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Abstract
Executable semantic parsing is the task of con-
verting natural language utterances into logi-
cal forms that can be directly used as queries
to get a response. We build a transfer learn-
ing framework for executable semantic pars-
ing. We show that the framework is effec-
tive for Question Answering (Q&A) as well as
for Spoken Language Understanding (SLU).
We further investigate the case where a parser
on a new domain can be learned by exploit-
ing data on other domains, either via multi-
task learning between the target domain and
an auxiliary domain or via pre-training on the
auxiliary domain and fine-tuning on the target
domain. With either flavor of transfer learn-
ing, we are able to improve performance on
most domains; we experiment with public data
sets such as Overnight and NLmaps as well as
with commercial SLU data. The experiments
carried out on data sets that are different in
nature show how executable semantic parsing
can unify different areas of NLP such as Q&A
and SLU.

1 Introduction

Due to recent advances in speech recognition and
language understanding, conversational interfaces
such as Alexa, Cortana, and Siri are becoming
more common. They currently have two large uses
cases. First, a user can use them to complete a
specific task, such as playing music. Second, a
user can use them to ask questions where the ques-
tions are answered by querying knowledge graph
or database back-end. Typically, under a common
interface, there exist two disparate systems that
can handle each use cases. The system underlying
the first use case is known as a spoken language
understanding (SLU) system. Typical commercial
SLU systems rely on predicting a coarse user in-
tent and then tagging each word in the utterance to
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the intent’s slots. This architecture is popular due
to its simplicity and robustness. On the other hand,
Q&A, which need systems to produce more com-
plex structures such as trees and graphs, requires a
more comprehensive understanding of human lan-
guage.

One possible system that can handle such a task
is an executable semantic parser (Liang, 2013;
Kate et al., 2005). Given a user utterance, an exe-
cutable semantic parser can generate tree or graph
structures that represent logical forms that can be
used to query a knowledge base or database. In
this work, we propose executable semantic pars-
ing as a common framework for both uses cases
by framing SLU as executable semantic parsing
that unifies the two use cases. For Q&A, the in-
put utterances are parsed into logical forms that
represent the machine-readable representation of
the question, while in SLU, they represent the
machine-readable representation of the user intent
and slots. One added advantage of using parsing
for SLU is the ability to handle more complex lin-
guistic phenomena such as coordinated intents that
traditional SLU systems struggle to handle (Agar-
wal et al., 2018). Our parsing model is an exten-
sion of the neural transition-based parser of Cheng
et al. (2017).

A major issue with semantic parsing is the avail-
ability of the annotated logical forms to train the
parsers, which are expensive to obtain. A solution
is to rely more on distant supervisions such as by
using question–answer pairs (Clarke et al., 2010;
Liang et al., 2013). Alternatively, it is possible
to exploit annotated logical forms from a differ-
ent domain or related data set. In this paper, we
focus on the scenario where data sets for several
domains exist but only very little data for a new
one is available and apply transfer learning tech-
niques to it. A common way to implement trans-
fer learning is by first pre-training the model on a
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domain on which a large data set is available and
subsequently fine-tuning the model on the target
domain (Thrun, 1996; Zoph et al., 2016). We also
consider a multi-task learning (MTL) approach.
MTL refers to machine learning models that im-
prove generalization by training on more than one
task. MTL has been used for a number of NLP
problems such as tagging (Collobert and Weston,
2008), syntactic parsing (Luong et al., 2015), ma-
chine translation (Dong et al., 2015; Luong et al.,
2015) and semantic parsing (Fan et al., 2017). See
Caruana (1997) and Ruder (2017) for an overview
of MTL.

A good Q&A data set for our domain adap-
tation scenario is the Overnight data set (Wang
et al., 2015b), which contains sentences annotated
with Lambda Dependency-Based Compositional
Semantics (Lambda DCS; Liang 2013) for eight
different domains. However, it includes only a
few hundred sentences for each domain, and its
vocabularies are relatively small. We also ex-
periment with a larger semantic parsing data set
(NLmaps; Lawrence and Riezler 2016). For SLU,
we work with data from a commercial conversa-
tional assistant that has a much larger vocabulary
size. One common issue in parsing is how to
deal with rare or unknown words, which is usu-
ally addressed by either delexicalization or by im-
plementing a copy mechanism (Gulcehre et al.,
2016). We show clear differences in the outcome
of these and other techniques when applied to data
sets of varying sizes. Our contributions are as fol-
lows:

• We propose a common semantic parsing
framework for Q&A and SLU and demon-
strate its broad applicability and effective-
ness.

• We report parsing baselines for Overnight for
which exact match parsing scores have not
been yet published.

• We show that SLU greatly benefits from a
copy mechanism, which is also beneficial for
NLmaps but not Overnight.

• We investigate the use of transfer learning
and show that it can facilitate parsing on low-
resource domains.

2 Transition-based Parser

Transition-based parsers are widely used for de-
pendency parsing (Nivre, 2008; Dyer et al., 2015)

and they have been also applied to semantic pars-
ing tasks (Wang et al., 2015a; Cheng et al., 2017).

In syntactic parsing, a transition system is usu-
ally defined as a quadruple: T = {S,A, I, E},
where S is a set of states, A is a set of actions,
I is the initial state, and E is a set of end states.
A state is composed of a buffer, a stack, and a
set of arcs: S = (β, σ,A). In the initial state,
the buffer contains all the words in the input sen-
tence while the stack and the set of subtrees are
empty: S0 = (w0| . . . |wN , ∅, ∅). Terminal states
have empty stack and buffer: ST = (∅, ∅, A).

During parsing, the stack stores words that have
been removed from the buffer but have not been
fully processed yet. Actions can be performed
to advance the transition system’s state: they can
either consume words in the buffer and move
them to the stack (SHIFT) or combine words in
the stack to create new arcs (LEFT-ARC and
RIGHT-ARC, depending on the direction of the
arc)1. Words in the buffer are processed left-to-
right until an end state is reached, at which point
the set of arcs will contain the full output tree.

The parser needs to be able to predict the next
action based on its current state. Traditionally, su-
pervised techniques are used to learn such clas-
sifiers, using a parallel corpus of sentences and
their output trees. Trees can be converted to states
and actions using an oracle system. For a detailed
explanation of transition-based parsing, see Nivre
(2003) and Nivre (2008).

2.1 Neural Transition-based Parser with
Stack-LSTMs

In this paper, we consider the neural executable
semantic parser of Cheng et al. (2017), which fol-
lows the transition-based parsing paradigm. Its
transition system differs from traditional systems
as the words are not consumed from the buffer be-
cause in executable semantic parsing, there are no
strict alignments between words in the input and
nodes in the tree. The neural architecture encodes
the buffer using a Bi-LSTM (Graves, 2012) and
the stack as a Stack-LSTM (Dyer et al., 2015),
a recurrent network that allows for push and pop
operations. Additionally, the previous actions are
also represented with an LSTM. The output of
these networks is fed into feed-forward layers and
softmax layers are used to predict the next action

1There are multiple different transition systems. The ex-
ample we describe here is that of arc-standard system (Nivre,
2004) for projective dependency parsing.
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given the current state. The possible actions are
REDUCE, which pops an item from the stack,
TER, which creates a terminal node (i.e., a leaf
in the tree), and NT, which creates a non-terminal
node. When the next action is either TER or NT,
additional softmax layers predict the output token
to be generated. Since the buffer does not change
while parsing, an attention mechanism is used to
focus on specific words given the current state of
the parser.

We extend the model of Cheng et al. (2017)
by adding character-level embeddings and a copy
mechanism. When using only word embeddings,
out-of-vocabulary words are usually mapped to
one embedding vector and do not exploit morpho-
logical features. Our model encodes words by
feeding each character embedding onto an LSTM
and concatenate its output to the word embedding:

x = {ew;hMc }, (1)

where ew is the word embedding of the input word
w and hMc is the last hidden state of the character-
level LSTM over the characters of the input word
w = c0, . . . , cM .

Rare words are usually handled by either delexi-
calizing the output or by using a copy mechanism.
Delexicalization involves substituting named en-
tities with a specific token in an effort to reduce
the number of rare and unknown words. Copy re-
lies on the fact that when rare or unknown words
must be generated, they usually appear in the same
form in the input sentence and they can be there-
fore copied from the input itself. Our copy im-
plementation follows the strategy of Fan et al.
(2017), where the output of the generation layer
is concatenated to the scores of an attention mech-
anism (Bahdanau et al., 2015), which express the
relevance of each input word with respect to the
current state of the parser. In the experiments that
follow, we compare delexicalization with copy
mechanism on different setups. A depiction of the
full model is shown in Figure 1.

3 Transfer learning

We consider the scenario where large training cor-
pora are available for some domains and we want
to bootstrap a parser for a new domain where little
training data is available. We investigate the use of
two transfer learning approaches: pre-training and
multi-task learning.

x0, x1, . . . , xn

HISTORY

. . .

BUFFER

. . .

STACK

. . .

ATTENTION

FEED-FORWARD
LAYERS

TER RED NT

t0 . . . tn x0 . . . xn

TER COPY

nt0 . . . ntn

NT

Figure 1: The full neural transition-based parsing model.
Representations of stack, buffer, and previous actions are
used to predict the next action. When the TER or NT ac-
tions are chosen, further layers are used to predict (or copy)
the token.

For MTL, the different tasks share most of the
architecture and only the output layers, which are
responsible for predicting the output tokens, are
separate for each task. When multi-tasking across
domains of the same data set, we expect that most
layers of the neural parser, such as the ones re-
sponsible for learning the word embeddings and
the stack and buffer representation, will learn sim-
ilar features and can, therefore, be shared. We im-
plement two different MTL setups: a) when sep-
arate heads are used for both the TER classifier
and the NT classifier, which is expected to be ef-
fective when transferring across tasks that do not
share output vocabulary; and b) when a separate
head is used only for the TER classifier, more ap-
propriate when the non-terminals space is mostly
shared.

4 Data

In order to investigate the flexibility of the ex-
ecutable semantic parsing framework, we eval-
uate models on Q&A data sets as well as on
commercial SLU data sets. For Q&A, we con-
sider Overnight (Wang et al., 2015b) and NLmaps
(Lawrence and Riezler, 2016).
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Overnight It contains sentences annotated with
Lambda DCS (Liang, 2013). The sentences are di-
vided into eight domains: calendar, blocks, hous-
ing, restaurants, publications, recipes, socialnet-
work, and basketball. As shown in Table 1, the
number of sentences and the terminal vocabular-
ies are small, which makes the learning more chal-
lenging, preventing us from using data-hungry ap-
proaches such as sequence-to-sequence models.
The current state-of-the-art results, to the best
of our knowledge, are reported by Su and Yan
(2017). Previous work on this data set use deno-
tation accuracy as a metric. In this paper, we use
logical form exact match accuracy across all data
sets.

NLmaps It contains more than two thousand
questions about geographical facts, retrieved from
OpenStreetMap (Haklay and Weber, 2008). Un-
fortunately, this data set is not divided into sub-
domains. While NLmaps has comparable sizes
with some of the Overnight domains, its vocab-
ularies are much larger: containing 160 terminals,
24 non-terminals and 280 word types (Table 1).
The current state-of-the-art results on this data set
are reported by Duong et al. (2017).

SLU We select five domains from our SLU data
set: search, recipes, cinema, bookings, and closet.
In order to investigate the use case of a new low-
resource domain exploiting a higher-resource do-
main, we selected a mix of high-resource and low-
resource domains. Details are shown in Table 1.
We extracted shallow trees from data originally
collected for intent/slot tagging: intents become
the root of the tree, slot types are attached to the
roots as their children and slot values are in turn
attached to their slot types as their children. An
example is shown in Figure 2. A similar approach
to transform intent/slot data into tree structures has
been recently employed by Gupta et al. (2018b).

5 Experiments

We first run experiments on single-task seman-
tic parsing to observe the differences among the
three different data sources discussed in Section 4.
Specifically, we explore the impact of an atten-
tion mechanism on the performance as well as the
comparison between delexicalization and a copy
mechanism for dealing with data sparsity. The
metric used to evaluate parsers is the exact match
accuracy, defined as the ratio of sentences cor-

FindCinema

TimeTitleTitle

tonightWarsStar

FindCinemaIntent
which cinemas screen Star|Title Wars|Title tonight|Time

Figure 2: Conversion from intent/slot tags to tree for the
sentence Which cinemas screen Star Wars tonight?

DOMAIN # TER NT Words

Q&A
calendar 535 31 13 114
blocks 1276 30 13 99
housing 601 34 13 109
restaurants 1060 40 13 144
publications 512 24 12 80
recipes 691 30 13 121
social 2828 56 16 225
basketball 1248 40 15 148

NLmaps 1200 160 24 280

SLU
search 23706 1621 51 1780
recipes 18721 530 40 643
cinema 13180 806 36 923
bookings 1280 10 19 42
closet 943 63 13 107

Table 1: Details of training data. # is the number of sen-
tences, TER is the terminal vocabulary size, NT is the non-
terminal vocabulary size and Words is the input vocabulary
size.

rectly parsed.

5.1 Attention
Because the buffer is not consumed as in tradi-
tional transition-based parsers, Cheng et al. (2017)
use an additive attention mechanism (Bahdanau
et al., 2015) to focus on the more relevant words
in the buffer for the current state of the stack.

In order to find the impact of attention on the
different data sets, we run ablation experiments,
as shown in Table 2 (left side). We found that
attention between stack and buffer is not always
beneficial: it appears to be helpful for larger data
sets while harmful for smaller data sets. Attention
is, however, useful for NLmaps, regardless of the
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DOMAIN BL −Att +Delex +Copy

calendar 38.1 43.5 4.20 32.1
blocks 22.6 25.1 24.3 22.8
housing 19.0 29.6 6.90 21.2
restaurants 32.2 37.3 21.7 33.7
publications 27.3 32.9 11.8 26.1
recipes 47.7 58.3 24.1 48.1
social 44.9 51.2 47.7 50.9
basketball 65.2 69.6 38.6 66.5

NLmaps 44.9 43.5 46.4 60.7

search 35.6 34.9 29.2 52.7
recipes 40.9 37.9 37.7 47.6
cinema 31.5 35.5 35.7 56.9
bookings 72.3 77.7 72.3 77.7
closet 17.6 35.9 29.2 44.1

Table 2: Left side: Ablation experiments on attention mech-
anism. Right side: Comparison between delexicalization and
copy mechanism. BL is the model of Section 2.1, −Att refers
to the same model without attention, +Delex is the system
with delexicalization and in +Copy we use a copy mecha-
nism instead. The scores indicate the percentage of correct
parses.

data size. Even though NLmaps data is similarly
sized to some of the Overnight domains, its termi-
nal space is considerably larger, perhaps making
attention more important even with a smaller data
set. On the other hand, the high-resource SLU’s
cinema domain is not able to benefit from the at-
tention mechanism. We note that the performance
of this model on NLmaps falls behind the state of
the art (Duong et al., 2017). The hyper-parameters
of our model were however not tuned on this data
set.

5.2 Handling Sparsity

A popular way to deal with the data sparsity prob-
lem is to delexicalize the data, that is replacing
rare and unknown words with coarse categories.
In our experiment, we use a named entity recog-
nition system2 to replace names with their named
entity types. Alternatively, it is possible to use a
copy mechanism to enable the decoder to copy
rare words from the input rather than generating
them from its limited vocabulary.

We compare the two solutions across all data
sets on the right side of Table 2. Regardless of
the data set, the copy mechanism generally outper-
forms delexicalization. We also note that delexi-

2https://spacy.io

calization has unexpected catastrophic effects on
exact match accuracy for calendar and housing.
For Overnight, however, the system with copy
mechanism is outperformed by the system without
attention. This is unsurprising as the copy mech-
anism is based on attention, which is not effective
on Overnight (Section 5.1). The inefficacy of copy
mechanisms on the Overnight data set was also
discussed in Jia and Liang (2016), where answer
accuracy, rather than parsing accuracy, was used
as a metric. As such, the results are not directly
comparable.

For NLmaps and all SLU domains, using a
copy mechanism results in an average accuracy
improvement of 16% over the baseline. It is worth
noting that the copy mechanism is unsurprisingly
effective for SLU data due to the nature of the data
set: the SLU trees were obtained from data col-
lected for slot tagging, and as such, each leaf in
the tree has to be copied from the input sentence.

Even though Overnight often yields different
conclusions, most likely due to its small vocab-
ulary size, the similar behaviors observed for
NLmaps and SLU is reassuring, confirming that
it is possible to unify Q&A and SLU under the
same umbrella framework of executable semantic
parsing.

In order to compare the NLmaps results with
Lawrence and Riezler (2016), we also compute F1
scores for the data set. Our baseline outperforms
previous results, achieving a score of 0.846. Our
best F1 results are also obtained when adding the
copy mechanism, achieving a score of 0.874.

5.3 Transfer Learning

The first set of experiments involve transfer learn-
ing across Overnight domains. For this data
set, the non-terminal vocabulary is mostly shared
across domains. As such, we use the architecture
where only the TER output classifier is not shared.
Selecting the best auxiliary domain by maximiz-
ing the overlap with the main domain was not suc-
cessful, and we instead performed an exhaustive
search over the domain pairs on the development
set. In the interest of space, for each main domain,
we report results for the best auxiliary domain (Ta-
ble 3). We note that MTL and pre-training provide
similar results and provide an average improve-
ment of 4%. As expected, we observe more sub-
stantial improvements for smaller domains.

We performed the same set of experiments on
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DOMAIN BL MTL PRETR.

calendar 43.5 48.8 48.2
blocks 25.1 24.1 25.1
housing 29.6 38.1 38.1
restaurants 37.3 39.2 36.7
publications 32.9 37.3 40.4
recipes 58.3 63.4 63.0
social 51.2 52.4 54.5
basketball 69.6 69.1 71.1

Table 3: Transfer learning results for the Overnight domains.
BL − Att is the model without transfer learning. PRETR.
stands for pre-training. Again, we report exact match accu-
racy.

DOMAIN BL + Copy MTL PRETR.

search 52.7 52.3 53.1
cinema 56.9 57.7 56.4
bookings 77.7 81.2 78.0
closet 44.1 52.5 50.8

Table 4: Transfer learning results for SLU domains. BL +

Copy is the model without transfer learning. PRETR. stands
for pre-training. Again, the numbers are exact match accu-
racy.

the SLU domains, as shown in Table 4. In this
case, the non-terminal vocabulary can vary signif-
icantly across domains. We therefore choose to
use the MTL architecture where both TER and NT
output classifiers are not shared. Also for SLU,
there is no clear winner between pre-training and
MTL. Nevertheless, they always outperform the
baseline, demonstrating the importance of transfer
learning, especially for smaller domains.

While the focus of this transfer learning frame-
work is in exploiting high-resource domains an-
notated in the same way as a new low-resource
domain, we also report a preliminary experiment
on transfer learning across tasks. We selected the
recipes domain, which exists in both Overnight
and SLU. While the SLU data set is significantly
different from Overnight, deriving from a cor-
pus annotated with intent/slot labels, as discussed
in Section 4, we found promising results using
pre-training, increasing the accuracy from 58.3
to 61.1. A full investigation of transfer learning
across domains belonging to heterogeneous data
sets is left for future work.

The experiments on transfer learning demon-

strate how parsing accuracy on low-resource do-
mains can be improved by exploiting other do-
mains or data sets. Except for the Overnight’s
blocks domain, which is one of the largest in
Overnight, all domains in Overnight and SLU
were shown to provide better results when either
MTL or pre-training was used, with the most sig-
nificant improvements observed for low-resource
domains.

6 Related work

A large collection of logical forms of different na-
ture exist in the semantic parsing literature: se-
mantic role schemes (Palmer et al., 2005; Meyers
et al., 2004; Baker et al., 1998), syntax/semantics
interfaces (Steedman, 1996), executable logical
forms (Liang, 2013; Kate et al., 2005), and gen-
eral purpose meaning representations (Banarescu
et al., 2013; Abend and Rappoport, 2013). We
adopt executable logical forms in this paper. The
Overnight data set uses Lambda DCS, the NLmaps
data set extracts meaning representations from
OpenStreetMap, and the SLU data set contains
logical forms reminiscent of Lambda DCS that can
be used to perform actions and query databases.
State-of-the-art results are reported in Su and Yan
(2017) for Overnight and Duong et al. (2017) for
NLmaps.3

Our semantic parsing model is an extension of
the executable semantic parser of Cheng et al.
(2017), which is inspired by Recurrent Neural
Network Grammars (Dyer et al., 2016). We extend
the model with ideas inspired by Gulcehre et al.
(2016) and Luong and Manning (2016).

We build our multi-task learning architecture
upon the rich literature on the topic. MTL was
first introduce in Caruana (1997). It has been since
used for a number of NLP problems such as tag-
ging (Collobert and Weston, 2008), syntactic pars-
ing (Luong et al., 2015), and machine translation
(Dong et al., 2015; Luong et al., 2015). The closest
to our work is Fan et al. (2017), where MTL archi-
tectures are built on top of an attentive sequence-
to-sequence model (Bahdanau et al., 2015). We
instead focus on transfer learning across domains
of the same data sets and employ a different archi-
tecture which promises to be less data-hungry than
sequence-to-sequence models.

3The results on Overnight are not computed on the logical
form they produce but on the answer they obtain using the
logical form as a query. As such, their results are not directly
comparable to ours.
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Typical SLU systems rely on domain-specific
semantic parsers that identify intents and slots in
a sentence. Traditionally, these tasks were per-
formed by linear machine learning models (Sha
and Pereira, 2003) but more recently jointly-
trained DNN models are used (Mesnil et al.,
2015; Hakkani-Tür et al., 2016) with differing
contexts (Gupta et al., 2018a; Vishal Ishwar Naik,
2018). More recently there has been work on ex-
tending the traditional intent/slot framework using
targeted parsing to handle more complex linguis-
tic phenomenon like coordination (Gupta et al.,
2018c; Agarwal et al., 2018).

7 Conclusions

We framed SLU as an executable semantic pars-
ing task, which addresses a limitation of current
commercial SLU systems. By applying our frame-
work to different data sets, we demonstrate that
the framework is effective for Q&A as well as for
SLU. We explored a typical scenario where it is
necessary to learn a semantic parser for a new do-
main with little data, but other high-resource do-
mains are available. We show the effectiveness of
our system and both pre-training and MTL on dif-
ferent domains and data sets. Preliminary exper-
iment results on transfer learning across domains
belonging to heterogeneous data sets suggest fu-
ture work in this area.
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