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Abstract

The majority of current systems for end-to-
end dialog generation focus on response qual-
ity without an explicit control over the affec-
tive content of the responses. In this paper, we
present an affect-driven dialog system, which
generates emotional responses in a controlled
manner using a continuous representation of
emotions. The system achieves this by mod-
eling emotions at a word and sequence level
using: (1) a vector representation of the de-
sired emotion, (2) an affect regularizer, which
penalizes neutral words, and (3) an affect sam-
pling method, which forces the neural network
to generate diverse words that are emotion-
ally relevant. During inference, we use a re-
ranking procedure that aims to extract the most
emotionally relevant responses using a human-
in-the-loop optimization process. We study
the performance of our system in terms of both
quantitative (BLEU score and response diver-
sity), and qualitative (emotional appropriate-
ness) measures.

1 Introduction
Recent breakthroughs in deep learning techniques
have had an impact on end-to-end conversational
systems (Chen et al., 2017). Current research is
mainly focused on functional aspects of conver-
sational systems: keyword extraction, natural lan-
guage understanding, and pertinence of generated
responses (Ilievski et al., 2018). Although these
aspects are indeed key features for building a com-
mercial system, most existing solutions lack social
intelligence. Conversational systems could bene-
fit from incorporating social intelligence by: (1)
avoiding interaction problems that may arise when
the system does not understand the user’s request
(e.g., inappropriate responses that cause user anger)
(Maslowski et al., 2017), and (2) building rapport

∗ Both authors contributed equally to this work.

with the user (Strohkorb et al., 2016). Our method
makes such conversational systems more social
by outputting responses expressing emotion in a
controlled manner, without sacrificing grammatical
correctness, coherence, or relevance.

Existing sequence-to-sequence (seq2seq) archi-
tectures, either recurrent- (Sordoni et al., 2015; Ser-
ban et al., 2015), attention- (Vaswani et al., 2017)
or convolutional neural network (CNN)-based (Fan
et al., 2018), do not provide a straightforward way
to generate emotionally relevant output in a con-
trolled manner. We introduce EMOTIonal CONver-
sational System (EMOTICONS), which generates
emotion-specific responses. It is based on novel
contributions presented in this paper which fall in
two main categories: explicit models which allow
a controlled emotion-based response generation
(e.g., methods based on emotion embeddings, af-
fective sampling, and affective re-ranking), and
implicit models with no direct control over the de-
sired emotion (i.e., affective regularizer). We show
that EMOTICONS outperforms both the system
proposed by Zhou et al. (2018) (current state of the
art for our task) and the vanilla seq2seq in terms
of BLEU score (Papineni et al., 2002) (improve-
ment up to 7.7%) and response diversity (improve-
ment up to 52%). Additionally, we qualitatively
evaluate the emotional content of the generated
text (see example responses in Table 1). The user
study (22 people) demonstrates that EMOTICONS
is able to generate grammatically correct, coherent,
emotionally-rich text in a controlled manner.

2 Related Work

Sequence-to-sequence (seq2seq) models have at-
tracted a lot of attention in the past few years, es-
pecially in the fields of Neural Machine Trans-
lation (Sutskever et al., 2014; Bahdanau et al.,
2014) and Neural Dialogue Generation (Sordoni
et al., 2015; Vinyals and Le, 2015; Serban et al.,
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Input Good to see you again. Be careful, I have a knife. You’re the only one who can help us.

Baseline It’s good to see you. Don’t worry about it. There’s a lot of people here.
E

M
O

T
IC

O
N

S Fear What are you doing here? I’m just trying to get out of here. What are you going to do with me?
Anger I’m not here. I’m going to kill you. You’re not the only one who can help me.

Joy Good to see you. I’m going to marry you. I can protect you.
Surprise You want to talk to me? I’m just going to the party. You’ve got to be kidding me.

Table 1: Example responses from the baseline (seq2seq) model and the four EMOTICONS models with different
emotions.

2015). Prior work has focused on designing ar-
chitectures that lead to the best performance in
terms of BLEU (Papineni et al., 2002) and Per-
plexity scores. Most seq2seq models are based on
gated recurrent neural networks, either Long Short
Term Memory (LSTM) (Hochreiter and Schmidhu-
ber, 1997) or Gated Recurrent Unit (GRU) (Serban
et al., 2015), but in general it is difficult to conclude
which gating mechanism performs better (Chung
et al., 2014). In our model, we use GRU because it
has fewer parameters to optimize, and it is faster to
train.

In order to overcome the problem of generat-
ing trivial or mundane responses, there have been
developments in inference techniques for encoder-
decoder systems. Use of beam search has been
shown to improve the general quality of gener-
ated answers, while Maximum Mutual Informa-
tion (MMI) (Li et al., 2016) has improved the diver-
sity of generated answers, leading to more mean-
ingful output. We build on these techniques during
affective inference.

Emotion-based (affective) dialog generation sys-
tems have received increasing attention in the past
few years. Huang et al. (2018) use emotion tokens
(special “words” in a dictionary representing spe-
cific emotions) at either the encoder or decoder
side, forcing the decoder to output a sentence with
one specific emotion. Zhou et al. (2018) build
their system using external and internal memory,
where the former forces the network to generate
emotional words, and the latter measures how emo-
tional a generated sequence is compared to a target
sequence. Lubis et al. (2018) modeled emotions
in Valence-Arousal (VA) space for response gen-
eration. We extend this idea by using a Valence-
Arousal-Dominance (VAD) Lexicon (Mohammad,
2018), as it has been shown by Broekens (2012)
that the third dimension (Dominance) is useful for
modeling affect. Asghar et al. (2017) used the VAD
Lexicon, but they let the neural network choose the
emotion to generate (by maximizing or minimizing

the affective dissonance) and their system cannot
generate different emotional outputs for the same
input, nor generate a specified emotion.

3 System Architecture
Our system (see overview in Figure 1) is divided
into three main components: (1) Emotion Label-
ing – automatic labeling of sentences according
to the emotional content they express, using an
emotion classifier (§3.2.1); labeling of words with
VAD Lexicon values (§4.2), (2) Affective Train-
ing – training of two seq2seq networks, which use
an encoder-decoder setting. The first network is
trained with prompt-response pairs (S-T), whereas
the second (used during Affective Inference) is
trained with reversed pairs (T-S), (3) Affective In-
ference – generation of many plausible responses,
which are re-ranked based on emotional content.

3.1 Preliminaries
Let V = {w1, w2, . . . , w|V |} be a vocabulary, and
X = (x1, x2, . . . , x|X |) a sequence of words (e.g.
a sentence). We denote EX ∈ R6 as an emotion
vector representing a probability distribution over
six emotions associated with the sequence X :

EX =



panger
psurprise
pjoy

psadness
pfear
pdisgust


Note that in this work we focus on six basic emo-

tions proposed by Paul Ekman (Ekman et al., 1983)
but the techniques we develop are general and can
be extended to a more fine grained list of emotions.
X can be an input sequence, candidate response,
final response, or target response (denoted respec-
tively as S, RC , Rfinal, R0). We introduce E0,
which during training, is the representation of the
emotion of the target response (R0). During test-
ing, E0 indicates a desired emotion for the final
response (Rfinal), and can be set manually. For
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Figure 1: System overview: The input sequence and the target emotion (automatically extracted from the target
response using the emotion classifier during training, and set by the user during inference) are fed into the seq2seq.
The generated candidate responses are re-ranked based on the output of the reversed seq2seq, the length, and the
emotional content.

example, in the case of ‘anger’, E0 would be a
one-hot vector with 1 at the first position, and 0
elsewhere.

In our work, we extend the standard seq2seq
model (Sutskever et al., 2014), that predicts the
final responseRfinal = argmaxRC

p(RC |S). The
proposed affective system aims to extend the in-
ference mechanism by incorporating emotions en-
coded in E0:

Rfinal = argmax
RC

p(RC |S,E0) (1)

3.2 Affect Modeling

We extend the standard seq2seq architecture by in-
cluding emotion-specific information during the
training and the inference. A critical challenge
in both generating and evaluating responses is a
reliable assessment of emotional state. We use
two representations of emotion: (1) a categorical
representation with six emotions (anger, surprise,
joy, sadness, fear, disgust), and (2) a continuous
representation in a VAD space. The latter uses a
VAD Lexicon introduced by Mohammad (2018),
where each of 20k words is mapped to a 3D vec-
tor of VAD values, ranging from 0 (lowest) to 1
(highest) (v ∈ [0, 1]3). Valence measures the posi-
tivity/negativity, Arousal the excitement/calmness,
and Dominance the powerfulness/weakness of the
emotion expressed by a word. This expands the
work of Lubis et al. (2018), who modeled emotions
only in VA space. In the following sections we
describe different versions of the proposed model.

3.2.1 Emotion Classifier
Affective training requires E0, the emotion repre-
sentation of the target sequence. In order to label
all sentences of the corpus with E0, we use an
Emotion Classifier by Witon et al. (2018). The

classifier predicts a probability distribution over
class of six emotions. The classifier predictions
for Cornell Movie-Dialogs Corpus (Cornell) have
been shown to be highly correlated with human
predictions (Witon et al., 2018).

3.2.2 Sequence-Level Explicit Encoder
Model (SEE)

To explicitly generate responses with emotion, this
version of the model includes an emotion embed-
ding at the encoder side. We feed the encoder
with S ′ = (eSEE, s1, s2, . . . , s|S|), where eSEE =
ASEEE0 is an Emotion Embedding (eSEE ∈ R3),
and ASEE ∈ R3×6 is a mapping (learned dur-
ing training) from E0 into an emotion embedding
space.

3.2.3 Sequence-Level Explicit Decoder
Model (SED)

Another way of forcing an emotional output is to
explicitly indicate the target emotion at every step
in decoding along with other inputs. Formally,
the GRU hidden state at time t is calculated as
ht = f(ht−1, r

′
t) with r′t = [rt−1; eSED], where

eSED is defined similarly as eSEE. It is worth noting
that ASEE and ASED are different, which implies
that the emotion embedding spaces they map to
are also different. Compared to a similar approach
introduced by Huang et al. (2018), our solution
enables the desired emotional content, E0, to be
provided in a continuous space.

3.2.4 Word-Level Implicit Model (WI)
To model the word-level emotion carried by each
sequence, we introduce an Affective Regularizer
(AR), which expresses the affective distance be-
tween Rfinal and R0, in the VAD space. It forces
the neural network to prefer words in the vocabu-
lary that carry emotions in terms of VAD. Math-
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ematically, we extend the regular Negative Log
Likelihood (NLL) loss with an affective regular-
izer, LAR:

L = LNLL + LAR

= − log p(Rfinal|S) + µLVAD(Rfinal,R0)

LVAD(Rfinal,R0) =

∥∥∥∥∥∥
|Rfinal|∑
t=1

EVADst
|Rfinal|

−
|R0|∑
t=1

eVAD
r0t

|R0|

∥∥∥∥∥∥ ,

where st = softmax(ht) (st ∈ R|V |) is a
confidence of the system of generating words
w1, . . . , w|V | at time t and µ ∈ R. eVAD

x ∈ R3 is
a 3D vector representing emotion associated with
a word x in VAD space (note that eVAD

x is constant
with respect to t), and EVAD ∈ R3×|V | is a matrix
containing eVAD

wv
for all |V | words in the vocabu-

lary:

EVAD =
[
eVAD
w1

; . . . ; eVAD
w|V |

]
Intuitively, the regularizer penalizes the deviation
of the emotional content of the generated response,
Rfinal, from the desired response, R0. The emo-
tional information carried byRfinal is the weighted
sum of emotion representations eVAD

wi
for all words

wi in the vocabulary, where the weights are deter-
mined by the confidence st.

3.2.5 Word-Level Explicit Model (WE)
Sequential word generation allows sampling of the
next word, based on the emotional content of the
current incomplete sequence. If some words in
a sequence do not express the target emotion E0,
other words can compensate for this by changing
the final affective content, e.g., in a sentence “I
think that the cat really loves me!”, the first 6 words
are neutral, whereas the end of the sentence make it
clearly express joy. We incorporate this observation
by explicitly generating the next word using an
Adaptive Affective Sampling Method:

log p(RC |S, E0) =

|RC|∑
t=1

log p(rt|r<t, er<t ,hS , E0),

p(rt|r<t, er<t ,hS , E0) = λ softmax g(ht) +

(1− λ) softmax v(EVAD
t ),

where g(ht) is a linear mapping from GRU hid-
den state ht to an output vector of size |V |, and

0 ≤ λ ≤ 1 is learned during training. The first
term in Equation 3.2.5 is responsible for generating
words according to a language model preserving
grammatical correctness of the sequence, whereas
the second term forces generation of words car-
rying emotionally relevant content. EVAD

t ∈ R3

is a vector representing the remaining emotional
content needed to match a goal (EVAD

0 ) after gener-
ating all words up to time t. It is updated every time
a new word rt with an associated emotion vector
eVAD
rt is generated:

EVAD
t = EVAD

t−1 − eVAD
rt−1

EVAD
0 =


|R0|∑
t=1

eVAD
r0t

, training

MVADE0 ·maxlength, inference

where eVAD
r0t

is an emotion vector associated with
words r0t in the target sequence, maxlength is a
maximum length set for the seq2seq model, and
MVAD ∈ R3×6 is a mapping from six-dimensional
emotion space into VAD space (every emotion has
a VAD vector as introduced by Hoffmann et al.
(2012), scaled to a range [0, 1]):

an
ge

r

su
rp

ri
se

jo
y

sa
dn

es
s

fe
ar

di
sg

us
t

[ 0 1 1 0 0 0 ] V
MVAD = 1 1 1 0 1 0.5 A

1 0 1 0 0 0.5 D

v(EVAD
t ) is a vector, whose i-th component mea-

sures the potential remaining emotional content of
the sequence in the case of choosing the i-th word
wi:

v(EVAD
t ) = −


∥∥EVAD

t − ew0

∥∥
. . .∥∥∥EVAD

t − ew|V |

∥∥∥


In the following, we set a constant λ = 1 af-
ter generating the first maxlength/2 words, as this
setting ensures that the first generated words carry
the right emotional content, while not sacrificing
the grammatical correctness of the whole response.
This leads to an improvement in performance.

3.3 Affective Inference
The methods described in the previous sections
aim to improve the seq2seq training/sampling pro-
cedure. We hypothesize that a good inference strat-
egy is crucial for generating diverse and emotion-
specific responses. As Li et al. (2016) suggest,
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traditional objective functions, i.e., likelihood of
a response given an input, can be improved by
using an N -best list and MMI during inference.
We build upon this idea; our hypothesis is that by
generating B diverse sequences and re-ranking the
responses, we are more likely to infer one best
emotion-specific response. The B-best list is found
using Beam Search of size B with length normal-
ization.

In the MMI-bidi setting, Li et al. (2016) rank all
responses found during beam search based on a
score calculated as:

Rfinal = argmax
RC

p(RC |S) + αp(S|RC) + β|RC |,

(2)
where p(S|RC) is a model with the same archi-
tecture as p(RC |S) trained on reversed prompt-
response pairs (T-S), and |RC | is the length of the
candidate response, RC . We modify this objective
in the following form:

Rfinal = argmax
RC

p(RC |S, E0) + αp(S|RC)

+β|RC | − γ ‖ERC
− E0‖ ,

(3)

where the last term penalizes the deviation of the
emotional content, ERC

, of the candidate response,
RC , from the desired emotional content, E0. The
task is to find optimal values of parameters α, β
and γ, which give the best responses in terms of
grammatical correctness, diversity (α, β) and emo-
tional content (γ) (see §5 and §6).

4 Model Training
In this section, we describe corpora used for train-
ing, the baseline models and the training procedure
for the models presented in §3.

4.1 Corpora
Cornell contains around 10K movie characters and
around 220K dialogues (Danescu-Niculescu-Mizil
and Lee, 2011).
OpenSubtitles2018 is a collection of translated
movie subtitles with 3.35G sentence fragments
(Tiedemann, 2009). It has been filtered to get pairs
of consecutive sequences (containing between 5
and 30 words), with respective timestamps within
an interval of 5 seconds, that are part of a conversa-
tion of at least 4 turns. The filtered dataset contains
2.5M utterances.
Preprocessing Each dataset is tokenized using the
spaCy1 tokenizer, converted to lowercase, and non-

1https://spacy.io

ASCII symbols are removed. To restrain the vocab-
ulary size and correct the typos, we use a default
vocabulary of fixed size 42K words from spaCy.
Each word in the dataset is then compared with
the vocabulary using the difflib library2 in Python
(algorithm based on the Levenshtein distance), and
mapped to the most similar word in the vocabu-
lary. If no word with more than 90% of similarity
is found, the word is considered a rare word or
a typo, and is mapped to the out-of-vocabulary
(OOV) word. For Cornell, less than 1% of the uni-
grams are OOV.

4.2 Affective Dictionary
The VAD lexicon may not have all the words in
the vocabulary. Based on the word similarity (us-
ing difflib library), each word of the vocabulary
is assigned a VAD value of the most similar word
in the VAD lexicon. If no word with more than
90% of similarity is found, a “neutral” VAD value
(v = [0.5, 0.5, 0.5]) is assigned.

4.3 Baselines
We compare our work to two different baselines: a
vanilla seq2seq and the ECM introduced by Zhou
et al. (2018). For the external memory we use our
affective dictionary and train the model using the
default parameters provided by authors.

4.4 Training Details
All the hyper-parameters have been optimized on
the validation set using BLEU score (Papineni et al.,
2002). For the encoder, we use two-layer bidirec-
tional GRUs (hidden size of 256). The final hidden
states from both directions are concatenated and
fed as an input to the decoder of one-layer uni-
directional GRUs (hidden size of 512). The embed-
ding layer is initialized with pre-trained word vec-
tors of size 300 (Mikolov et al., 2018), trained with
subword information (on Wikipedia 2017, UMBC
web-base corpus and statmt.org news dataset), and
updated during training. We use ADAM optimizer
(Kingma and Ba, 2014) with a learning rate of
0.001 for learning p(RC |S, E0) (resp. 0.01 for
p(S|RC)), which is updated by using a scheduler
with a patience of 20 epochs and a decreasing rate
of 0.5. The gradient norm is clipped to 5.0, weight
decay is set to 1e−5, and dropout (Srivastava et al.,
2014) is set to 0.2. The maximum sequence length
is set to 20 for Cornell and to 30 for OpenSubtitles.
The models have been trained on 94%, validated
on 1%, and tested on 5% of the data.

2https://docs.python.org/3/library/difflib.html
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Model C distinct-1 C distinct-2 OS distinct-1 OS distinct-2 C BLEU OS BLEU
N

o
re

-r
an

k


Baseline 0.0305 0.1402 0.0175 0.1205 0.0096 0.094
ECM 0.0310 0.1412 0.0180 0.1263 0.0099 0.099
SEE 0.0272 0.1331 0.0170 0.1100 0.0110 0.093
SED 0.0303 0.1502 0.0189 0.1231 0.0128 0.103
WI 0.0316 0.1480 0.0175 0.1235 0.0129 0.100
WE 0.0310 0.1400 0.0195 0.1302 0.0098 0.095

WI + WE 0.0342 0.1530 0.0198 0.1300 0.0108 0.105
(+12.1%) (+9.1%) (+13.1%) (+7.9%) (+12.5%) (+11.7%)

R
e-

ra
nk


MMIbaseline 0.0379 0.1473 0.0200 0.1403 0.0130 0.105

EMOTICONSγ=0 0.0406 0.2030 0.0305 0.1431 0.0140 0.110
(+7.1%) (+37.8%) (+52.5%) (+2.0%) (+7.7%) (+4.8%)

Table 2: Quantitative results: Results for all proposed models trained on Cornell (C) and OpenSubtitles (OS).
distinct-1 and distinct-2 count the number of distinct unigrams and bigrams, respectively, normalized by the total
number of generated tokens in 200 candidate responses. The performance boost is computed with respect to the
vanilla seq2seq model.

5 Quantitative Evaluation for Model
Selection

To evaluate language models, we use BLEU score
(computed using 1- to 4-grams), as it has been
shown to correlate well with human judgment
(Agarwal and Lavie, 2008). Perplexity does not
provide a fair comparison across the models: dur-
ing the training of the baseline seq2seq model, we
minimize the cross entropy loss (logarithm of per-
plexity), whereas in other models (e.g., WI) we aim
to minimize a different loss not directly related to
perplexity (cross entropy extended with the affec-
tive regularizer). Having more diverse responses
makes the affective re-ranking more efficient, to
evaluate diversity we count the number of distinct
unigrams (distinct-1) and bigrams (distinct-2), nor-
malized by the total number of generated tokens.

The performance of different models introduced
in §3 are presented in Table 2. MMIbas. refers to a
system that re-ranks responses based on Equation 2,
where both p(RC |S) and p(S|RC) are baseline
seq2seq models. EMOTICONS is a system based
on Equation 3, where p(RC |S, E0) is computed
using a composition of Word-Level Implicit Model
(WI) and Word-Level Explicit Model (WE), and
p(S|RC) is computed using WI (as we are not
interested in explicitly using the input emotion).
We optimize α and β on the validation set using
BLEU score, since Li et al. (2016) have shown
that adding MMI during inference improves the
BLEU score. We set γ = 0 and find optimal values
αopt = 50.0 and βopt = 0.001 using grid search.

Improving BLEU score and diversity was not the

goal of our work, but the observed improvement
(after adding emotions) shows that the different sys-
tems are able to extract and use emotional patterns
to improve the general language model.

5.1 Response Diversity
From Table 2, we observe that for both Cornell and
OpenSubtitles datasets, SED, WI, and WE models
outperform the vanilla seq2seq and the ECM for at
least one of the two distinct measures. SEE has the
worst performance overall and does not compete
with either the baseline, nor with SED. This is ex-
pected according to the results reported by Huang
et al. (2018). It seems that the model is not able to
capture the information carried by the additional
emotion embedding token – it is treated as just one
additional word among 20 others. SED makes bet-
ter use of the emotion information, as it is used at
each time step during decoding. In addition, it is
more natural to use these features during the decod-
ing, since the emotion embedding represents the
desired emotion of the response. The combination
of WI and WE performs best in terms of distinct-1
and distinct-2 measures among all models with-
out re-ranking, yielding an improvement of up to
13.1%. It suggests that the word level emotion
models suit the seq2seq architecture better. During
training, both models are encouraged not only to
match the target words, but also to promote less
frequent words that are close to the target words
in terms of VAD values (affective regularizer and
affective sampling), fostering the model to generate
more diverse responses.

As expected, by adding MMI, we observe an
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improvement in diversity, but the relative im-
provement for OpenSubtitles (MMIbas.) is smaller
than the one reported by Li et al. (2016). This
could originate from the different data filtering
and beam search strategy, and the fact the hyper-
parameter optimization has been performed on
Cornell. EMOTICONS is a combination of WI +
WE (best performing model) for p(RC |S, E0) and
WI for p(S|RC), it is better than MMIbas. (up to
52.5% gain in distinct-1).

It is worth noting that we observe higher
scores in terms of diversity for the reversed
model p(S|RC) compared to the normal model
p(RC |S, E0), while training on Cornell. We can
explain this using the data distribution: distinct-2 is
higher for the questions than for the answers (0.167
and 0.154 for Cornell, respectively).

5.2 Response Quality
Table 2 shows that, in general, introducing emo-
tional features into the process of generating re-
sponses does not reduce the BLEU score. To re-
duce the potential negative impact of choosing in-
appropriate first words in the sequence, we com-
pute the BLEU score on the result of beam search
of size 200. For example, if the first word is “I”,
the seq2seq models tend to generate a response
“I don’t know” with high probability, due to the
high number of appearances of such terms in the
training set. In certain cases, like WI and SED, we
observe an improvement. Such an improvement
is expected, since our model takes into account
additional (affective) information from the target
sequence during response generation.

6 Human-in-the-Loop Hyper-Parameter
Estimation

The quantitative evaluation shows that
EMOTICONS outperforms the baseline while
adding the emotional features during response
generation. The re-ranking phase did not take into
account the affective term (γ = 0 in Equation 3).
Setting a different value would not necessarily
improve any of the available metrics (e.g., BLEU
score, diversity), as they do not explicitly take into
account affective content in their definition. In this
section, we describe an optimization procedure,
relying on human judgment, for finding the optimal
value of γ.

6.1 Experiment Description
We asked annotators to evaluate (using an Affect-
Button) the generated responses. We use Affect-
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Figure 2: Hyper-parameter optimization: For different
values of γ, users assign a face to the generated re-
sponse. Each point represents an average ∆E of an-
notations for each emotion. ∆E is the difference be-
tween the VAD representation of the face assigned by
the user and the desired emotion for the response. The
size is proportional to the number of collected annota-
tions. ∆E is at a minimum for γopt = 4.2.

Button (Broekens and Brinkman, 2013), a reliable
affective tool for assigning emotions, which, to our
knowledge, has never been used for estimating the
emotional content of the generated responses. In
our experiment, the AffectButton lets users choose
a facial expression from a continuous space (see
Figure 3), that best matches the emotional state as-
sociated with the sequence, which is then mapped
into the VAD space. In order to conduct the ex-
periment, we chose a pool of 12 annotators, who
annotated a total of 400 sequences. The prompts
were randomly chosen from the test set of Cornell,
among the 200 sequences that create the most di-
verse responses in terms of distinct-2. The more
diverse the responses are, the more likely we are to
select a response carrying a desired emotion. The
responses for the prompts were generated using
EMOTICONS where the target emotion was either
fear, anger, joy, or surprise; the four corners of the
AffectButton. γ was randomly chosen among 20
uniformly sampled values in [0, 10].

6.2 Experiment Results
In Figure 2, we present the difference between
the VAD value according to the face assigned by
the user, and the desired emotion for the response.
The average curve presents a global minimum at
γopt = 4.2. The system does not perform equally
well at generating different emotions according
to the human judgment. On average, we observe
lower values for joy compared to anger in Figure 2.
This phenomenon is expected, as in the re-ranking



3741

Model Grammatical User Preference
Correctness Total Majority Vote

MMIbas. 83 % 39 8

E
M

O
T

IC
O

N
S Fear 82 %

96 37
Anger 80 %

Joy 84 %
Surprise 79 %

Table 3: User study results: Grammatical Correct-
ness shows the ratio of grammatically correct sentences
among all generated responses, whereas User Prefer-
ence shows the number of times each model was pre-
ferred by the users.

process ERC is estimated using the emotion clas-
sifier (Witon et al., 2018) which detects joy more
accurately than anger (77% versus 57%), surprise
(62%) and fear (69%).

7 Qualitative Evaluation
In this section, we qualitatively evaluate the emo-
tional content and correctness of the responses gen-
erated by EMOTICONSγ=γopt compared to the
ones from MMIbas. through a user study. It consists
of three different experiments which measure gram-
matical correctness, user preference, and emotional
appropriateness. For all experiments, we chose
prompts from the test set of Cornell, for which the
most diverse responses were created by MMIbas.
in terms of distinct-2. We test EMOTICONS by
generating responses according to four emotions:
fear, anger, joy, and surprise (beam size of 200).

7.1 Grammatical Correctness

In this experiment, we used 40 prompts. For
each prompt, we generated 5 sentences (4 for
EMOTICONS, and 1 for MMIbas.) that were pre-
sented in a random order to 3 native English speak-
ers. They assigned either 0 (sentence grammati-
cally incorrect), or 1 (sentence grammatically cor-
rect) for all sentences. To measure the agreement
across annotators, we calculate Fleiss’ κ = 0.4128,
which corresponds to “moderate agreement”. Our
model does not substantially sacrifice the gram-
matical correctness of the responses (see Table 3).

7.2 User Preference

In this setting, we quantify how likely the user
is going to prefer the response generated by
EMOTICONS compared to the one generated by
MMIbas.. We asked 18 annotators to choose their fa-

(a) Bas. (b) Fear (c) Anger (d) Joy (e) Surprise

Figure 3: Emotional faces: AffectButton presents faces
according to average VAD vectors (in parentheses)
obtained for the (a) MMIbas. ([0.47, 0.98, 0.36]), and
for the four EMOTICONS models with different tar-
get emotions: (b) Fear ([0.2, 0.95, 0.38]), (c) Anger
([0.54, 0.92, 0.65]), (d) Joy ([0.68, 0.97, 0.66]), and
(e) Surprise ([0.37, 0.97, 0.52]).

vorite response to the input query among eight pro-
posed answers (top four responses coming from the
MMIbas and 4 coming from EMOTICONS with
the four different target emotions). Each of 45 sen-
tences were annotated by three different annotators.
Results of the experiment (Table 3) indicate that
users strongly prefer EMOTICONS over MMIbas..

7.3 Emotional Appropriateness
In this experiment, we show that our model is able
to generate emotions in a controlled manner. For
each of the 5 models, 22 users assign a face via
the AffectButton. We generate responses for 120
different prompts. We keep the responses that were
annotated with a VAD vector with the norm greater
than 2, corresponding to those expressing strong
emotions. We compute the average VAD vectors
for the annotated sequences for each model, with
corresponding AffectButton faces (Figure 3). The
majority of user-assigned faces have a high arousal
value, which can be explained by the fact that users
tend to click in one of the four corners of the Af-
fectButton. The majority of the faces represent
an accurate portrayal of the desired emotion. The
poor performance of EMOTICONS at expressing
surprise comes from the fact that (1) users often
mismatch surprise with joy, leading to a neutral
dominance value, and (2) surprise is one of the
most difficult emotions to judge (see §6).

8 Conclusion
We have presented EMOTICONS, a system that
can generate responses with controlled emotions.
The flexibility of the presented solution allows it
to be used in any kind of neural architecture as
long it fits the encoder-decoder framework. Cur-
rently, EMOTICONS does not generate different
emotions equally well. Future work could include
incorporating contextual information that would
help EMOTICONS to better capture emotional con-
tent.
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