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Abstract

When answering a question, people often draw
upon their rich world knowledge in addi-
tion to the particular context. Recent work
has focused primarily on answering questions
given some relevant document or context,
and required very little general background.
To investigate question answering with prior
knowledge, we present COMMONSENSEQA:
a challenging new dataset for commonsense
question answering. To capture common sense
beyond associations, we extract from CON-
CEPTNET (Speer et al., 2017) multiple target
concepts that have the same semantic relation
to a single source concept. Crowd-workers
are asked to author multiple-choice questions
that mention the source concept and discrim-
inate in turn between each of the target con-
cepts. This encourages workers to create ques-
tions with complex semantics that often re-
quire prior knowledge. We create 12,247 ques-
tions through this procedure and demonstrate
the difficulty of our task with a large number
of strong baselines. Our best baseline is based
on BERT-large (Devlin et al., 2018) and ob-
tains 56% accuracy, well below human perfor-
mance, which is 89%.

1 Introduction

When humans answer questions, they capitalize
on their common sense and background knowl-
edge about spatial relations, causes and effects,
scientific facts and social conventions. For in-
stance, given the question “Where was Simon
when he heard the lawn mower?”, one can infer
that the lawn mower is close to Simon, and that
it is probably outdoors and situated at street level.
This type of knowledge seems trivial for humans,
but is still out of the reach of current natural lan-
guage understanding (NLU) systems.

* The authors contributed equally

a) Sample ConceptNet for specific subgraphs

,—————

canyon

b) Crowd source corresponding natural language questions
and two additional distractors

Where on a river can you hold a cup upright to catch water on a sunny day?
V waterfall, X bridge, X valley, X pebble, X mountain

Where can | stand on a river to see water falling without getting wet?
X waterfall, v/ bridge, X valley, X stream, X bottom

I'm crossing the river, my feet are wet but my body is dry, where am ?
X waterfall, X bridge, V valley, X bank, X island

Figure 1: (a) A source concept (‘river’) and three tar-
get concepts (dashed) are sampled from CONCEPT-
NET (b) Crowd-workers generate three questions, each
having one of the target concepts for its answer (v),
while the other two targets are not (X). Then, for each
question, workers choose an additional distractor from
CONCEPTNET (in italics), and author one themselves
(in bold).

Work on Question Answering (QA) has mostly
focused on answering factoid questions, where the
answer can be found in a given context with lit-
tle need for commonsense knowledge (Hermann
et al., 2015; Rajpurkar et al., 2016; Nguyen et al.,
2016; Joshi et al., 2017). Small benchmarks such
as the Winograd Scheme Challenge (Levesque,
2011) and COPA (Roemmele et al., 2011), tar-
geted common sense more directly, but have been
difficult to collect at scale.

Recently, efforts have been invested in devel-
oping large-scale datasets for commonsense rea-
soning. In SWAG (Zellers et al., 2018b), given
a textual description of an event, a probable sub-
sequent event needs to be inferred. However, it
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has been quickly realized that models trained on
large amounts of unlabeled data (Devlin et al.,
2018) capture well this type of information and
performance on SWAG is already at human level.
VCR (Zellers et al., 2018a) is another very re-
cent attempt that focuses on the visual aspects of
common sense. Such new attempts highlight the
breadth of commonsense phenomena, and make it
evident that research on common sense has only
scratched the surface. Thus, there is need for
datasets and models that will further our under-
standing of what is captured by current NLU mod-
els, and what are the main lacunae.

In this work, we present COMMONSENSEQA,
a new dataset focusing on commonsense ques-
tion answering, based on knowledge encoded in
CONCEPTNET (Speer et al., 2017). We propose a
method for generating commonsense questions at
scale by asking crowd workers to author questions
that describe the relation between concepts from
CONCEPTNET (Figure 1). A crowd worker ob-
serves a source concept (‘River’ in Figure 1) and
three target concepts (‘Waterfall’, ‘Bridge’, ‘Val-
ley’) that are all related by the same CONCEPT-
NET relation (AtLocation). The worker then
authors three questions, one per target concept,
such that only that particular target concept is the
answer, while the other two distractor concepts are
not. This primes the workers to add commonsense
knowledge to the question, that separates the tar-
get concept from the distractors. Finally, for each
question, the worker chooses one additional dis-
tractor from CONCEPTNET, and authors another
distractor manually. Thus, in total, five candidate
answers accompany each question.

Because questions are generated freely by
workers, they often require background knowl-
edge that is trivial to humans but is seldom explic-
itly reported on the web due to reporting bias (Gor-
don and Van Durme, 2013). Thus, questions in
COMMONSENSEQA have a different nature com-
pared to prior QA benchmarks, where questions
are authored given an input text.

Using our method, we collected 12,247 com-
monsense questions. We present an analysis that
illustrates the uniqueness of the gathered ques-
tions compared to prior work, and the types of
commonsense skills that are required for tackling
it. We extensively evaluate models on COMMON-
SENSEQA, experimenting with pre-trained mod-
els, fine-tuned models, and reading comprehen-

sion (RC) models that utilize web snippets ex-
tracted from Google search on top of the ques-
tion itself. We find that fine-tuning BERT-LARGE
(Devlin et al., 2018) on COMMONSENSEQA ob-
tains the best performance, reaching an accuracy
of 55.9%. This is substantially lower than human
performance, which is 88.9%.

To summarize, our contributions are:

1. A new QA dataset centered around common
sense, containing 12,247 examples.

2. A new method for generating commonsense
questions at scale from CONCEPTNET.

3. An empirical evaluation of state-of-the-art
NLU models on COMMONSENSEQA, show-
ing that humans substantially outperform cur-
rent models.

The dataset can be downloaded from www.
tau-nlp.org/commonsensedga. The code
for all our baselines is available at github.
com/jonathanherzig/commonsenseda.

2 Related Work

Machine common sense, or the knowledge of and
ability to reason about an open ended world, has
long been acknowledged as a critical component
for natural language understanding. Early work
sought programs that could reason about an envi-
ronment in natural language (McCarthy, 1959), or
leverage a world-model for deeper language un-
derstanding (Winograd, 1972). Many common-
sense representations and inference procedures
have been explored (McCarthy and Hayes, 1969;
Kowalski and Sergot, 1986) and large-scale com-
monsense knowledge-bases have been developed
(Lenat, 1995; Speer et al., 2017). However, evalu-
ating the degree of common sense possessed by a
machine remains difficult.

One important benchmark, the Winograd
Schema Challenge (Levesque, 2011), asks mod-
els to correctly solve paired instances of coref-
erence resolution. While the Winograd Schema
Challenge remains a tough dataset, the difficulty
of generating examples has led to only a small
available collection of 150 examples. The Choice
of Plausible Alternatives (COPA) is a similarly im-
portant but small dataset consisting of 500 devel-
opment and 500 test questions (Roemmele et al.,
2011). Each question asks which of two alterna-
tives best reflects a cause or effect relation to the
premise. For both datasets, scalability is an issue
when evaluating modern modeling approaches.
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With the recent adoption of crowdsourcing, sev-
eral larger datasets have emerged, focusing on pre-
dicting relations between situations or events in
natural language. JHU Ordinal Commonsense In-
ference requests a label from 1-5 for the plau-
sibility that one situation entails another (Zhang
etal., 2017). The Story Cloze Test (also referred to
as ROC Stories) pits ground-truth endings to sto-
ries against implausible false ones (Mostafazadeh
et al., 2016). Interpolating these approaches, Sit-
uations with Adversarial Generations (SWAG),
asks models to choose the correct description of
what happens next after an initial event (Zellers
et al., 2018b). LM-based techniques achieve very
high performance on the Story Cloze Test and
SWAG by fine-tuning a pre-trained LM on the tar-
get task (Radford et al., 2018; Devlin et al., 2018).

Investigations of commonsense datasets, and of
natural language datasets more generally, have re-
vealed the difficulty in creating benchmarks that
measure the understanding of a program rather
than its ability to take advantage of distributional
biases, and to model the annotation process (Gu-
rurangan et al., 2018; Poliak et al., 2018). Annota-
tion artifacts in the Story Cloze Test, for example,
allow models to achieve high performance while
only looking at the proposed endings and ignor-
ing the stories (Schwartz et al., 2017; Cai et al.,
2017). Thus, the development of benchmarks for
common sense remains a difficult challenge.

Researchers have also investigated question an-
swering that utilizes common sense. Science ques-
tions often require common sense, and have re-
cently received attention (Clark et al., 2018; Mi-
haylov et al., 2018; Ostermann et al., 2018); how-
ever, they also need specialized scientific knowl-
edge. In contrast to these efforts, our work stud-
ies common sense without requiring additional
information. SQUABU created a small hand-
curated test of common sense and science ques-
tions (Davis, 2016), which are difficult for current
techniques to solve. In this work, we create simi-
larly well-crafted questions but at a larger scale.

3 Dataset Generation

Our goal is to develop a method for generating
questions that can be easily answered by humans
without context, and require commonsense knowl-
edge. We generate multiple-choice questions in a
process that comprises the following steps.

1. We extract subgraphs from CONCEPTNET,

ii Crowdworkers author questions iz Crowdworkers add distractors

Dust in house? (attic, yard, street) Dust in house? (attic, yard, street, bed, desert)

Find glass outside? (bar, fork, car) = Find glass outside? (bar, fork, car, sand, wine)
Makes you happy? (laugh, sad, fall) Makes you happy? (laugh, sad, fall, blue, feel)

t |

Extract subgraphs fror ConceptNet iz Crowdworkers filter questions by quality

R ——
[ dust ” attic " yard " street] Dust in house? (attic, yard, ...) 210

(s ) [7Er - ][ "f:rkr ][ c‘ar ) Find glass outside? (bar, fork,...) >0.2 X
I Makes you happy? (laugh, sad, ...) > 0.8
—a A —a
l happy I[ laugh ][ sad Il fall I

Filter edges from ConceptNet with rules

QCollect relevant snippets via search engine

T T |LE Dust in house? (attic, yard, ...)

g LE Makes you happy? (laugh, sad, ...)

Figure 2: COMMONSENSEQA generation process.
The input is CONCEPTNET knowledge base, and the
output is a set of multiple-choice questions with corre-
sponding relevant context (snippets).

each with one source concept and three tar-
get concepts.

2. We ask crowdsourcing workers to author
three questions per subgraph (one per target
concept), to add two additional distractors per
question, and to verify questions’ quality.

3. We add textual context to each question by
querying a search engine and retrieving web
snippets.

The entire data generation process is summarized
in Figure 2. We now elaborate on each of the steps:

Extraction from CONCEPTNET CONCEPT-
NET is a graph knowledge-base G C C x R x C,
where the nodes C represent natural language con-
cepts, and edges R represent commonsense re-
lations. Triplets (cj,7,c2) carry commonsense
knowledge such as ‘(gambler, CapableOf, lose
money)’.  CONCEPTNET contains 32 million
triplets. To select a subset of triplets for crowd-
sourcing we take the following steps:

1. We filter triplets with general relations (e.g.,
RelatedTo) or relations that are already
well-explored in NLP (e.g., IsA). In total we
use 22 relations.

2. We filter triplets where one of the concepts is
more than four words or not in English.

3. We filter triplets where the edit distance be-
tween ¢ and cs 1s too low.

This results in a set of 236,208 triplets (¢, 7, a),
where we call the first concept the question con-
cept and the second concept the answer concept.

We aim to generate questions that contain the
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question concept and where the answer is the an-
swer concept. To create multiple-choice questions
we need to choose distractors for each question.
Sampling distractors at random from CONCEPT-
NET is a bad solution, as such distractors are easy
to eliminate using simple surface clues.

To remedy this, we propose to create gues-
tion sets: for each question concept g and
relation r we group three different triplets
{(¢q,7,a1),(q,7,a2),(q,r,a3)} (see Figure 1).
This generates three answer concepts that are se-
mantically similar and have a similar relation to
the question concept ¢. This primes crowd work-
ers to formulate questions that require background
knowledge about the concepts in order to answer
the question.

The above procedure generates approximately
130,000 triplets (43,000 question sets), for which
we can potentially generate questions.

Crowdsourcing questions We used Amazon
Mechanical Turk (AMT) workers to generate and
validate commonsense questions.

AMT workers saw, for every question set, the
question concept and three answer concepts. They
were asked to formulate three questions, where
all questions contain the question concept. Each
question should have as an answer one of the an-
swer concepts, but not the other two. To discour-
age workers from providing simple surface clues
for the answer, they were instructed to avoid us-
ing words that have a strong relation to the answer
concept, for example, not to use the word ‘open’
when the answer is ‘door’.

Formulating questions for our task is non-
trivial. Thus, we only accept annotators for which
at least 75% of the questions they formulate pass
the verification process described below.

Adding additional distractors To make the
task more difficult, we ask crowd-workers to add
two additional incorrect answers to each formu-
lated question. One distractor is selected from a
set of answer concepts with the same relation to
the question concept in CONCEPTNET (Figure 1,
in red). The second distractor is formulated man-
ually by the workers themselves (Figure 1, in pur-
ple). Workers were encouraged to formulate a dis-
tractor that would seem plausible or related to the
question but easy for humans to dismiss as incor-
rect. In total, each formulated question is accom-
panied with five candidate answers, including one

Measurement Value
# CONCEPTNET distinct question nodes | 2,254
# CONCEPTNET distinct answer nodes 12,094
# CONCEPTNET distinct nodes 12,107

# CONCEPTNET distinct relation lables 22

average question length (tokens) 13.41
long questions (more than 20 tokens) 10.3%
average answer length (tokens) L5
# answers with more than 1 token 44%
# of distinct words in questions 14,754
# of distinct words in answers 4911

Table 1: Key statistics for COMMONSENSEQA

correct answer and four distractors.

Verifying questions quality We train a disjoint
group of workers to verify the generated questions.
Verifiers annotate a question as unanswerable, or
choose the right answer. Each question is veri-
fied by 2 workers, and only questions verified by at
least one worker that answered correctly are used.
This processes filters out 15% of the questions.

Adding textual context To examine whether
web text is useful for answering commonsense
questions, we add textual information to each
question in the following way: We issue a web
query to Google search for every question and
candidate answer, concatenating the answer to the
question, e.g., ‘What does a parent tell their child
to do after they’ve played with a lot of toys? +
“clean room”’. We take the first 100 result snip-
pets for each of the five answer candidates, yield-
ing a context of 500 snippets per question. Using
this context, we can investigate the performance
of reading comprehension (RC) models on COM-
MONSENSEQA.

Overall, we generated 12,247 final examples,
from a total of 16,242 that were formulated. The
total cost per question is $0.33. Table 1 describes
the key statistics of COMMONSENSEQA.

4 Dataset Analysis

CONCEPTNET concepts and relations CoM-
MONSENSEQA builds on CONCEPTNET, which
contains concepts such as dog, house, or row
boat, connected by relations such as Causes,
CapableOf, or Antonym. The top-5 ques-
tion concepts in COMMONSENSEQA are ‘Person’
3.1%), ‘People’ (2.0%), ‘Human’ (0.7%), ‘Water’
(0.5%) and ‘Cat’ (0.5%). In addition, we present
the main relations along with the percentage of
questions generated from them in Table 2. It’s
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Relation Formulated question example %

AtLocation Where would I not want a fox? A. hen house, B. england, C. mountains, D. ... 473
Causes What is the hopeful result of going to see a play? A. being entertained, B. meet, C. sit, D. ... 17.3
CapableOf Why would a person put flowers in a room with dirty gym socks? A. smell good, B. many colors, C. continue to grow , D. ... 9.4
Antonym Someone who had a very bad flight might be given a trip in this to make up for it? A. first class, B. reputable, C. propitious , D. ... 8.5
HasSubevent How does a person begin to attract another person for reproducing? A. Kiss, B. genetic mutation, C. have sex , D. ... 3.6
HasPrerequisite | IfIam tilting a drink toward my face, what should I do before the liquid spills over? A. open mouth, B. eat first, C. use glass , D. ... | 3.3
CausesDesire What do parents encourage kids to do when they experience boredom? A. read book, B. sleep, C. travel , D. ... 2.1

Desires What do all humans want to experience in their own home? A. feel comfortable, B. work hard, C. fall in love , D. ... 1.7
PartOf What would someone wear to protect themselves from a cannon? A. body armor, B. tank, C. hat, D. ... 1.6
HasProperty What is a reason to pay your television bill? A. legal, B. obsolete, C. entertaining , D. ... 1.2

Table 2: Top CONCEPTNET relations in COMMONSENSEQA, along with their frequency in the data and an exam-

ple question. The first answer (A) is the correct answer

Q. Where are Rosebushes typically found outside of large buildings?

O Has parts _+*", Spatial O Is member of O

Building Courtyard Flowers Rosebushes

Q. Where would you get a Balalaika if you do not have one?

Is member ofO Spatial +**» Purpose

Balalaika

Instrument Music store Get instruments

Q. I want to use string to keep something from moving, how shouldI do it?

O Spatial ™ Activity _«*"s, Cause & effect ( )
\ fear

Something String Tie around Keep from moving

Figure 3: Examples of manually-annotated questions,
with the required skills needed to arrive at the answers
(red circles). Skills are labeled edges, and concepts are
nodes.

worth noting that since question formulators were
not shown the CONCEPTNET relation, they often
asked questions that probe other relationships be-
tween the concepts. For example, the question
“What do audiences clap for?” was generated
from the At Location relation, but focuses on
social conventions instead.

Question formulation Question formulators
were instructed to create questions with high
language variation. 122 formulators contributed
to question generation. However, 10 workers
formulated more than 85% of the questions.

We analyzed the distribution of first and second
words in the formulated questions along with ex-
ample questions. Figure 4 presents the breakdown.
Interestingly, only 44% of the first words are WH-
words. In about 5% of the questions, formulators
used first names to create a context story, and in
7% they used the word “if” to present a hypothet-
ical question. This suggests high variability in the
question language.

Commonsense Skills To analyze the types of
commonsense knowledge needed to correctly an-

Category Definition %
Spatial Concept A appears near Concept B 41
Cause & Effect | Concept A causes Concept B 23
Has parts Concept A contains Concept B as one of its parts 23
Is member of Concept A belongs to the larger class of Concept B | 17
Purpose Concept A is the purpose of Concept B 18
Social It is a social convention that Concept A 15
correlates with Concept B
Activity Concept A is an activity performed in the context 8
of Concept B
Definition Concept A is a definition of Concept B 6
Preconditions | Concept A must hold true in order for Concept Bto | 3
take place

Table 3: Skills and their frequency in the sampled data.
As each example can be annotated with multiple skills,
the total frequency does not sum to 100%.

swer questions in COMMONSENSEQA, we ran-
domly sampled 100 examples from the develop-
ment set and performed the following analysis.
For each question, we explicitly annotated the
types of commonsense skills that a human uses
to answer the question. We allow multiple com-
monsense skills per questions, with an average of
1.75 skills per question. Figure 3 provides three
example annotations. Each annotation contains a
node for the answer concept, and other nodes for
concepts that appear in the question or latent con-
cepts. Labeled edges describe the commonsense
skill that relates the two nodes. We defined com-
monsense skills based on the analysis of LoBue
and Yates (2011), with slight modifications to ac-
commodate the phenomena in our data. Table 3
presents the skill categories we used, their defini-
tion and their frequency in the analyzed examples.

5 Baseline Models

Our goal is to collect a dataset of commonsense
questions that are easy for humans, but hard for
current NLU models. To evaluate this, we experi-
ment with multiple baselines. Table 4 summarizes
the various baseline types and characterizes them
based on (a) whether training is done on COM-
MONSENSEQA or the model is fully pre-trained,
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Model Training Context
VECSIM X X
LMI1B X X
QABILINEAR v X
QACOMPARE 4 X
ESIM v X
GPT v X
BERT v X
BIDAF++ v v

Table 4: Baseline models along with their character-
istics. Training states whether the model was trained
on COMMONSENSEQA, or was only trained a differ-
ent dataset. Context states whether the model uses extra
context as input.

and (b) whether context (web snippets) is used.
We now elaborate on the different baselines.

a VECSIM A model that chooses the answer with
highest cosine similarity to the question, where the
question and answers are represented by an aver-
age of pre-trained word embeddings.

b LM1B Inspired by Trinh and Le (2018), we
employ a large language model (LM) from Joze-
fowicz et al. (2016), which was pre-trained on
the One Billion Words Benchmark (Chelba et al.,
2013). We use this model in two variations. In
the first (LM 1B-CONCAT), we simply concate-
nate each answer to the question. In the second
(LM1B-REP), we first cluster questions according
to their first two words. Then, we recognize five
high-frequency prefixes that cover 35% of the de-
velopment set (e.g., “what is”). We rephrase ques-
tions that fit into one of these prefixes as a declar-
ative sentence that contains the answer. E.g., we

rephrase “What is usually next to a door?” and the
candidate answer “wall” to “Wall is usually next
to a door”. For questions that do not start with
the above prefixes, we concatenate the answer as
in LM1B-CONCAT. In both variations we return
the answer with highest LM probability.

¢ QABILINEAR This model, propsed by Yu et al.
(2014) for QA, scores an answer a; with a bilinear
model: aniT, where the question ¢ and answers
a; are the average pre-trained word embeddings
and W is a learned parameter matrix. A softmax
layer over the candidate answers is used to train
the model with cross-entropy loss.

d QACOMPARE This model is similar to an NLI
model from Liu et al. (2016). The model repre-
sents the interaction between the question ¢ and a
candidate answer a; as: h = relu([q; a;; ¢®a;; q—
a;|]W1 + b1), where ’;” denotes concatenation and
© is element-wise product. Then, the model pre-
dicts an answer score using a feed forward layer:
hWy + ba. Average pre-trained embeddings and
softmax are used to train the model.

e ESIM We use ESIM, a strong NLI model
(Chen et al., 2016). Similar to Zellers et al.
(2018b), we change the output layer size to the
number of candidate answers, and apply softmax
to train with cross-entropy loss.

f BIDAF++ A state-of-the-art RC model, that
uses the retrieved Google web snippets (Section 3)
as context. We augment BIDAF (Seo et al., 2016)
with a self-attention layer and ELMo representa-
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tions (Peters et al., 2018; Huang et al., 2018). To
adapt to the multiple-choice setting, we choose the
answer with highest model probability.

g GENERATIVE  PRE-TRAINED  TRANS-
FORMER (GPT) Radford et al. (2018) proposed
a method for adapting pre-trained LMs to perform
a wide range of tasks. We applied their model to
COMMONSENSEQA by encoding each question
and its candidate answers as a series of delimiter-
separated sequences. For example, the question
“If you needed a lamp to do your work, where
would you put it?”, and the candidate answer
“bedroom” would become “[start] If.. 7?7
[sep] bedroom [end]”. The hidden repre-
sentations over each [end] token are converted
to logits by a linear transformation and passed
through a softmax to produce final probabilities
for the answers. We used the same pre-trained LM
and hyper-parameters for fine-tuning as Radford
et al. (2018) on ROC Stories, except with a batch
size of 10.

h BERT Similarly to the GPT, BERT fine-tunes
a language model and currently holds state-of-the-
art across a broad range of tasks (Devlin et al.,
2018). BERT uses a masked language mod-
eling objective, which predicts missing words
masked from unlabeled text. To apply BERT to
COMMONSENSEQA, we linearize each question-
answer pair into a delimiter-separated sequence
(i.e., “[CLS] If... ? [SEP] bedroom [SEP]”)
then fine-tune the pre-trained weights from un-
cased BERT-LARGE.! Similarly to the GPT, the
hidden representations over each [CLS] token are
run through a softmax layer to create the predic-
tions. We used the same hyper-parameters as De-
vlin et al. (2018) for SWAG.

6 Experiments

Experimental Setup We split the data into a
training/development/test set with an 80/10/10
split. We perform two types of splits: (a) ran-
dom split — where questions are split uniformly
at random, and (b) question concept split — where
each of the three sets have disjoint question con-
cepts. We empirically find (see below) that a ran-
dom split is harder for models that learn from
COMMONSENSEQA, because the same question
concept appears in the training set and develop-
ment/test set with different answer concepts, and

'The original weights and code released by Google may
be found here: https://github.com/google-research/bert

networks that memorize might fail in such a sce-
nario. Since the random split is harder, we con-
sider it the primary split of COMMONSENSEQA.

We evaluate all models on the test set using ac-
curacy (proportion of examples for which predic-
tion is correct), and tune hyper-parameters for all
trained models on the development set. To under-
stand the difficulty of the task, we add a SANITY
mode, where we replace the hard distractors (that
share a relation with the question concept and one
formulated by a worker) with random CONCEPT-
NET distractors. We expect a reasonable baseline
to perform much better in this mode.

For pre-trained word embeddings we consider
300d GloVe embeddings (Pennington et al., 2014)
and 300d Numberbatch CONCEPTNET node em-
beddings (Speer et al., 2017), which are kept fixed
at training time. We also combine ESIM with
1024d ELMo contextual representations, which
are also fixed during training.

Human Evaluation To test human accuracy, we
created a separate task for which we did not use a
qualification test, nor used AMT master workers.
We sampled 100 random questions and for each
question gathered answers from five workers that
were not involved in question generation. Humans
obtain 88.9% accuracy, taking a majority vote for
each question.

Results Table 5 presents test set results for all
models and setups.

The best baselines are BERT-LARGE and GPT
with an accuracy of 55.9% and 45.5%, respec-
tively, on the random split (63.6% and 55.5%, re-
spectively, on the question concept split). This is
well below human accuracy, demonstrating that
the benchmark is much easier for humans. Nev-
ertheless, this result is much higher than random
(20%), showing the ability of language models to
store large amounts of information related to com-
monsense knowledge.

The top part of Table 5 describes untrained
models. We observe that performance is higher
than random, but still quite low. The middle part
describes models that were trained on COMMON-
SENSEQA, where BERT-LARGE obtains best per-
formance, as mentioned above. ESIM models
follow BERT-LARGE and GPT, and obtain much
lower performance. We note that ELMo represen-
tations did not improve performance compared to
GloVe embeddings, possibly because we were un-
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Random split Question concept split

Model Accuracy SANITY | Accuracy SANITY

VECSIM+NUMBERBATCH 29.1 54.0 30.3 54.9

LM1B-REP 26.1 39.6 26.0 39.1

LM1B-CONCAT 25.3 37.4 253 35.2

VECSIM+GLOVE 22.3 26.8 20.8 27.1

BERT-LARGE 55.9 92.3 63.6 93.2

GPT 45.5 87.2 55.5 88.9

ESIM+ELMo 34.1 76.9 37.9 77.8

ESIM+GLOVE 32.8 79.1 40.4 78.2

QABILINEAR+GLOVE 31.5 74.8 342 71.8

ESIM+NUMBERBATCH 30.1 74.6 31.2 75.1

QABILINEAR+NUMBERBATCH 28.8 73.3 32.0 71.6

QACOMPARE+GLOVE 25.7 69.2 34.1 71.3

QACOMPARE+NUMBERBATCH 20.4 60.6 25.2 66.8

BIDAF++ 32.0 71.0 38.4 72.0

HUMAN | 889 \

Table 5: Test set accuracy for all models.
Category Formulated question example Correct answer | Distractor Accuracy | %
Surface If someone laughs after surprising them they have a good sense of what? | humor laughter 71.7 35%
clues How might a automobile get off a freeway? exit ramp driveway
Negation / Where would you store a pillow case that is not in use? drawer bedroom 42.8 7%
Antonym Where might the stapler be if I cannot find it? desk drawer desktop
Factoid How many hours are in a day? twenty four week 38.4 13%
knowledge | What geographic area is a lizard likely to be? west texas ball stopped
Bad Where is a well used toy car likely to be found? child’s room own home 35.4 31%
granularity | Where may you be if you’re buying pork chops at a corner shop? iowa town
Conjunction | What can you use to store a book while traveling? suitcase library of congress | 23.8 23%
On a hot day what can you do to enjoy something cool and sweet? eat ice cream fresh cake

Table 6: BERT-LARGE baseline analysis. For each category we provide two examples, the correct answer, one
distractor, model accuracy and frequency in the dataset. The predicted answer is in bold.

able to improve performance by back-propagating
into the representations themselves (as we do in
BERT-LARGE and GPT). The bottom part shows
results for BIDAF++ that uses web snippets as
context. We observe that using snippets does not
lead to high performance, hinting that they do not
carry a lot of useful information.

Performance on the random split is five points
lower than the question concept split on average
across all trained models. We hypothesize that
this is because having questions in the develop-
ment/test set that share a question concept with the
training set, but have a different answer, creates
difficulty for networks that memorize the relation
between a question concept and an answer.

Lastly, all SANITY models that were trained
on COMMONSENSEQA achieve very high perfor-
mance (92% for BERT-LARGE), showing that se-
lecting difficult distractors is crucial.

Baseline analysis To understand the perfor-
mance of BERT-LARGE, we analyzed 100 ex-
amples from the development set (Table 6). We
labeled examples with categories (possibly more
than one per example) and then computed the av-

erage accuracy of the model for each category.

We found that the model does well (77.7% ac-
curacy) on examples where surface clues hint to
the correct answer. Examples that involve nega-
tion or understanding antonyms have lower accu-
racy (42.8%), similarly to examples that require
factoid knowledge (38.4%). Accuracy is partic-
ularly low in questions where the correct answer
has finer granularity compared to one of the dis-
tractors (35.4%), and in cases where the correct
answer needs to meet a conjunction of conditions,
and the distractor meets only one of them (23.8%).

Learning Curves To extrapolate how current
models might perform with more data, we evalu-
ated BERT-large on the development set, training
with varying amounts of data. The resulting learn-
ing curves are plotted in figure 5. For each training
set size, hyper-parameters were identical to sec-
tion 5, except the number of epochs was varied to
keep the number of mini-batches during training
constant. To deal with learning instabilities, each
data point is the best of 3 runs. We observe that
the accuracy of BERT-LARGE is expected to be
roughly 75% assuming 100k examples, still sub-
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Figure 5: Development accuracy for BERT-LARGE
trained with varying amounts of data.

stantially lower than human performance.

7 Conclusion

We present COMMONSENSEQA, a new QA
dataset that contains 12,247 examples and aims to
test commonsense knowledge. We describe a pro-
cess for generating difficult questions at scale us-
ing CONCEPTNET, perform a detailed analysis of
the dataset, which elucidates the unique properties
of our dataset, and extensively evaluate on a strong
suite of baselines. We find that the best model is
a pre-trained LM tuned for our task and obtains
55.9% accuracy, dozens of points lower than hu-
man accuracy. We hope that this dataset facili-
tates future work in incorporating commonsense
knowledge into NLU systems.
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