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Abstract

We focus on improving name tagging for low-
resource languages using annotations from re-
lated languages. Previous studies either di-
rectly project annotations from a source lan-
guage to a target language using cross-lingual
representations or use a shared encoder in
a multitask network to transfer knowledge.
These approaches inevitably introduce noise
to the target language annotation due to mis-
matched source-target sentence structures. To
effectively transfer the resources, we develop
a new neural architecture that leverages multi-
level adversarial transfer: (1) word-level ad-
versarial training, which projects source lan-
guage words into the same semantic space as
those of the target language without using any
parallel corpora or bilingual gazetteers, and
(2) sentence-level adversarial training, which
yields language-agnostic sequential features.
Our neural architecture outperforms previous
approaches on CoNLL data sets. Moreover,
on 10 low-resource languages, our approach
achieves up to 16% absolute F-score gain over
all high-performing baselines on cross-lingual
transfer without using any target-language re-
sources. !

1 Introduction

Low-resource language name tagging is an impor-
tant but challenging task. An effective solution is
to perform cross-lingual transfer, by leveraging the
annotations from high-resource languages. Most
of these efforts achieve cross-lingual annotation
projection based on bilingual parallel corpora com-
bining with automatic word alignment (Yarowsky
et al., 2001; Wang et al., 2013; Fang and Cohn,
2016; Ehrmann et al., 2011; Ni et al., 2017),
bilingual gazetteers (Feng et al., 2017; Zirikly

'Our programs will be released at https://github.
com/wilburOne/AdversarialNameTagger

and Hagiwara, 2015), cross-lingual word embed-
ding (Fang and Cohn, 2017; Wang et al., 2017;
Huang et al., 2018), or cross-lingual Wikifica-
tion (Kim et al., 2012; Nothman et al., 2013; Tsai
et al., 2016; Pan et al., 2017), but these resources
are still only available for dozens of languages.
Recent efforts on multi-task learning model each
language as one single task while all the tasks
share the same encoding layer (Yang et al., 2016,
2017; Lin et al., 2018). These methods can transfer
knowledge via the shared encoder without using
bilingual resources. However, different languages
usually have different underlying sequence struc-
tures, as shown in Figure 1. Without an explicit
constraint, the encoder is not guaranteed to extract
language-independent sequential features. More-
over, when the size of annotated resources is not
balanced, the encoder is likely to be biased toward
the resource-dominant language.

NED: Sedert het begin1 van de Europese integratie2 is het

mededingingsbeleid® van groot belang? voor de Europese Unie®.

ENG: The European Union®' s competition policy3 has been of

central importance® since European integration® began’.

ESP La politica de competencia® de la Union Europea’ ha sido de
" central importancia4 desde que se inicio! la integracion europea?.

Figure 1: Example of parallel sentences between En-
glish (ENG), Spanish (ESP) and Dutch (NED) from Eu-
roparl Parallel Corpus (Koehn, 2005). The information
units with the same color and superscript are aligned.

Considering these challenges, we develop a new
neural architecture which can effectively transfer
resources from source languages to improve target
language name tagging. Our neural architecture
is built upon a state-of-the-art sequence tagger:
bi-directional long short-term memory as input to
conditional random fields (Bi-LSTM-CRF) (Lam-
ple et al., 2016; Huang et al., 2015; Ma and
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Figure 2: Architecture overview.

Hovy, 2016), integrated with multi-level adver-
sarial transfer: (1) word level adversarial trans-
fer, similar to Conneau et al. (2017), applying a
projection function on the source language and a
discriminator to distinguish each word of the tar-
get language from that of the source language, re-
sulting in a bilingual shared semantic space; (2)
sentence-level adversarial transfer, where a dis-
criminator is trained to distinguish each sentence
of the target language from that of the source lan-
guage,? and a sequence encoder is applied to each
sentence of both languages to prevent the dis-
criminator from correctly predicting the source of
each sentence, yielding language-agnostic sequen-
tial features. These features can better facilitate the
resource transfer from the source language to the
target language.

Our contributions are twofold: (1) with-
out requiring any parallel corpora or bilingual
gazetteers, the multi-level adversarial approach
can efficiently transfer annotated resources from
the source language to the target language and im-
prove target language name tagging; (2) In ad-
dition to outperforming previous high-performing
baselines on CoNLL data sets, we also evaluate
cross-lingual name tagging on 10 low-resource
languages and achieve up to 16% absolute F-score
gain over all baselines when there is no annotated
resource for the target language.

2 Approach
2.1 Approach Overview

Figure 2 shows the overview of our neural archi-
tecture. It consists of three components:

*For the name tagging task,
‘sentence.’

‘sequence’ always means

Cross-lingual word embedding learning with
adversarial training: Given pre-trained mono-
lingual word embeddings for a target language ¢
and a source language s, we first apply a map-
ping function to each word representation from s,
then feed both the projected source word repre-
sentations and the target word representations to a
word discriminator to predict the language of each
word. If the discriminator cannot distinguish the
language of ¢ from the projection of s, then we
consider ¢ and the projection of s to be in a shared
space.

Language-agnostic sequential feature extrac-
tion: For each sentence of ¢ and s, we ap-
ply a sequence encoder to extract sequential
features, and a Convolutional Neural Network
(CNN) (Krizhevsky et al., 2012) based sequence
discriminator to predict the language source of
each sentence. The sequence encoder is trained to
prevent the sequence discriminator from correctly
predicting the language of each sentence, such that
it finally extracts language-agnostic sequential fea-
tures.

Language-independent name tagger The
language-agnostic sequential features from both
t and s are further fed into a context encoder to
better capture and refine contextual information
and a conditional random field (CRF) (Lafferty
et al., 2001) based name tagger.

Next we show the details of each component in
our architecture.

2.2 Word-level Adversarial Transfer

To better leverage the resources from the source
language, our first step is to construct a shared se-
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mantic space where the words from the source and
target languages are semantically aligned. With-
out requiring any bilingual gazetteers, recent ef-
forts (Zhang et al., 2017b; Conneau et al., 2017;
Chen and Cardie, 2018) explore unsupervised ap-
proaches to learn cross-lingual word embeddings
and achieve comparable performance to super-
vised methods. Following these studies, we per-
form word-level adversarial training to automati-
cally align word representations from s and .

Formally, assume we are given pre-
trained  monolingual  word  embeddings
V., = {vivh . v} € RN*d for ¢, and
Vs = {v§,v5,...,v5} € RM*ds for s, where
vt and v; are the vector representations of words
w! and w$ from ¢t and s, N and M denote the
vocabulary sizes, d; and ds denote the embedding
dimensionality of ¢ and s respectively. We then
apply a mapping function f to project s into the
same semantic space as ¢:

V= f(Vs) =V,U (1)

where U € R%*% is the transformation matrix.
V, € RMx*dt gre the projected word embeddings
for s,and ©y = {6} denotes the set of parameters
to be optimized for f.

Similar to Xing et al. (2015), Conneau et al.
(2017), and Chen and Cardie (2018), we constrain
the transformation matrix U to be orthogonal with
singular value decomposition (SVD) to reduce the
parameter search space:

U=AB' ,with ALBT = SVD(V,V]) (2)

To automatically optimize the mapping function
f without using extra bilingual signals, we intro-
duce a multi-layer perceptron D as a word discrim-
inator, which takes word embeddings of ¢ and pro-
jected word embeddings of s as input features and
outputs a single scalar. D(w}) represents the prob-
ability of w; coming from ¢. The word discrim-
inator is trained by minimizing the binary cross-
entropy loss:

It's
w 1 : *
dis =~ 7 Z (yz ~log(D(wy))
® =0

+ (1 - ;) - log(1 = D(w;))

Y :51(1 — 26) +e€,

where §; = 1 when w; is from ¢ and J; = O oth-
erwise. ;.5 represents the number of words sam-
pled from the vocabulary of ¢ and s together. € is a
smoothed value added to the positive and negative
labels. ©4;5s = {f#p} is the parameter set.

The mapping function f and word discrimina-
tor D are two adversarial players, thus we flip the
word labels and optimize f by minimizing the fol-
lowing loss:

It;s
Ly == 73 (- w)- log(D(w})
) =0

Y; :52‘(1 — 26) + €

Following the standard training procedures of
deep adversarial networks (Goodfellow et al.,
2014), we train the word discriminator and the
mapping function successively with stochastic gra-
dient descent (SGD) (Bottou, 2010) to minimize
Lg;s and LY. Similar to Conneau et al. (2017), af-
ter word-level adversarial training, we also adopt a
refinement step to construct a bilingual dictionary
for the top-k most frequent words in the source lan-
guage3 based on ivfs and Vi, and further optimize
U with Equation 2 in a supervised way.

2.3 Sentence-level Adversarial Transfer

Once s is projected into the same semantic space
as t, we can regard both sentences as coming from
one unified language and directly project annota-
tions from s to t. However, name tagging not only
relies on word level features, but also on sequen-
tial contextual features for entity type classifica-
tion. Without constraints, the sequence encoder
can only extract sequential features for both ¢ and
s based on their final training signals while these
features are not necessarily beneficial to the target
language. Thus, we further design sentence level
adversarial transfer to encourage the encoder to ex-
tract language-agnostic sequential features.

Given a sentence ' = {w!, w}, ...} from ¢ and
a sentence z° = {wj,w3,...} from s, we first
use V; and {73 to initialize a vector representation
for each w! and wf. We also apply a character-
based CNN (denoted as CharCNN) (Kim et al.,
2016) for each language to compose a word rep-
resentation from its characters. For each word, we

3We set k=15,000 in our experiment.
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concatenate its word representation and character
based representation. Then we feed the sequence
of vector representations into a weight sharing Bi-
LSTM encoder E to obtain sequential features
H; = {h{,h}, ..} and H;, = {h{ h3,...} for
2! and ° respectively. The parameter set of op-
timizing both language-dependent CharCNN and
the sequence encoder can be denoted as ©, =
{Ocharenn, s Ocharenn,; O }-

Based on these sequential features, we use a
sequence discriminator to predict the language
source of each sentence. Given a sentence x* and
its sequential features H = {hj,h3, ...} from E,
we first apply a language-independent CNN with
max-pooling to get an overall vector representa-
tion for =*, then feed it into another multi-layer
perceptron, D, to predict the probability that z*
comes from language ¢. The sequence discrimina-
tor is trained by minimizing the following binary
cross-entropy loss:

== =Y (i loe(DG)
+ (1= i) - log(1 = D(x)))

gi =0i(1 —2n) + 1,

where & = 1 if the sentence z is from ¢ and
Si = 0 otherwise. ft;s represents the number of
sentences sampled from the whole data set of ¢t and
s. n is another smoothed value for sequence labels.
O = {0cnn, 0} denotes the parameter set for
optimizing the sequence discriminator.

The sequence encoder F and the sequence dis-
criminator D are two adversarial players and F is
optimized by trying to fool D to correctly predict
the language source of each sentence. Thus we flip
the sequence labels and optimize F by minimizing
the following loss:

Ji =0i(1 = 2n) + 1)
2.4 Name Tagger Training

With the language-agnostic sequential features
from E, we can directly combine all annotated

Algorithm 1 Multi-level Adversarial Training for
Improving Target Language Name Tagging

Input: Monolingual pre-trained word embeddings V. for tar-
get language ¢, and V for source language s. Annotated sen-
tence set A, for t and A, for related language s.

1. for iter = 1 to word_epoch do
2 for a =1 to word_dis_steps do
3 sample a batch of words by ~ Vi, bs ~ V;
4. loss = Lgis([be, f(bs)])
5. update ©4;5 to minimize loss
6 sample a batch of words b; ~ Vi, b; ~ Vg
7. loss = LY ([b;, f(bo)))
8 update O to minimize loss'
9. build a parallel dictionary with V; and f(V) and refine
projected word embeddings V. = f(V.)
10. for iter = 1to seq_epoch do

11. sample a batch of sentences b ~ Ay, by ~ A

12. extract sequential features from l~)t, f)s with F/

13, loss = L%, ([E(b:), E(bs)])

14. update O, O to minimize [oss

15. for g = 1to seq_tagger_steps do

16. sample a batch of sequences f); ~ At f); ~ Ag
17. loss = LE([E(b;), B(b,)]) + Lers([by, b.])
18. update O, ©. to minimize loss/

training data from both ¢ and s to train the name
tagger for t. To do so, we feed the sequential
features from FE' to another Bi-LSTM encoder E.
to refine the context information for each token,
and use a CRF output layer to render predictions
for each token, which can effectively capture de-
pendencies among name tags (e.g., an “inside-
organization” token cannot follow a “beginning-
person” token).

Specifically, given an input sentence x =
{wy, wa, ...w, }, we extract language-agnostic se-
quential features with FE, and further obtain
a new sequence of contextual features H =
{fnl, ho, ..., ﬁn} with E.. Then we a apply a linear
layer ¢ to further convert each h; to a score vec-
tor y;, in which each dimension denotes the pre-
dicted score for a tag (the starting, inside or out-
side of a name mention with a pre-defined entity
type). Then we feed the sequence of score vec-
tors Y = {y1,y2, ..., yn} into the CRF layer. The
score of a sequence of tags Z = {z1, 22, ..., 2 } IS
defined as:

n
Score(z,Y,Z) = Z(Rzzq,zz' +Y.)
i=1
where R is a transition matrix and R, ; denotes the
binary score of transitioning from tag p to tag q.
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Y; . represents the unary score of assigning tag z
to the ¢-th word.

Given the annotated sequence of tags Z, the
CREF loss is:

Ly = log Z eSeore@Y.2) _ Seore(x,Y,Z)
7€z

where Z is the set of all possible tagging paths. The
parameter set for optimizing the name tagger can
be denoted as ©. = {0g,, 0, Ocrr}-

We jointly optimize the sequence encoder F, the
context encoder E,. and the CRF together by mini-
mizing the loss L' = L7 + Ly s, and successively
minimize L7, and L' with SGD. The end-to-end
training for our neural architecture is described in
Algorithm 1.

3 Experiment

3.1 Data and Experimental Setup

We evaluate our methods from multiple settings.
We first evaluate our architecture on 10 low-
resource languages from the DARPA LORELEI
project. The annotations are released by the Lin-
guistic Data Consortium (LDC).* Each dataset has
four predefined name types: person (PER), orga-
nization (ORG), location (LOC) and geo-political
entity (GPE). For each target low-resource lan-
guage, we choose a source language if they are
from the same language family or use the same
script. To show the impact of resource transfer be-
tween distinct languages, we also use English as a
source language for each target low-resource lan-
guage. We create the English annotated resource
by combining the TAC-KBP 2015 English Entity
Discovery and Linking (Ji et al., 2015) data set and
the Automatic Content Extraction (ACE2005) data
set.> To avoid the impact of parameter initializa-
tion, we perform 5-fold cross validation. For each
experiment, we run twice and get the averaged F-
score. Table 1 shows the statistics of each data set.

We also evaluate our approach on high-resource
languages. We use Dutch (nl) and Spanish (es)
data sets from the CONLL 2002 (Tjong Kim Sang,
2002) shared task as target languages, and use
English (en) data from the CoNLL 2003 (Tjong
Kim Sang and De Meulder, 2003) shared task as

“The annotations are from: am (LDC2016E87), ti
(LDC2017E39), ar (LDC2016E89), fa (LDC2016E93), om
(LDC2017E27), so (LDC2016E91), sw (LDC2017E64), yo
(LDC2016E105), ug (LDC2016E70), uz (LDC2016E29)

3The data sets are LDC2015E103 and LDC2006T06

Language #of Sents  # of Tokens  # of Names
Ambharic (am) 4,770 71,399 3,891
Tigrinya (ti) 5,023 95,364 6,201
Arabic (ar) 4,781 80,715 4,937
Farsi (fa) 3,855 72,629 3,966
Oromo (om) 2,987 52,876 4,985
Somali (so) 3,453 78,400 5,571
Swahili (sw) 4,155 96,902 6,044
Yoruba (yo) 1,599 46,084 2,016
Uyghur (ug) 3,961 60,999 2,575
Uzbek (uz) 11,135 177,816 10,937
English (en) 17,936 388,120 23,938

Table 1: Data set statistics for each low-resource lan-
guage.

the source language. All the data sets have four
pre-defined name types: PER, ORG, LOC and
miscellaneous (MISC). Table 2 shows the statistics
of these data sets.

For fair comparison, we use the same pre-
trained word embeddings of English, Dutch and
Spanish as Lin et al. (2018), while for each low-
resource language we train their word embed-
dings using the documents from their LDC pack-
ages with FastText.® Table 3 lists the key hyper-
parameters we used in our experiments.

3.2 Baselines

We compare our methods with three categories of
baseline methods:’

* Monolingual Name Tagging Using monolin-
gual annotations only, the current state-of-the-
art name tagging model is the Bi-LSTM-CRF
network (Huang etal., 2015; Lample et al., 2016;
Ma and Hovy, 2016).

* Multi-task Learning Lin et al. (2018) apply
multi-task learning to boost name tagging per-
formance by introducing additional annotations
from source languages using a weight sharing
context encoder across multiple languages.

» Language Universal Representations We ap-
ply word adversarial transfer only to project the
source language into the same semantic space as
the target language, then train the name tagger on
the annotations of source and target languages.
Word-Adv! refers to the approach which is di-
rectly trained on the combination of the anno-

*https://fasttext.cc/

7 All the baselines are trained for 100 epochs

8For each word, we also combine its word embedding with
a CharCNN based representation.
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Train Dev Test

Language Resource
English (en)  source language
Dutch (nl) target language
Spanish (es) target language

204,567 (23,499)
202,931 (13,344)
264,715 (18,797)

51,578 (5,942) 46,666 (5,648)
37,761 (2,616) 68,994 (3,941)
52,923 (4,351) 51,533 (3,558)

Table 2: CoNLL data set statistics: # of tokens and # of names (between parentheses).

Parameter Name Value
Monolingual Embedding Size 100
CharCNN Filter Size 25
CharCNN Filter Widths [2, 3]
LSTM Hidden Size 100
Droupout Rate 0.5
Smoothing Value e for Word Discriminator 0.1
Word Adversarial Training Epochs 5
Smoothing Value 7 for Sequence Discriminator 0.3
Sequence Adversarial & Name Tagging Train- 60
ing Epochs

# of Steps for Sequence Tagging Training 5
Batch Size 20
Initial Learning Rate 0.01
Optimizer SGD

Table 3: Hyper-parameters.

tations, while Word-Adv? refers to the baseline
that is first trained on the target language anno-
tations and then further tuned on the related lan-
guage annotations.

3.3 Cross-lingual Transfer with Zero Target
Language Annotated Resource

We first evaluate our approach on a cross-lingual
transfer setting without using any annotated train-
ing data from the target language. We con-
duct experiments on 8 low-resource languages.
Among those, some pairs, such as Amharic (am)
and Tigrinya (ti), Oromo (om) and Somali (so),
or Yoruba (yo) and Swahili (sw), are from the
same language family and are closely related,
while some are not, such as Arabic (ar) and Farsi
(fa). Since our approach requires some unlabeled
sentences from the target language to train the
sentence-level discriminator, we entirely remove
the annotations from the annotated data set of the
target language. Table 4 presents the results.

Our approach significantly outperforms the pre-
vious methods on all languages. Specifically,
compared with the Word-Adv' baseline, which
only performs word-level adversarial transfer, our
approach achieves 10% absolute F-score gain on
average, which demonstrates the effectiveness of
the sentence-level adversarial transfer. In addition,
compared with Lin et al. (2018), who only apply a
shared context-encoder to transfer the knowledge,
our approach not only includes a language-sharing

target Cross-lingual ~ Multitask Our
(source) Word-Adv'  Learning  Approach
am (t1) 15.19 19.72 26.86
ti (am) 16.20 9.06 29.36
ar (fa) 1.53 3.52 13.83
fa (ar) 2.59 0.91 11.14
om (so) 4.66 3.40 14.14
so (om) 4.12 2.98 20.02
sw (yo) 7.20 5.60 18.25
yo (sw) 13.07 6.14 23.73

Table 4: Cross-lingual transfer when the target lan-
guage has no resources (F-score %).

encoder, but also performs multi-level adversar-
ial training to encourage the semantic alignment
of words from both languages and a sequence en-
coder to extract language-agnostic sequential fea-
tures.

Here we use some Arabic (Farsi) examples to
further show the effectiveness of each level of
adversarial training in our architecture. Without
using any annotated training data from Arabic,
both our approach and the Word-Adv! baseline
successfully identify d..dyall (French) as a GPE
from the Arabic (ar) sentence in Figure 3, since
with word-level adversarial training, the seman-
tics of d.uiyall is well aligned with the GPE names
in Farsi annotated data, such as 4.ilyé (France),
aswgy (Russia) and .l (Germany). However,
both the Word-Adv! and Lin et al. (2018) base-
lines fail to identify 4,5l (Algerian) as a GPE
since its top ranked similar words in Farsi in-
clude wiSlie (negotiations), 4>g9s (Doha) and
elisélgi (agreement). With sentence-level adver-
sarial training, our approach successfully captures
language-agnostic sequential features, such as “g|
(or) usually connects two names with the same
type”, thus our approach successfully identifies
dyil3dl (Algerian) as a GPE name.

3.4 Cross-lingual Transfer for Low-Resource
Languages

We also investigate the impact of cross-lingual
transfer when the target languages have some an-
notated resources. For each target low-resource
language, we explore the use of a related low-
resource language vs. using the high-resource En-
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target Monolingual  Cross-lingual Embedding Multitask Our Approach
(related) Bi-LSTM-CRF  Word-Adv!  Word-Adv?  Learning  Multi-Adversarial
am (ti) 72.23 72.15 72.01 72.35 73.98
ti (am) 74.68 74.43 74.83 74.71 74.93
ar (fa) 48.92 48.37 47.90 47.53 49.76
fa (ar) 64.35 63.93 64.43 63.21 65.09
om (so) 76.37 76.43 76.19 76.18 77.19
so (om) 77.63 77.31 77.13 77.99 78.15
sw (yo) 77.01 77.31 77.85 77.86 76.28
yo (sw) 68.97 68.89 69.62 70.12 70.59
ug (uz) 68.73 68.53 68.29 68.39 69.46
uz (ug) 74.59 74.21 74.74 74.56 75.37
am (en) 72.23 72.43 71.63 72.22 73.35
ti (en) 74.68 74.61 74.69 74.68 74.80
ar (en) 48.92 48.50 4791 47.40 50.08
fa (en) 64.35 64.04 64.25 63.44 63.92
om (en) 76..27 76.68 76.53 76.2 77.29
so (en) 77.63 76.67 77.88 77.88 78.21
sw (en) 77.01 77.52 76.84 77.89 77.01
yo (en) 68.97 69.21 69.46 70.43 70.88
ug (en) 68.73 68.14 68.79 68.69 69.06
uz (en) 74.59 73.95 74.46 74.48 74.75

Table 5: Cross-lingual transfer when the target language has resources (F-score %).

AR: Gl G sall am A0V ) e ) S8 alall eaall i o Sy
S ¢ agidle 83 alT 512 L B dial o sleny
EN: The deputy prosecutor has ruled that the

evidence against those with French® or? Algerian’

nationality is mostly sufficient.

Figure 3: Example of an Arabic (ar) name tagging out-
put with Farsi (fa) annotated training data only.

glish as our source language. Table 5 shows the
performance on 10 low-resource languages.

Comparing cross-lingual embedding based
baselines to the monolingual baseline, we observe
that for most low-resource languages, directly
adding the annotations from the source language
to the target language slightly hurts the model.
This suggests that when the training data for the
target language is not enough, the model will be
very sensitive to noise. The multitask learning
based baseline (Lin et al., 2018) performs better
than the monolingual baseline only when the
target and source languages are very close, such
as Amharic (am) and Tigrinya (ti), or Swahili (sw)
and Yoruba (yo).

By introducing annotated training data from En-
glish, the performance of all the baselines becomes
worse than the monolingual baseline. Since the
script and sequence structure of English is very
different from these low-resource languages, the
addition of English to the limited target language
training data yields a considerably noisy corpus.

However, by forcing the sequence encoder to ex-
tract language-agnostic features, our approach still
achieves better performance than the monolingual
baseline for most languages. All of these exper-
iments demonstrate that our approach is more ef-
fective in leveraging annotations from other lan-
guages to improve target language name tagging.

3.5 Cross-lingual Transfer for High Resource

Languages

Language Model F-score
Lample et al. (2016) 81.74
Yang et al. (2017) 85.19
Lin et al. (2018) 85.71

Dutch Gillick et al. (2016) 82.84
Word-Adv' 85.87
Word-Adv? 86.43
Our Model (Bi-LSTM) 86.87
Lample et al. (2016) 85.75
Yang et al. (2017) 85.77
Lin et al. (2018) 85.02

Spanish Gillick et al. (2016) 82.95
Word-Adv' 85.92
Word-Adv® 85.84
Our Model (Bi-LSTM)  86.41

Table 6: Comparison on cross-lingual transfer for
Dutch and Spanish with various baselines: monolin-
gual baseline (Lample et al. (2016)), multitask base-
lines (Yang et al. (2017) and Lin et al. (2018)), language
universal representation baselines (Gillick et al. (2016),
Word-Adv!, Word-Adv?).

We finally investigate the results when both the
source and target languages are all high-resource
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languages. Table 6 presents the performance on
Dutch and Spanish while using English as the
source language. Our approach significantly out-
performs all the other approaches even when the
size of the annotated training data for the target
language is huge. We notice that our approach
achieves larger improvement on Dutch than Span-
ish. The reason may be that, compared with
Spanish, Dutch is much closer to English (Cutler
and Pasveer, 2006). Both English and Dutch are
from the same West Germanic branch of the Indo-
European language family while Spanish is from
the Italic branch.

3.6 Impact of Annotation Size from Source
and Target Languages

We use Ambharic as the target language and
Tigrinya as the source language to show the im-
pact of the size of their annotations. Specifically,
to explore the impact of the size of target language
annotations, we use 0, 10%, 50%, or 100% an-
notated training data from Ambharic. Similarly, to
show the effect of the size of source language an-
notations, for each experiment, we also gradually
add 0, 20%, 50%, or 100% annotated training data
from Tigrinya. For all experiments, we use the
same dev and test set of Amharic. As Figure 4
shows, as we gradually add annotations from the
source or target language, the performance can al-
ways be improved. When the size of target lan-
guage annotations is small, such as 400 sentences,
we can achieve 5%-30% F-score gain by adding
about 4,000 sentences from the source language.
When the size of target language annotations is
over 2,000 sentences, the improvement is about
2% if we add in about 4,000 sentences from source
language annotations.
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Figure 4: The impact of the size of annotations from
source and target languages on Ambharic name tagging.

4 Related Work

Name tagging methods based on sequence labeling
have been widely studied in recent years. Huang
et al. (2015) and Lample et al. (2016) propose
an effective Bi-LSTM-CRF architecture; the Bi-
LSTM encodes previous and following contexts,
and the CRF is used for tag prediction. Other
studies incorporate a character-level CNN (Ma
and Hovy, 2016), global contexts (Zhang et al.,
2018), or language models (Liu et al., 2018;
Peters et al., 2017, 2018; Devlin et al., 2018)
to improve name tagging. In addition, sev-
eral approaches (Zhang et al., 2016a, 2017a; Al-
Badrashiny et al., 2017) attempt to incorporate
hand-crafted linguistic features into a Bi-LSTM-
CRF to improve low-resource name tagging per-
formance.

Recent attempts on cross-lingual transfer for
name tagging can be divided into two cate-
gories: the first projects annotations from a source
language to a target language via parallel cor-
pora (Yarowsky et al., 2001; Wang and Manning,
2013; Wang et al., 2013; Zhang et al., 2016b;
Fang and Cohn, 2016; Ehrmann et al., 2011; En-
ghoff et al., 2018; Ni et al., 2017), a bilingual
gazetteer (Feng et al., 2017; Zirikly and Hagiwara,
2015), Wikipedia anchor links (Kim et al., 2012;
Nothman et al., 2013; Tsai et al., 2016; Pan et al.,
2017), and language universal representations, in-
cluding Unicode bytes (Gillick et al., 2016) and
cross-lingual word embeddings (Fang and Cohn,
2017; Wang et al., 2017; Huang et al., 2018; Xie
et al., 2018). The second is based on multitask
learning via a weight sharing encoder (Yang et al.,
2016, 2017; Lin et al., 2018). Compared to these
studies, our approach not only automatically learns
cross-lingual word embeddings without requir-
ing any parallel resources, but also carefully ex-
tracts language-agnostic sequential features, yield-
ing better performance.

Adversarial training has also been extensively
studied and applied for cross-lingual and cross-
domain transfer. Several studies (Barone, 2016;
Zhang et al., 2017¢,b; Conneau et al., 2017; Chen
and Cardie, 2018) explore adversarial training
to automatically induce bilingual and multilin-
gual word representations without using any par-
allel corpora or bilingual gazetteers. Adversar-
ial training is also applied to extract language-
agnostic (Chen et al., 2016; Zou et al., 2018; Wang
and Pan, 2018; Kim et al., 2017a; Muis et al.,
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2018; Cao et al., 2018) and domain-agnostic fea-
tures (Kim et al., 2017b; Ganin et al., 2016; Tzeng
et al.,, 2017; Chen et al., 2017; Li et al., 2017;
Fu et al., 2017; Bousmalis et al., 2016; Shi et al.,
2018) for cross-lingual and cross-domain adapta-
tion. Compared with these methods, our approach
combines both word-level and sentence-level ad-
versarial training.

5 Conclusions and Future Work

We design a new neural architecture which inte-
grates multi-level adversarial transfer into a Bi-
LSTM-CRF to improve low-resource name tag-
ging. With word-level adversarial training, it can
automatically project the source language into a
shared semantic space with the target language
without requiring any comparable data or bilin-
gual gazetteers. Moreover, considering the differ-
ent underlying sequential structures among vari-
ous languages, we further design a sentence-level
adversarial transfer to encourage the sequence en-
coder to extract language-agnostic features. The
experiments show that our approach achieves the
state-of-the-art on both CoNLL data sets and 10
low-resource languages. In the future, we will fur-
ther explore selecting the feature-consistent anno-
tations from the source language and add to the tar-
get language, and explore unsupervised pretrained
cross-lingual language models (Peters et al., 2018;
Radford et al., 2018; Devlin et al., 2018; Lample
and Conneau, 2019) for cross-lingual low resource
name tagging.
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