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Abstract
There is no consensus on the state-of-the-
art approach to historical text normalization.
Many techniques have been proposed, in-
cluding rule-based methods, distance metrics,
character-based statistical machine translation,
and neural encoder–decoder models, but stud-
ies have used different datasets, different eval-
uation methods, and have come to different
conclusions. This paper presents the largest
study of historical text normalization done so
far. We critically survey the existing literature
and report experiments on eight languages,
comparing systems spanning all categories of
proposed normalization techniques, analysing
the effect of training data quantity, and using
different evaluation methods. The datasets and
scripts are made publicly available.

1 Introduction1

Spelling variation is one of the key challenges for
NLP on historical texts, affecting the performance
of tools such as part-of-speech taggers or parsers
and complicating users’ search queries on a cor-
pus. Normalization is often proposed as a solu-
tion; it is commonly defined as the mapping of his-
torical variant spellings to a single, contemporary
“normal form” as exemplified in Figure 1.

Automatic normalization of historical texts has
a long history, going back to at least Fix (1980).
Earlier approaches often rely on hand-crafted al-
gorithms tailored to one specific language, while
more recent approaches have focused on super-
vised machine learning, particularly character-
based statistical machine translation (SMT) and
its neural equivalent (NMT). However, no clear
consensus has emerged about the state of the art
for this task, with papers either reporting an ad-
vantage for NMT (Hämäläinen et al., 2018), SMT

1This work largely builds upon the author’s doctoral thesis
(Bollmann, 2018), the research for which was carried out at
Ruhr-Universität Bochum, Germany.
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Figure 1: Historical text normalization exemplified:
mapping variant spellings from historical English texts
to their normalization ‘their’

(Domingo and Casacuberta, 2018), or language-
specific algorithms (Schneider et al., 2017). More-
over, the quantity of annotated training data varies
considerably between studies, making it diffi-
cult to obtain practical recommendations for new
projects seeking to use normalization techniques.

Contributions This paper aims to provide the
most comprehensive evaluation and analysis of
historical text normalization systems so far. Mo-
tivated by a systematic review of previous work
on this topic (Sec. 2), only publicly available nor-
malization systems covering a wide range of pro-
posed techniques are selected (Sec. 3) and eval-
uated across a diverse collection of historical
datasets covering eight languages (Sec. 4). This
is followed by a detailed analysis of the effect
of training data quantity and a critical discussion
of evaluation methods for assessing normalization
quality (Sec. 5).

The datasets and code are made freely available
whenever possible,2 along with detailed instruc-
tions on how to reproduce the experiments.

2https://github.com/coastalcph/
histnorm; one dataset could not be included due to
licensing restrictions.
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2 A Brief Survey of Automatic Historical
Text Normalization

The following overview is broadly organized by
categories that each represent a conceptually or
methodically different approach.

2.1 Substitution Lists

The conceptually simplest form of normalization
is to look up each historical variant in a pre-
compiled list that maps it to its intended normal-
ization. This approach can go by many names,
such as lexical substitution, dictionary lookup,
wordlist mapping, or memorization. While it does
not generalize in any way to variants that are not
covered by the list, it has proven highly effective
as a component in several normalization systems,
such as the semi-automatic VARD tool (Rayson
et al., 2005; Baron and Rayson, 2008) or the fully
automatic Norma tool (Bollmann, 2012).

2.2 Rule-based Methods

Rule-based approaches try to encode regularities
in spelling variants—e.g., historical 〈v〉 often rep-
resenting modern 〈u〉—in the form of replacement
rules, typically including context information to
discriminate between different usages of a charac-
ter. Some of the earliest approaches to normaliza-
tion are rule-based, with rules being created man-
ually for one particular language, such as Old Ice-
landic (Fix, 1980) or Old German (Koller, 1983).

VARD 2 uses “letter replacement rules” to con-
struct normalization candidates, but is not neces-
sarily concerned with precision due to its inter-
active nature (Baron and Rayson, 2008). Boll-
mann et al. (2011) describe a supervised learning
algorithm to automatically derive context-aware
replacement rules from training data, including
“identity rules” that leave a character unchanged,
then apply one rule to each character of a historical
word form to produce a normalization. Porta et al.
(2013) model phonological sound change rules for
Old Spanish using finite-state transducers; Etxe-
berria et al. (2016) describe a similarly motivated
model that can be trained in a supervised manner.

Rule-based methods are also commonly found
when the goal is not to produce a single best nor-
malization, but to cluster a group of spelling vari-
ants (Giusti et al., 2007) or to retrieve occurrences
of variant spellings given a modern form in an
information retrieval (IR) scenario (Ernst-Gerlach
and Fuhr, 2006; Koolen et al., 2006).

2.3 Distance-based Methods

Approaches using edit distance measures (such as
Levenshtein distance; Levenshtein, 1966) are most
commonly found in an IR context, since mea-
sures that compare two word forms are a natu-
ral fit for matching a search term with relevant
word forms in a historical document (e.g., Robert-
son and Willett, 1993). Weighted variants of dis-
tance measures can be used to assign lower costs
to more likely edit operations (Kempken et al.,
2006; Hauser and Schulz, 2007).

In a normalization context, distance measures
can be used to compare historical variants to en-
tries in a contemporary full-form lexicon (Keste-
mont et al., 2010; Jurish, 2010a). Norma includes
a distance-based component whose edit weights
can be learned from a training set of normaliza-
tions (Bollmann, 2012). Pettersson et al. (2013a)
find a similar approach to be more effective than
hand-crafted rules on Swedish. Sometimes, the
line between distance-based and rule-based meth-
ods get blurred; Adesam et al. (2012) use the Lev-
enshtein algorithm to derive “substitution rules”
from training data, which are then used to link up
historical Swedish forms with lexicon entries; van
Halteren and Rem (2013) describe a comparable
approach for Dutch.

Furthermore, distance measures also lend them-
selves to unsupervised approaches for cluster-
ing historical variants of the same modern form,
where identifying the precise modern form is not
necessarily required (Amoia and Martínez, 2013;
Barteld et al., 2015).

2.4 Statistical Models

In a probabilistic view of the normalization task,
the goal is to optimize the probability p(t|s) that
a contemporary word form t is the normalization
of a historical word form s. This can be seen as
a noisy channel model, which has been used for
normalization by, e.g., Oravecz et al. (2010) and
Etxeberria et al. (2016).

More commonly, character-based statistical
machine translation (CSMT) has been applied to
the normalization task. Instead of translating
a sentence as a sequence of tokens, these ap-
proaches “translate” a historical word form as a
sequence of characters. This has been found to
be very effective for a variety of historical lan-
guages, such as Spanish (Sánchez-Martínez et al.,
2013), Icelandic and Swedish (Pettersson et al.,
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2013b), Slovene (Scherrer and Erjavec, 2013,
2016; Ljubešić et al., 2016), as well as Hungarian,
German, and English (Pettersson, 2016), where
it is usually found to outperform previous ap-
proaches.

Pettersson et al. (2014) find that a CSMT system
often performs best in a comparison with a filter-
ing method and a distance-based approach on five
different languages. Schneider et al. (2017) com-
pare VARD 2 to CSMT on English and find that
VARD 2 performs slightly better. Domingo and
Casacuberta (2018) evaluate both word-based and
character-based models and find that SMT outper-
forms a neural network model.

2.5 Neural Models
Neural network architectures have become pop-
ular for a variety of NLP tasks, and historical
normalization is no exception. Character-based
neural machine translation (CNMT) is the logi-
cal neural equivalent to the CSMT approach, and
has first been used for normalization of histori-
cal German (Bollmann et al., 2017; Korchagina,
2017) using encoder–decoder models with long
short-term memory (LSTM) units. Robertson and
Goldwater (2018) present a more detailed eval-
uation of this architecture on five different lan-
guages. Hämäläinen et al. (2018) evaluate SMT,
NMT, an edit-distance approach, and a rule-based
finite-state transducer, and advocate for a combi-
nation of these approaches to make use of their
individual strengths; however, they restrict their
evaluation to English.

Other neural architectures have rarely been
used for normalization so far. Al Azawi et al.
(2013) and Bollmann and Søgaard (2016) frame
the normalization task as a sequence labelling
problem, labelling each character in the historical
word form with its normalized equivalent. Keste-
mont et al. (2016) use convolutional networks
for lemmatization of historical Dutch. Overall,
though, the encoder–decoder model with recurrent
layers is the dominant approach.

2.6 Beyond Token-Level Normalization
The presented literature almost exclusively fo-
cuses on models where the input is a single to-
ken. In theory, it would be desirable to include
context from the surrounding tokens, as some his-
torical spellings can have more than one mod-
ern equivalent depending on the context in which
they are used (e.g., historical ther could represent

their or there). Remarkably few studies have at-
tempted this so far: Jurish (2010b) uses hidden
Markov models to select between normalization
candidates; Mitankin et al. (2014) use a language
model in a similar vein; Ljubešić et al. (2016) ex-
periment with “segment-level” input, i.e., a string
of several historical tokens as input to a normal-
izer. Since this area is currently very underex-
plored, it warrants a deeper investigation that goes
beyond the scope of this paper.

3 Experimental Setup

Systems The selection of normalization systems
follows two goals: (i) to include at least one sys-
tem for each major category as identified in Sec. 2;
and (ii) to use only freely available tools in order
to facilitate reproduction and application of the de-
scribed methods. To that effect, this study com-
pares the following approaches:

• Norma3 (Bollmann, 2012), which combines
substitution lists, a rule-based normalizer,
and a distance-based algorithm, with the op-
tion of running them separately or combined.
Importantly, it implements supervised learn-
ing algorithms for all of these components
and is not restricted to a particular language.

• cSMTiser4 (Ljubešić et al., 2016; Scherrer
and Ljubešić, 2016), which implements a
normalization pipeline using character-based
statistical machine translation (CSMT) using
the Moses toolkit (Koehn et al., 2007).

• Neural machine translation (NMT), in the
form of two publicly available implementa-
tions: (i) the model by Bollmann (2018), also
used in Bollmann et al. (2018);5 and (ii) the
model by Tang et al. (2018).6

Two systems were chosen for the NMT ap-
proach as they use very different hyperparameters,
despite both using comparable neural encoder–
decoder models: Bollmann (2018) uses a single
LSTM layer with dimensionality 300 in the en-
coder and decoder, while Tang et al. (2018) use
six vanilla RNN cells with dimensionality 1024.

3https://github.com/comphist/norma
4https://github.com/clarinsi/csmtiser
5I reimplemented the model here using the XNMT toolkit

(Neubig et al., 2018).
6https://github.com/tanggongbo/

normalization-NMT; their model uses the deep
transition architecture of Sennrich et al. (2017, Sec. 2.3.1) as
implemented by Marian (Junczys-Dowmunt et al., 2018).
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Dataset/Language Time Period Genre Tokens

TRAIN DEV TEST

DEA German (Anselm) 14th–16th c. Religious 233,947 45,996 45,999
DER German (RIDGES) 1482–1652 Science 41,857 9,712 9,587
EN English 1386–1698 Letters 147,826 16,334 17,644
ES Spanish 15th–19th c. Letters 97,320 11,650 12,479
HU Hungarian 1440–1541 Religious 134,028 16,707 16,779
IS Icelandic 15th c. Religious 49,633 6,109 6,037
PT Portuguese 15th–19th c. Letters 222,525 26,749 27,078
SLB Slovene (Bohorič) 1750–1840s Diverse 50,023 5,841 5,969
SLG Slovene (Gaj) 1840s–1899 Diverse 161,211 20,878 21,493
SV Swedish 1527–1812 Diverse 24,458 2,245 29,184

Table 1: Historical datasets used in the experiments

Datasets Table 1 gives an overview of the his-
torical datasets. They are taken from Bollmann
(2018) and represent the largest and most var-
ied collection of datasets used for historical text
normalization so far, covering eight languages
from different language families—English, Ger-
man, Hungarian, Icelandic, Spanish, Portuguese,
Slovene, and Swedish—as well as different text
genres and time periods. Furthermore, most of
these have also been used in previous work, such
as the English, Hungarian, Icelandic, and Swedish
datasets (e.g., Pettersson et al., 2014; Pettersson,
2016; Robertson and Goldwater, 2018; Tang et al.,
2018) and the Slovene datasets (e.g., Ljubešić
et al., 2016; Scherrer and Erjavec, 2016; Etxeber-
ria et al., 2016; Domingo and Casacuberta, 2018).

Additionally, contemporary datasets are re-
quired for the rule-based and distance-based com-
ponents of Norma, as they expect a list of valid
target word forms to function properly. For this,
we want to choose resources that are readily avail-
able for many languages and are reliable, i.e., con-
sist of carefully edited text. Here, I choose a
combination of three sources:7 (i) the normaliza-
tions in the training sets, (ii) the Europarl corpus
(Koehn, 2005), and (iii) the parallel Bible corpus
by Christodouloupoulos and Steedman (2015).
The only exception is Icelandic, which is not cov-
ered by Europarl; here, we can follow Petters-
son (2016) instead by using data from two spe-
cialized resources, the BÍN database (Bjarnadót-
tir, 2012) and the MÍM corpus (Helgadóttir et al.,
2012). This way, we obtain full-form lexica of

7Detailed descriptions of the data extraction procedure
can be found in the Supplementary Material.

12k–64k word types from the Bible corpus, 55k–
268k types from Europarl, and 2.8M types from
the Icelandic resources.

Preprocessing The most important preprocess-
ing decisions8 are (i) to lowercase all characters
and (ii) to remove all punctuation-only tokens.
Both capitalization and punctuation often cannot
be handled correctly without considering token
context, which all current normalization models
do not do. Furthermore, their usage can be very
erratic in historical texts, potentially distorting
the evaluation; e.g., when a text uses punctuation
marks according to modern conventions, their nor-
malization is usually trivial, resulting in artificial
gains in normalization accuracy that other texts do
not get. At the same time, most previous work has
not followed these same preprocessing guidelines,
making a direct comparison more difficult. This
work tries to make up for this by evaluating many
different systems, effectively reproducing some of
these previous results instead.

4 Evaluation

All models are trained and evaluated separately
for each dataset by calculating word accuracy over
all tokens. In particular, there is no step to dis-
criminate between tokens that require normaliza-
tion and those that do not; all word forms in the
datasets are treated equally.

For Norma, all components are evaluated both
separately and combined, as the former gives us
insight into the performance of each individual

8The full preprocessing steps can be found in the Supple-
mentary Material.
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Method Dataset

DEA DER EN ES HU IS PT SLB SLG SV

Identity 30.63 44.36 75.29 73.40 17.53 47.62 65.19 40.74 85.38 58.59
Maximum 94.64 96.46 98.57 97.40 98.70 93.46 97.65 98.71 98.96 98.97

Norma, Lookup 83.86 82.15 92.45 92.51 74.58 82.84 91.67 81.76 93.90 83.80
Norma, Rule-based 76.48 82.52 90.85 88.59 78.73 83.72 86.33 86.09 91.63 85.23
Norma, Distance-based 58.92 73.30 83.92 84.41 62.38 69.95 77.28 71.02 88.20 76.03
Norma (Combined) 88.02 86.55 94.60 94.41 86.83 *86.85 94.19 89.45 91.44 87.12

cSMTiser 88.82 *88.06 *95.21 *95.01 *91.63 *87.10 *95.09 *93.18 *95.99 91.13
cSMTiser+LM 86.69 *88.19 95.24 95.02 91.70 *86.83 95.18 93.30 96.01 *91.11

NMT (Bollmann, 2018) 89.16 *88.07 94.80 *94.83 91.17 86.45 94.64 91.61 95.19 90.27
NMT (Tang et al., 2018) 89.64 88.22 94.95 *94.84 *91.65 87.31 94.51 92.60 *95.85 90.39

†SMT (Pettersson et al., 2014) – – 94.3– – 80.1– 71.8– – – – 92.9–
†NMT (Tang et al., 2018) – – 94.69 – 91.69 87.59 – – – 91.56

Table 2: Word accuracy of different normalization methods on the test sets of the historical datasets, in percent;
best result for each dataset in bold; results marked with an asterisk (*) are not significantly different from the
best result using McNemar’s test at p < 0.05. † indicates scores that were not (re)produced here, but reported
in previous work; they might not be strictly comparable due to differences in data preprocessing (cf. Sec. 3).
Additionally, Identity shows the accuracy when leaving all word forms unchanged, while Maximum gives the
theoretical maximum accuracy with purely token-level methods.

component, while the latter is reported to produce
the best results (Bollmann, 2012). For cSMTiser,
the authors suggest using additional monolingual
data to improve the language model; the contem-
porary datasets are used for this purpose and the
model is trained both without and with this ad-
ditional data; the latter is denoted cSMTiser+LM.
For NMT, the model by Bollmann (2018) is evalu-
ated using an ensemble of five models; the model
by Tang et al. (2018) is trained on character-level
input using the default settings provided by their
implementation.9

To illustrate how challenging the normalization
task is on different datasets, we can additionally
look at the identity baseline—i.e., the percentage
of tokens that do not need to be normalized—as
well as the maximum accuracy obtainable if each
word type was mapped to its most frequently oc-
curring normalization. The latter gives an indica-
tion of the extent of ambiguity in the datasets and
the disadvantage of not considering token context
(cf. Sec. 2.6).

Results Table 2 shows the results of this eval-
uation. The extent of spelling variation varies

9This is the “Att-RNN” setting reported in their paper; due
to the high computational demands of the model, it was not
feasible to run experiments with multiple configurations.

greatly between datasets, with less than 15% of
tokens requiring normalization (SLG) to more than
80% (HU). The maximum accuracy is above 97%
for most datasets, suggesting that we can ob-
tain high normalization accuracy in principle even
without considering token context.

For the normalization systems, we observe sig-
nificantly better word accuracy with SMT than
NMT on four of the datasets, and non-significant
differences on five others. There is only one
dataset (DEA) where the NMT system by Tang
et al. (2018) gets significantly better word accu-
racy than other systems. This somewhat con-
tradicts the results from Tang et al. (2018), who
find NMT to usually outperform the SMT baseline
by Pettersson et al. (2014). However, note that the
results for the cSMTiser system are often signifi-
cantly better than reported in previous work: e.g.,
on Hungarian, cSMTiser obtains 91.7% accuracy,
but only 80.1% with the SMT system from Pet-
tersson et al. (2014).

Overall, the deep NMT model by Tang et al.
(2018) consistently outperforms the shallow one
by Bollmann (2018). cSMTiser seems to ben-
efit from the added contemporary data for lan-
guage modelling, though the effect is not signif-
icant on any individual dataset. Finally, while
Norma does produce competitive results on sev-



3890

Method Dataset

DEA DER EN ES HU IS PT SLB SLG SV

Norma, Lookup 0.41 0.31 0.38 0.35 0.43 0.38 0.39 0.44 0.44 0.29
Norma, Rule-based 0.40 0.33 0.43 0.39 0.38 0.40 0.45 0.47 0.46 0.32
Norma, Distance-based 0.42 0.34 0.46 0.44 0.41 0.44 0.50 0.52 0.39 0.38
Norma (Combined) 0.41 0.33 0.45 0.42 0.34 0.42 0.51 0.51 0.42 0.31

cSMTiser 0.37 0.26 0.39 0.41 0.26 0.40 0.50 0.53 0.56 0.24
cSMTiser+LM 0.39 0.27 0.39 0.42 0.27 0.41 0.50 0.53 0.56 0.24

NMT (Bollmann, 2018) 0.38 0.26 0.39 0.43 0.27 0.40 0.48 0.47 0.51 0.23
NMT (Tang et al., 2018) 0.38 0.27 0.38 0.42 0.26 0.41 0.46 0.50 0.56 0.24

(a) CERI: character error rate on the subset of incorrect normalizations (lower is better)

Norma, Lookup 8.47 16.72 8.33 27.81 2.86 – 4.57 – – 7.42
Norma, Rule-based 12.82 26.73 8.48 26.33 12.44 – 5.65 – – 15.38
Norma, Distance-based 7.71 19.10 7.26 28.62 10.93 – 5.58 – – 12.18
Norma (Combined) 16.97 28.94 9.86 43.55 20.00 – 11.13 – – 20.75

cSMTiser 17.92 34.67 8.27 43.82 20.44 – 6.09 – – 17.73
cSMTiser+LM 12.23 33.83 8.46 42.93 20.40 – 6.60 – – 17.58

NMT (Bollmann, 2018) 17.24 33.65 7.96 39.22 18.30 – 5.92 – – 16.65
NMT (Tang et al., 2018) 16.34 34.19 9.43 40.99 19.84 – 6.46 – – 18.93

(b) Stemming accuracy: percentage of incorrect normalizations with correct word stems (higher is better)

Table 3: Evaluations on the subset of incorrect normalizations only; best results for each dataset in bold. Note that
this subset is different for each system, so for comparisons between systems, these numbers should be considered
in conjunction with word accuracy scores from Table 2.

eral datasets (particularly in the “combined” set-
ting), it is generally significantly behind the SMT
and NMT methods.

5 Analysis

5.1 Measuring Normalization Quality

While word accuracy is easily interpretable, it is
also a very crude measure, as it classifies predic-
tions as correct/incorrect without considering the
type of error(s) made by the model. Character er-
ror rate (CER) has sometimes been suggested as
a complement to address this issue, but I believe
this is not very insightful: For any normalization
system that achieves a reasonably high word accu-
racy, CER will highly correlate with accuracy sim-
ply because CER equals zero for any word that is
accurately normalized.10 At the same time, there
is a need for a more fine-grained way to assess
the normalization quality. Consider the follow-

10When comparing word accuracy scores in Table 2 with
the same configurations evaluated using CER, they correlate
with Pearson’s r ≈ −0.96.

ing example from the Hungarian dataset with its
predicted normalization from the NMT system by
Bollmann (2018):

(1) ORIG yduewzewlendewk
GOLD üdvözülendőek
PRED üdvözülendők

Here, the prediction matches the correct target
form almost perfectly, but would be counted as
incorrect since it misses an insertion of the let-
ter 〈e〉 towards the end. In this vein, it will be
treated the same by the word accuracy measure as
a prediction that, e.g., had left the original form
unchanged.

CERI One alternative is to consider character
error rate on the subset of incorrect normaliza-
tions only. This way, CER becomes a true com-
plement to word accuracy by assessing the mag-
nitude of error that a normalization model makes
when it is not perfectly accurate. The results of
this measure, denoted CERI, are shown in Ta-
ble 3a. The lowest CERI score is often achieved
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by Norma’s lookup module, which leaves histor-
ical word forms unchanged if they are not in its
lookup wordlist learned during training. This sug-
gests that the incorrect predictions made by other
systems are often worse than just leaving the his-
torical spelling unchanged.

Stemming Another problem of CER is that all
types of errors are treated the same: a one-letter
difference in inflection, such as king – kings or
came – come, would be treated identically to an
error that changes the meaning of the word (bids –
beds) or results in a non-word (creature – crya-
ture). I propose an approach that, to the best of
my knowledge, has not been used in normaliza-
tion evaluation before: measure accuracy on word
stems, i.e., process both the reference normaliza-
tion and the prediction with an automatic stem-
ming algorithm and check if both stems match.
For this evaluation, I choose the Snowball stem-
mer (Porter, 2001) as it contains stemming al-
gorithms for many languages (including the ones
represented here except for Icelandic and Slovene)
and is publicly available.11

Table 3b shows the accuracy on word stems,
again only evaluated on the subset of incorrect
normalizations, as this better highlights the differ-
ences between settings. This evaluation reveals
some notable differences between datasets: For
example, while the English and Spanish datasets
have very comparable accuracy scores overall (cf.
Tab. 2), they show very different characteristics in
the stemming evaluation; for English, only up to
9.86% of incorrect predictions show the correct
word stem, while for Spanish the number is up
to 43.82%. Examining predictions on the dev set,
many of the incorrectly predicted cases in Span-
ish result from mistakes in placement of diacrit-
ics, such as ésta – está or envíe – envié; the stem-
ming algorithm removes diacritics and can there-
fore match these instances. Overall, this gives
an indication that the errors made on the Spanish
dataset are less severe than those on English, de-
spite comparable word accuracy scores and a usu-
ally higher CERI for Spanish.

This case study shows that stemming can be
a useful tool for error analysis in normalization
models and reveal characteristics that neither word
accuracy nor CER alone can show.

11http://snowballstem.org/

5.2 Effect of Training Data Quantity
Supervised methods for historical text normal-
ization have been evaluated with highly vary-
ing amounts of training data: e.g., Domingo and
Casacuberta (2018) train a normalizer for 17th cen-
tury Spanish on 436k tokens; Etxeberria et al.
(2016) use only 8k tokens to train a normalizer for
Basque. Even in the evaluation in Sec. 4, train-
ing set sizes varied between 24k and 234k tokens,
depending on the dataset. Furthermore, many re-
search projects seeking to use automatic normal-
ization techniques cannot afford to produce train-
ing data in high quantity. All of this raises the
question how different normalization systems per-
form with varying amounts of training data, and
whether reasonable normalization results can be
achieved in a low-resource scenario.

Methodology All models are retrained on vary-
ing subsets of the training data, with sizes rang-
ing from 100 tokens to 50,000 tokens. However,
the lower the training set size is, the higher the
potential variance when training on it, since ran-
dom factors such as the covered spelling variants
or vocabulary are more likely to impact the re-
sults. Therefore, I choose the following approach:
For each dataset and training size, up to ten differ-
ent training splits are extracted,12 and a separate
model is trained on each one. Each model is then
evaluated on the respective development dataset,
and only the average accuracy across all splits is
considered.

Results Figure 2 shows two learning curves that
are representative for most of the datasets.13 They
reveal that Norma (in the “combined” setting)
performs best in extremely low-resource scenar-
ios, but is overtaken by the SMT approach as
more training data becomes available; usually al-
ready around 500–1000 tokens. The NMT mod-
els have a steeper learning curve, needing more
training data to become competitive. Extrapolat-
ing this trend, it is conceivable that the NMT mod-
els would simply need more training data than our
current datasets provide in order to consistently
outperform the SMT approach. On the other hand,
there appears to be no correlation between the size
of the training set (cf. Tab. 1) and the relative per-

12The ten training splits consist of chunks of n tokens
that are spaced equidistantly across the full training set; for
larger n, the number of chunks is reduced so that no splits
overlap to more than 50%.

13Plots for all datasets can be found in the Appendix.
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Figure 2: Word accuracy on the development sets for different amounts of training data (note that the x-axis is
log-scaled); NMT-1 is the model by Bollmann (2018), NMT-2 is the model by Tang et al. (2018).

formance of NMT vs. SMT (cf. Tab. 2) in the ex-
periments. Since I am not aware of larger datasets
for the historical normalization task, this remains
an open question for now.

A remarkable result is that very small amounts
of training data can already be helpful for the nor-
malization task. The English dataset has compar-
atively little spelling variation to begin with: leav-
ing all words unnormalized already results in an
accuracy of 75.5%. Still, with as little as 100 to-
kens for training, applying the Norma tool raises
the accuracy above 83%. For Hungarian, the same
amount of training data raises the accuracy from
17.8% (unnormalized) to around 50%. It would
be interesting to further compare these results with
fully unsupervised methods.

5.3 Out-of-Vocabulary Words

Robertson and Goldwater (2018) highlight the im-
portance of evaluating separately on seen vs. un-
seen tokens, i.e., tokens that have also been in
the training set (in-vocabulary) and those that have
not (out-of-vocabulary), as well as comparing to a
naive memorization baseline. These numbers are
presented in Table 4. For unseen tokens (Tab. 4b),
the accuracy scores follow generally the same
trend as in the full evaluation of Tab. 2; i.e., SMT
performs best in most cases. For seen tokens
(Tab. 4a), however, Norma’s lookup component—
which implements naive memorization—obtains
the highest score on nine datasets.

These observations suggest a new normaliza-
tion strategy: apply the naive lookup on the subset
of in-vocabulary tokens and the SMT/NMT mod-
els on the subset of out-of-vocabulary tokens only.

Table 5 shows the results of this strategy.14 On
nine datasets, it performs better than always us-
ing the learned models (as in Tab. 2), and this dif-
ference is statistically significant on five of them.
These results support the claim from Robertson
and Goldwater (2018) that “learned models should
typically only be applied to unseen tokens.”

6 Conclusion

This paper presented a large study of historical
text normalization. Starting with a systematic sur-
vey of the existing literature, four different sys-
tems (based on supervised learning) were eval-
uated and compared on datasets from eight dif-
ferent languages. On the basis of these results,
we can extract some practical recommendations
for projects seeking to employ normalization tech-
niques:

1. to use the Norma tool when only little train-
ing data (<500 tokens) is available;

2. to use cSMTiser otherwise, ideally with addi-
tional data for language modelling; and

3. to make use of the naive memoriza-
tion/lookup technique for in-vocabulary to-
kens when possible.

Furthermore, the qualitative analysis (in Sec. 5.1)
should encourage authors evaluating normaliza-
tion systems to use task-motivated approaches,
such as evaluation on word stems, to provide

14The non-lookup components of Norma are not included
in this evaluation since “Norma (Combined)” effectively im-
plements such a strategy already.
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Method Dataset

DEA DER EN ES HU IS PT SLB SLG SV

Norma, Lookup/Combined 92.36 93.66 97.46 96.59 96.81 89.51 97.04 97.15 98.17 97.61
Norma, Rule-based 80.34 89.26 93.17 89.98 88.42 86.21 88.77 93.61 96.10 92.10
Norma, Distance-based 60.79 78.85 86.77 85.89 67.04 70.99 78.93 77.49 94.54 84.17

cSMTiser 92.18 93.25 97.10 96.33 96.33 89.27 96.80 96.73 98.09 97.66
cSMTiser+LM 90.52 93.45 97.15 96.42 96.33 88.99 96.82 96.90 98.07 97.66

NMT (Bollmann, 2018) 91.91 93.29 97.19 96.37 96.18 88.67 96.72 95.92 97.56 97.01
NMT (Tang et al., 2018) 92.25 93.41 97.19 96.27 96.43 89.34 96.60 96.84 97.89 96.90

(a) In-vocabulary/seen tokens

Norma, Lookup 3.91 19.92 30.42 46.72 3.28 29.40 28.25 18.07 68.07 39.85
Norma, Rule-based 40.27 46.06 62.06 72.97 47.66 63.73 57.50 54.99 64.59 63.37
Norma, Distance-based 41.33 43.25 48.63 67.78 47.43 61.64 57.79 44.23 49.82 50.15
Norma (Combined) 47.25 48.13 59.18 69.93 54.83 65.52 60.62 57.57 50.71 53.73

cSMTiser 57.25 59.96 71.78 80.22 76.59 69.70 74.69 78.49 83.30 70.35
cSMTiser+LM 50.69 59.76 71.70 79.24 76.86 69.55 75.91 78.40 83.56 70.26

NMT (Bollmann, 2018) 63.24 59.83 65.17 77.57 75.13 68.66 70.00 73.75 80.87 68.78
NMT (Tang et al., 2018) 65.09 60.16 67.15 78.75 76.33 71.04 69.90 75.04 83.46 69.66

(b) Out-of-vocabulary/unseen tokens

Table 4: Word accuracy for seen/unseen tokens separately (cf. Sec. 5.3); best results for each dataset in bold.

Method Dataset

DEA DER EN ES HU IS PT SLB SLG SV

Best without lookup *89.64 *88.22 95.24 95.02 91.70 *87.31 95.18 93.30 *96.01 91.13

cSMTiser 88.98 *88.41 95.54 95.25 *92.00 *87.31 *95.31 93.52 *96.06 *91.09
cSMTiser+LM 88.35 *88.37 *95.53 *95.17 92.07 *87.30 95.39 *93.50 96.10 *91.07

NMT (Bollmann, 2018) 89.56 *88.38 95.05 95.03 91.66 *87.20 94.93 92.60 95.71 90.72
NMT (Tang et al., 2018) 89.74 88.45 95.19 *95.13 *91.94 87.46 94.92 92.85 *96.08 *90.93

Table 5: Word accuracy for the “lookup on seen tokens, learned models on unseen tokens” strategy, following
Robertson and Goldwater (2018) (cf. Sec. 5.3), compared to the best result without this strategy (according to
Table 2). Best result for each dataset in bold; results marked with an asterisk (*) are not significantly different from
the best result using McNemar’s test at p < 0.05.

deeper insight into the properties of their models
and datasets.

Detailed information on how to train and ap-
ply all of the evaluated techniques is made
available online at https://github.com/
coastalcph/histnorm.
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A Appendix

Figures 3 and 4 show plots of the learning curves
for all of the datasets.

A.1 Preprocessing
The full preprocessing steps of all datasets (both
historical and contemporary) comprise of:

1. lowercasing all tokens;

2. filtering out pairs where either the histori-
cal token or the reference normalization is
empty;

3. filtering out pairs where either the historical
token or the reference normalization consists
only of punctuation marks, defined as charac-
ters that belong to one of the Unicode “Punc-
tuation” categories;
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Figure 3: Word accuracy on the development sets for different amounts of training data (note that the x-axis is
log-scaled); NMT-1 is the model by Bollmann (2018), NMT-2 is the model by Tang et al. (2018).
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Figure 4: Word accuracy on the development sets (continued); NMT-1 is the model by Bollmann (2018), NMT-2
is the model by Tang et al. (2018).

4. replacing all digits with zeroes iff the digits
in the historical token and the reference nor-
malization match;

5. replacing actual space characters in either the
historical token or the reference normaliza-
tion with a special symbol that does not oth-
erwise occur in the dataset; and

6. performing Unicode normalization according
to the NFC standard.

Additionally, the preprocessing script can also
be found in the Supplementary Material or at
https://github.com/coastalcph/
histnorm.


