8 foreach arg € t.right_arguments do
9 if arg contains only one dependency
subtree then
10 if arg is a valid actor then
11 | m.receivers U arg
12 else if head of t.rel is governor
of head of arg then
13 m.msg_label := append(m.msg_label,
arg)
14 else
15 foreach dep_st € arg's
disjoint dependency subtrees do
16 if dep_st headed by a noun
and is valid actor then
17 | m.receivers U arg
18 else
19 if head of t.rel is governor of
head of dep_st then
20 m.msg-_label =
append(m.msg_label,
dep_st)
21 foreach r in m.receivers do
22 new_tuple := (m.sender, m.msg_label, r)
23 M =M U (new_tuple)
24 return M

conditions, we have designed a set of linguistic
rules to identify conditions: (1) Any ADJP con-
nected to a copula (or copula-like) verb and also
to an actor through nsubj dependency relation
(The valve is open). (2) Any VP connected to
a copula (or copula-like) verb through auxpass
dependency relation and also connected to an
actor through nsubjpass dependency relation (The
page is refreshed). (3) Any VP connected to
a copula-like verb v (e.g., remains) through an
xcomp dependency and v is connected to an actor
thI‘Ongh IlSllbj (The engine remains idling).
(4) A VP V connected to cue phrases like if,
upon, in case of, where the head verb of V'
has an actor as a part of its dependency subtree

(If power to the pump fails). (5) If a NP

133

is predicative nominal of another NP, the text
segment comprising these NPs is considered as a
condition (This station is the destination

station.)

Extracting Alt-Boxes: Alt boxes in the MSC rep-
resentation are useful to represent paths alternate
to the normal flow of events. This is an important
construct especially for use-case descriptions as
alternate steps of action occur frequently with
software systems. For identifying these alternate
paths and representing them as alt boxes in MSCs,
we harness the structure of use-case descriptions.
As per our observation, there are generally two
styles in which alternate paths are specified in
use-case descriptions. In one format, the alternate
flow is specified separately from the normal. The
alternate flow provides a pointer to the set of steps
in the normal flow to which it is alternate to. We
use this structural information and capture mes-
sages from the alternate flow to be shown in “alt”
to the corresponding normal flow messages. In
another format, the alternate step is specified just
after the normal flow step marked by a set of con-
ditional prepositions such as if or prepositional
phrases such as in case, in the event of Or
adverbs such as else, otherwise. We identify
these markers with the help of regular expression
based patterns and separate the alternate step from
the normal step. The later format however, does
not provide scope information of alternate steps.
Based on observation of multiple use-cases of real
software systems, we make an assumption that the
scope of the alternate flow begins at the normal
flow step with which it is specified and lasts till
the last step in the normal flow.

Extracting Timers: MSC supports an important
construct - the “timer”, to capture interactions
which must happen in a time-bound manner. A
timer may be attached to an actor’s time-line
or a condition. Timers in a use-case descrip-
tion are extracted through two steps. Firstly,
we identify the durative time expressions in
the input use-case description using regular
expression based patterns such as [0 — 9] +
(milliseconds|seconds|minutes|hours|days)

(numbers followed by time period expressions
like milliseconds, seconds, minutes, hours, days).
Secondly, using the OpenlE output, we identify
the relation for which the time expressions iden-

134

tified in the previous step appears as a temporal
argument. We attach a timer to time-line around
the message.

4 Experimentation Details

4.1 Dataset and Evaluation

We report results in this paper on a set of 4 use-
cases obtained from publicly available Software
Requirement Specifications (SRS) of real life soft-
ware systems (Ferrari et al., 2017b). These use-
cases are AGV (Automated Guided Vehicle Sys-
tem), G6 & G16 (gamma-j web order system) and
EMS (Electronic Monitoring System). Addition-
ally, we use one more use-case (TRAIN) from
an internal project dealing with Automatic Train
Control systems.

We manually create the gold standard MSC for
each use-case and use them to evaluate our extrac-
tion system. As part of the evaluation, we com-
pare the performance of our system with a baseline
technique proposed in (Kof, 2007a,b).

We evaluate the proposed approach on five lev-
els of increasing complexity starting from actor
identification to complete message extraction:

1. Actors : At this level we evaluate the predicted
actors with respect to the gold actors. A pre-
dicted actor is a true positive if its complete
phrase is present exactly in the set of gold ac-
tors. False positives and false negatives are ac-
cordingly computed.

Message label : At this level we evaluate only
the message label of each predicted message
with respect to labels of gold messages. A pre-
dicted message label from a sentence is con-
sidered as a true positive if the main verb of
the label matches the main verb of a gold mes-
sage from the same sentence. False positives
and false negatives are accordingly computed.

Message label + Sender : At this level we
evaluate the combination of message label and
sender of each predicted message with respect
to the same combination for gold messages. A
predicted combination from a sentence is con-
sidered as a true positive if it matches the com-
bination from a gold message from the same
sentence.

Message label + Receiver : At this level we
evaluate the combination of message label and

Dataset Actors Message Sender Receiver Complete
Label Message
AGV B 0.552 0.083 0.080 0.071 0.071
M 0.800 0.741 0.741 0.581 0.581
G6 B 0.667 0.667 0.667 0.571 0.571
M 0.778 0.947 0.947 0.727 0.727
Gl6 B 0.667 0.769 0.769 0.571 0.571
M 0.800 1.000 1.000 0.933 0.933
EMS3 B 0.727 0.333 0.333 0.333 0.333
M 0.909 0.750 0.750 0.750 0.750
B 0.556 0.667 0.444 0.526 0.421
TRAIN' N1 0041 0800 0800 0706 0.706

Table 2: Comparative performance for MSC Extraction. M: Our approach described in Algorithm 1. B: Baseline

approach based on Kof (2007a; 2007b)

receiver of each predicted message with re-
spect to the same combination for gold mes-
sages. We compute Fl-measure on similar
lines as above.

5. Message label + Sender + Receiver : At this
level we evaluate the complete message i.e.
combination of message label, sender and re-
ceiver with respect to the complete gold mes-
sages. We compute Fl-measure on similar
lines as above.

As each level’s performance, we report the F1-
measure in Table 2. Our approach outperforms the
baseline on all datasets on all evaluation levels.

For extraction of the complex constructs like
conditions, alt-boxes and timers, we employ a set
of simple rules described earlier. The baseline
technique proposed in (Kof, 2007a,b) does not fo-
cus on identifying these constructs.

4.2 Analysis

It is important to note that performance of the pro-
posed approach is dependent on the performance
of tools in the NLP processing backend (which are
WordNet, Stanford CoreNLP and OpenlE in this
case). We highlight a few error cases to explain
the NLP challenges encountered.

OpenlE fails to identify any relation in
some sentences. For example, in the sentence
System stores order confirmation and
order details., OpenlE does not generate any
relation of the form <System, stores, order
confirmation>, because it identifies “stores” as
a noun. Hence our approach fails to identify the
messages in this sentence.

In the context of use-case description texts,
there are multiple words which have domain spe-
cific senses which are not captured by resources

135

like WordNet, e.g., “flag”, “ticket”, “turnkey”,
etc. As our approach depends on WordNet
to identify valid actors, it may identify certain
spurious messages. For example, in the sen-
tence System appends cookie with flag for
completed checkout process., our approach
identifies “flag” as a valid actor even though in
this context it is not. Hence, it creates an incor-
rect message with sender as “System” and “flag”
as receiver.

In use-cases we frequently observe that the
actors are part of multiple interactions and a single
actor is referred by multiple lexical mentions.
Hence, it is necessary to perform coreference
resolution to group multiple mentions of an actor
and represent it using a canonical mention in the
MSC. However, we observed that performing
coreference resolution to group coreferring actor
mentions together, degrades the performance. The
average (over all use-cases) complete message
identification performance degrades from an
F1 of 74% to 45%. This is because of sev-
eral incorrect coreference links identified by
the Stanford CoreNLP toolkit. E.g., consider
the following extract from a use-case: The
Supervisory System sends a message to
the AGV system requesting it to move to
a factory station and load a part. The
AGV System commands the motor to start
moving. Here, Stanford CoreNLP incorrectly
identifies The Supervisory System in the first
sentence and The AGV System in the second
sentence as coreferences.

These examples point out the NLP challenges
faced in automated extraction of MSC and the
need for further research.

Crusher operator; A6 = the train; A7 = RCS System

msc Al = the CF System; A2 = OBC System in the train; A3 = CF System; A4 = its database; A5 =

Lo | a2 | [as] |

A4

| [| [Las | [a7 |

fassed data abput the train

ENVO—

proy

ides a TrainO

[Rail comman

ENV @<

replies|OK to

adds

adds to

starts initiglization
ENV@<

w

S€]

1ds commands|

CM_NITIALIZATION

{ CM_AUTOMATIC)

1L

to for validatj

o

nfirms validity

of command

Figure 2: MSC for sample use-case about addition of a new train in the automated train system

4.3 Discussion on the TRAIN Use-Case

We have used the MSC to analyze the software
use-cases for an industrial computer-controlled
automated train system. It is used to move ores
from mines. The automated train system has fol-
lowing key components: (i) the Railway Con-
troller Software (RCS) system, (ii) the Checker
Functionality (CF) system, (iii) the On-Board
Computer (OBC) system. The locomotive train is
controlled by the RCS. This system is used by var-
ious operators such as the crusher operator, etc. A
brief use-case about addition of a new locomotive
train into the the set of trains already under control
of the RCS is described below:-

1. Crusher operator provides a

TrainOnRail command.

2. The data about the train is passed
to CEF System.

3. CF System replies OK to RCS System.

4. CF System adds the train to its
database.

5. At the beginning the state of the
train is CM_INITIALIZATION.

6. OBC System in the train starts
initialization.

7. After initialization, the state of
the train becomes CM_AUTOMATIC.

8. RCS System sends commands to the CF
System for validation.

9. CF System confirms validity of

command to the RCS System.

Figure 2 shows the MSC for this use-case. Us-
ing the MSC, we are able to identify the gaps

in the use-case specification as well as gener-
ate test-cases from the use-case. For instance,
in the above use-case, the expected behaviour of
the automated train system is not specified if the
RCS sends a command while the train is still
in the CM_INITIALIZATION state. The domain
expert then clarified that the RCS should never
send the commands till the train state becomes
CM_AUTOMATIC. Based on the tools and tech-
niques (Alur et al., 1996) developed for verifying
MSC properties, it can be verified that such a se-
quence of infeasible actions is not specified in the
set of given use-cases. Also, it can be verified that
there are no contradictions in the given set of use-
cases. It is also possible to develop test-case out-
lines using the MSCs prepared from the use-case
descriptions. Such test-case generation is part of
our future work.

5 Conclusions

We explored automatic extraction of Message
Sequence Charts (MSC) from use-case descrip-
tions in Software Requirement Specification doc-
uments. In this paper, we described an Open IE
based approach which uses linguistic knowledge
such as dependency parsing and WordNet hyper-
nyms to extract MSCs from use-cases. Compared
to existing techniques, we also extracted richer
constructs of the MSC notation such as timers,
conditions and alt-boxes. Our approach outper-
forms the baseline on a dataset of five real-life use-
cases.

136

References

Rajeev Alur, Gerard J Holzmann, and Doron Peled.
1996. An analyzer for message sequence charts. In
International Workshop on Tools and Algorithms for
the Construction and Analysis of Systems, pages 35—
48. Springer.

Chetan Arora, Mehrdad Sabetzadeh, Lionel C. Briand,
and Frank Zimmer. 2015. Automated Checking
of Conformance to Requirements Templates Using
Natural Language Processing. [EEE Trans. Soft-
ware Eng., 41(10):944-968.

Harsimran Bedi, Sangameshwar Patil, Swapnil Hing-
mire, and Girish K. Palshikar. 2017. Event Timeline
Generation from History Textbooks. In Proceedings
of the 4th Workshop on Natural Language Process-
ing Techniques for Educational Applications, NLP-
TEA@IJCNLP 2017, Taipei, Taiwan, December 1,
2017, pages 69-717.

Francis Chantree, Bashar Nuseibeh, Anne N. De
Roeck, and Alistair Willis. 2006. Identifying Nocu-
ous Ambiguities in Natural Language Requirements.
In 14th IEEE International Conference on Require-
ments Engineering (RE 2006), 11-15 September
2006, Minneapolis/St.Paul, Minnesota, USA, pages
56-65.

Loe M. G. Feijs. 2000. Natural language and message
sequence chart representation of use cases. Informa-
tion & Software Technology, 42(9):633-647.

Alessio Ferrari, Felice Dell’Orletta, Andrea Esuli, Vin-
cenzo Gervasi, and Stefania Gnesi. 2017a. Natural
Language Requirements Processing: A 4D Vision.
IEEFE Software, 34(6):28-35.

Alessio Ferrari, Giorgio Oronzo Spagnolo, and Ste-
fania Gnesi. 2017b. PURE: A Dataset of Public
Requirements Documents. In 25th IEEE Interna-
tional Requirements Engineering Conference, RE
2017, Lisbon, Portugal, September 4-8, 2017, pages
502-505.

Vincenzo Gervasi and Didar Zowghi. 2005. Reason-
ing About Inconsistencies in Natural Language Re-
quirements. ACM Trans. Softw. Eng. Methodol.,
14(3):277-330.

Nadzeya Kiyavitskaya, Nicola Zeni, Luisa Mich, and
Daniel M. Berry. 2008. Requirements for tools for
ambiguity identification and measurement in natural
language requirements specifications. Requir. Eng.,
13(3):207-239.

Leonid Kof. 2007a. Scenarios: Identifying Missing
Objects and Actions by Means of Computational
Linguistics. In I5th IEEE International Require-
ments Engineering Conference (RE 2007), pages
121-130.

Leonid Kof. 2007b. Treatment of Passive Voice and
Conjunctions in Use Case Documents. In Natu-
ral Language Processing and Information Systems,

pages 181-192, Berlin, Heidelberg. Springer Berlin
Heidelberg.

Leonid Kof. 2008. From textual scenarios to message
sequence charts: inclusion of condition generation
and actor extraction. In 6th IEEE international re-
quirements engineering conference, (RE’08), pages
331-332.

Christopher D. Manning, Mihai Surdeanu, John Bauer,
Jenny Rose Finkel, Steven Bethard, and David Mc-
Closky. 2014. The Stanford CoreNLP Natural Lan-
guage Processing Toolkit. In Proceedings of the
52nd Annual Meeting of the Association for Com-
putational Linguistics, ACL 2014, June 22-27, 2014,
Baltimore, MD, USA, System Demonstrations, pages
55-60.

Mausam. 2016. Open Information Extraction Systems
and Downstream Applications. In Proceedings of
the Twenty-Fifth International Joint Conference on
Artificial Intelligence, IJCAI 2016, New York, NY,
USA, 9-15 July 2016, pages 4074-4077.

Mausam, Michael Schmitz, Stephen Soderland, Robert
Bart, and Oren Etzioni. 2012. Open Language
Learning for Information Extraction. In Proceed-
ings of the 2012 Joint Conference on Empirical
Methods in Natural Language Processing and Com-
putational Natural Language Learning, EMNLP-
CoNLL 2012, July 12-14, 2012, Jeju Island, Korea,
pages 523-534.

Girish K. Palshikar, Sachin Pawar, Sangameshwar
Patil, Swapnil Hingmire, Nitin Ramrakhiyani, Har-
simran Bedi, Pushpak Bhattacharyya, and Vasudeva
Varma. 2019. Extraction of Message Sequence
Charts from Narrative History Text. In Proceedings
of the Workshop on Narrative Understanding.

Sangameshwar Patil, Sachin Pawar, Swapnil Hingmire,
Girish K. Palshikar, Vasudeva Varma, and Pushpak
Bhattacharyya. 2018. Identification of Alias Links
among Participants in Narratives. In ACL 2018.

Benedetta Rosadini, Alessio Ferrari, Gloria Gori,
Alessandro Fantechi, Stefania Gnesi, lacopo Trotta,
and Stefano Bacherini. 2017. Using NLP to Detect
Requirements Defects: An Industrial Experience in
the Railway Domain. In Requirements Engineer-
ing: Foundation for Software Quality - 23rd Inter-
national Working Conference, REFSQ 2017, Essen,
Germany, February 27 - March 2, 2017, Proceed-
ings, pages 344-360.

Hui Yang, Anne N. De Roeck, Vincenzo Gervasi, Al-
istair Willis, and Bashar Nuseibeh. 2011. Analysing
anaphoric ambiguity in natural language require-
ments. Requir. Eng., 16(3):163-189.

Tao Yue, Lionel C. Briand, and Yvan Labiche. 2015.
aToucan: An Automated Framework to Derive UML
Analysis Models from Use Case Models. ACM
Trans. Softw. Eng. Methodol., 24(3):1-52.

