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Abstract

Recent work in Dialogue Act classification
has treated the task as a sequence labeling
problem using hierarchical deep neural net-
works. We build on this prior work by lever-
aging the effectiveness of a context-aware self-
attention mechanism coupled with a hierarchi-
cal recurrent neural network. We conduct ex-
tensive evaluations on standard Dialogue Act
classification datasets and show significant im-
provement over state-of-the-art results on the
Switchboard Dialogue Act (SwDA) Corpus.
We also investigate the impact of different
utterance-level representation learning meth-
ods and show that our method is effective at
capturing utterance-level semantic text repre-
sentations while maintaining high accuracy.

1 Introduction

Dialogue Acts (DAs) are the functions of ut-
terances in dialogue-based interaction (Austin,
1975). A DA represents the meaning of an utter-
ance at the level of illocutionary force, and hence,
constitutes the basic unit of linguistic communica-
tion (Searle, 1969). DA classification is an impor-
tant task in Natural Language Understanding, with
applications in question answering, conversational
agents, speech recognition, etc. Examples of DAs
can be found in Table 1. Here we have a conver-
sation of 7 utterances between two speakers. Each
utterance has a corresponding label such as Ques-
tion or Backchannel.

Early work in this field made use of statis-
tical machine learning methods and approached
the task as either a structured prediction or text
classification problem (Stolcke et al., 2000; Ang
et al., 2005; Zimmermann, 2009; Surendran and
Levow, 2006). Many recent studies have pro-
posed deep learning models for the DA classifi-
cation task with promising results (Lee and Der-
noncourt, 2016; Khanpour et al., 2016; Ortega and

Speaker Utterance DA label
A Okay. Other
A Um, what did you do this

weekend? Question
B Well, uh, pretty much spent

most of my time in the yard. Statement
B [Throat Clearing] Non Verbal
A Uh-Huh. Backchannel
A What do you have planned

for your yard? Question
B Well, we’re in the process

of, revitalizing it. Statement

Table 1: A snippet of a conversation sample from the
SwDA Corpus. Each utterance has a corresponding di-
alogue act label.

Vu, 2017). However, most of these approaches
treat the task as a text classification problem, treat-
ing each utterance in isolation, rendering them un-
able to leverage the conversation-level contextual
dependence among utterances. Knowing the text
and/or the DA labels of the previous utterances can
assist in predicting the current DA state. For in-
stance, in Table 1, the Answer or Statement dialog
acts often follow Question type utterances.

This work draws from recent advances in NLP
such as self-attention, hierarchical deep learning
models, and contextual dependencies to produce a
dialogue act classification model that is effective
across multiple domains. Specifically, we propose
a hierarchical deep neural network to model dif-
ferent levels of utterance and dialogue act seman-
tics, achieving state-of-the-art performance on the
Switchboard Dialogue Act Corpus. We demon-
strate how performance can improve by leverag-
ing context at different levels of the model: previ-
ous labels for sequence prediction (using a CRF),
conversation-level context with self-attention for
utterance representation learning, and character
embeddings at the word-level. Finally, we explore
different ways to learn effective utterance repre-
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sentations, which serve as the building blocks of
our hierarchical architecture for DA classification.

2 Related Work

A full review of all DA classification methods is
outside the scope of the paper, thus we focus on
two main classes of approaches which have domi-
nated recent research: those that treat DA classifi-
cation as a text classification problem, where each
utterance is classified in isolation, and those that
treat it as a sequence labeling problem.
Text Classification: Lee and Dernoncourt (2016)
build a vector representation for each utterance,
using either a CNN or RNN, and use the preceding
utterance(s) as context to classify it. Their model
was extended by Khanpour et al. (2016) and Or-
tega and Vu (2017). Shen and Lee (2016) used a
variant of the attention-based encoder for the task.
Ji et al. (2016) use a hybrid architecture, combin-
ing an RNN language model with a latent variable
model.
Sequence Labeling: Kalchbrenner and Blunsom
(2013) used a mixture of sentence-level CNNs and
discourse-level RNNS to achieve state-of-the-art
results on the task. Recent works (Li and Wu,
2016; Liu et al., 2017) have increasingly employed
hierarchical architectures to learn and model mul-
tiple levels of utterance and DA dependencies.
Kumar et al. (2018), Chen et al. (2018) and Tran
et al. (2017) used RNN-based hierarchical neural
networks, using different combinations of tech-
niques like last-pooling or attention mechanism
to encode sentences, coupled with CRF decoders.
Chen et al. (2018) achieved the highest perfor-
mance to date on the two datasets for this task.

Our work extends these hierarchical models and
leverages a combination of techniques proposed
across these prior works (CRF decoding, contex-
tual attention, and character-level word embed-
dings) with self-attentive representation learning,
and is able to achieve state-of-the-art performance.

3 Model

The task of DA classification takes a conversa-
tion C as input, which is a varying length se-
quence of utterances U = {u1, u2, ...uL}. Each
utterance ui ∈ U , in turn, is a sequence of vary-
ing lengths of words {w1

i , w
2
i , ..., w

Ni
i }, and has

a corresponding target label yi ∈ Y . Hence,
each conversation (i.e. a sequence of utterances)
is mapped to a corresponding sequence of target
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Figure 1: Model Architecture

labels Y = {y1, y2, ..., yL}, which represents the
DAs associated with the corresponding utterances.

Figure 1 shows the overall architecture of
our model, which involves three main compo-
nents: (1) an utterance-level RNN that encodes
the information within the utterances at the word
and character-level; (2) a context-aware self-
attention mechanism that aggregates word repre-
sentations into utterance representations; and (3) a
conversation-level RNN that operates on the utter-
ance encoding output of the attention mechanism,
followed by a CRF layer to predict utterance la-
bels. We describe them in detail below.

3.1 Utterance-level RNN

For each word in an utterance, we combine two
different word embeddings: GloVe (Pennington
et al., 2014) and pre-trained ELMo representations
(Peters et al., 2018) with fine-tuned task-specific
parameters, which have shown superior perfor-
mance in a wide range of tasks. The word embed-
ding is then concatenated with its CNN-based 50-
D character-level embedding (Chiu and Nichols,
2016; Ma and Hovy, 2016) to get the complete
word-level representations. The motivation behind
incorporating subword-level information is to in-
fer the lexical features of utterances and named
entities better.
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The word representation layer is followed by a
bidirectional GRU (Bi-GRU) layer. Concatenating
the forward and backward outputs of the Bi-GRU
generates the utterance embedding that serves as
input to the utterance-level context-aware self-
attention mechanism which learns the final utter-
ance representation.

3.2 Context-aware Self-attention
Self-attentive representations encode a variable-
length sequence into a fixed size, using an at-
tention mechanism that considers different posi-
tions within the sequence. Inspired by Tran et al.
(2017), we use the previous hidden state from the
conversation-level RNN (Section 3.3), which pro-
vides the context of the conversation so far, and
combine it with the hidden states of all the con-
stituent words in an utterance, into a self-attentive
encoder (Lin et al., 2017), which computes a 2D
representation of each input utterance. We fol-
low the notation originally presented in Lin et al.
(2017) to explain our modification of their self-
attentive sentence representation below.

An utterance ui, which is a sequence of n
words {w1

i , w
2
i , ...w

n
i }, is mapped into an embed-

ding layer, resulting in a d-dimensional word em-
bedding for every word. It is then fed into a
bidirectional-GRU layer, whose hidden state out-
puts are concatenated at every time step.

−→
hji =

−−−→
GRU(wj

i ,
−−→
hj−1
i ) (1)

←−
hji =

←−−−
GRU(wj

i ,
←−−
hj+1
i ) (2)

hj
i = concat(

−→
hji ,
←−
hji ) (3)

Hi = {h1
i ,h

2
i , ...h

n
i } (4)

Hi represents the n GRU outputs of size 2u (u
is the number of hidden units in a unidirectional
GRU).

The contextual self-attention scores are then
computed as follows:

Si = Ws2tanh(Ws1H
T
i +Ws3

−−→gi−1 + b) (5)

Here, Ws1 is a weight matrix with a shape of
da × 2u, Ws2 is a matrix of parameters of shape
r × da, where r and da are hyperparameters we
can set arbitrarily, and Ws3 is a parameter ma-
trix of shape da×k for the conversational context,
where k is another hyperparameter that is the size
of a hidden state in the conversation-level RNN
(size of −−→gi−1), and b is a vector representing bias.

Equation 5 can then be treated as a 2-layer MLP
with bias, with da hidden units, Ws1,Ws2 and Ws3

as weight parameters. The scores Si are mapped
into a probability matrix Ai by means of a softmax
function:

Ai = softmax(Si) (6)

which is then used to obtain a 2-d representation
Mi of the input utterance, using the GRU hidden
states Hi according to the attention weights pro-
vided by Ai as follows:

Mi = AiHi (7)

This 2-d representation is then projected to a
1-d embedding (denoted as hi), using a fully-
connected layer. The conversation-level GRU then
operates over this 1-d utterance embedding, and
hence, we can represent gi as:

−→gi =
−−−→
GRU(hi,

−−→gi−1) (8)

←−gi =
−−−→
GRU(hi,

−−→gi+1) (9)

gi = concat(−→gi ,←−gi ) (10)

gi then provides the conversation-level context
used to learn the attention scores and 2-d repre-
sentation (Mi+1) for the next utterance in the con-
versation (hi+1).

3.3 Conversation-level RNN

The utterance representation hi from the previous
step is passed on to the conversation-level RNN,
which is another bidirectional GRU layer used to
encode utterances across a conversation. The hid-
den states −→gi and ←−gi (Figure 1) are then concate-
nated to get the final representation gi of each ut-
terance, which is further propagated to a linear
chain CRF layer. The CRF layer considers the
correlations between labels in context and jointly
decodes the optimal sequence of utterance labels
for a given conversation, instead of decoding each
label independently.

4 Data

We evaluate the classification accuracy of our
model on the two standard datasets used for DA
classification: the Switchboard Dialogue Act Cor-
pus (SwDA) (Jurafsky et al., 1997) consisting of
43 classes, and the 5-class version of the ICSI
Meeting Recorder Dialogue Act Corpus (MRDA)
introduced in (Ang et al., 2005). For both datasets,
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Dataset |C| |V| Train Validation Test
MRDA 5 12k 78k 16k 15k
SwDA 43 20k 193k 23k 5k

Table 2: Number of utterances by dataset. |C| denotes
number of classes and |V| is the vocabulary size.

we use the train, validation and test splits as de-
fined in Lee and Dernoncourt (2016).

Table 2 shows the statistics for both
datasets. They are highly imbalanced in
terms of class distribution, with the DA
classes Statement-non-opinion and
Acknowledge/Backchannel in SwDA and
Statement in MRDA making up over 50% of
the labels in each set.

5 Results

5.1 Dialogue Act Classification

We compare the classification accuracy of our
model against several other recent methods (Ta-
ble 3).1 Four approaches (Chen et al., 2018; Tran
et al., 2017; Ortega and Vu, 2017; Shen and Lee,
2016) use attention in some form to model the con-
versations, but none of them have explored self-
attention for the task. The last three use CRFs
in the final layer of sequence labeling. Only one
other method (Chen et al., 2018) uses character-
level word embeddings. All models and their vari-
ants were trained ten times and we report the av-
erage test performance. Our model outperforms
state-of-the-art methods by 1.6% on SwDA, the
primary dataset for this task, and comes within
0.6% on MRDA. It also beats a TF-IDF GloVe
baseline (described in Section 5.2) by 16.4% and
12.2%, respectively.

The improvements that the model is able to
make over the other methods are significant, how-
ever, the gains on MRDA still fall short of the
state-of-the-art by 0.6%. This can mostly be at-
tributed to the conversation/context lengths and la-
bel noise at the conversation level. Conversations
in MRDA (1493 utterances on average) are signifi-
cantly longer than in SwDA (271 utterances on av-
erage). In spite of having nearly 12% the number

1Contemporaneous to this submission, (Li et al., 2018;
Wan et al., 2018; Ravi and Kozareva, 2018) proposed differ-
ent approaches for the task. We do not focus on them here per
NAACL 2019 guidelines, however note that our system out-
performs the first two. (Ravi and Kozareva, 2018) bypasses
the need for complex networks with huge parameters but its
overall accuracy is 4.2% behind our system, despite being
0.2% higher on SwDA.

Model SwDA MRDA
TF-IDF GloVe 66.5 78.7
Kalchbrenner and Blunsom (2013) 73.9 -
Lee and Dernoncourt (2016) 73.9 84.6
Khanpour et al. (2016) 75.8 86.8
Ji et al. (2016) 77.0 -
Shen and Lee (2016) 72.6 -
Li and Wu (2016) 79.4 -
Ortega and Vu (2017) 73.8 84.3
Tran et al. (2017) 74.5 -
Kumar et al. (2018) 79.2 90.9
Chen et al. (2018) 81.3 91.7
Our Method 82.9 91.1
Human Agreement 84.0 -

Table 3: DA Classification Accuracy

of labels (5 vs 43) compared to SwDA, MRDA has
6 times the normalized label entropy in its data.
Consequently, due to the noise in label depen-
dencies, and hence, in the inherent conversational
structure, the model is not able to yield as big of
a gain on the MRDA as it does on the SwDA.
Consequently, learning long-range dependencies
is a challenge because of noisier and longer path
lengths in the network. This is illustrated in Fig-
ures 2 and 3, which show for every class, the vari-
ation between the entropy of the previous label
in a conversation, and the accuracy of that class.
MRDA was found to have a high negative cor-
relation2 (-0.68) between previous label entropy
and accuracy, indicating the impact of label noise,
which was compounded by longer conversations.
On the other hand, SwDA was found to have a low
positive correlation (+0.22), which could be com-
pensated by significantly shorter conversations.

5.2 Utterance Representation Learning
One of the primary motivations for this work was
to investigate whether one can improve perfor-
mance by learning better representations for utter-
ances. To address this, we retrained our model
by replacing the utterance representation learn-
ing (utterance-level RNN + context-aware self-
attention) component with various sentence rep-
resentation learning methods (either pre-training
them or learning jointly), and feeding them into
the conversation-level recurrent layers in the hier-
archical model, so that the performance is indica-
tive of the quality of utterance representations.

There are three main categories of utterance
representation learning approaches: (i) the base-
line which uses a TF-IDF weighted sum of
GloVe word embeddings; (ii) pre-trained on cor-

2Pearson’s r
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Method SwDA MRDA
Baseline
TF-IDF GloVe 66.5 78.7
Pre-trained on Corpus
Skip Thought Vectors 72.6 82.8
Paragraph vectors 72.5 82.6
Joint Learning
RNN-Encoder 74.8 85.7
Bi-RNN-LastState 76.2 85.4
Bi-RNN-MaxPool 77.6 86.7
CNN 76.9 84.5
Bi-RNN + Attention 80.1 87.7

+ Context 81.8 89.2
Bi-RNN + Self-attention 81.1 88.6

+ Context 82.9 91.1

Table 4: Performance of utterance representation
methods when integrated with the hierarchical model

pus, where we first learn utterance representa-
tions on the corpus using Skip-Thought Vectors
(Kiros et al., 2015) and Paragraph Vectors (Le and
Mikolov, 2014), and then use them with the rest of
the model; (iii) jointly learned with the DA classi-
fication task. Table 4 describes the performance of
different utterance representation learning meth-
ods when combined with the overall architecture
on both datasets.

Introducing the word-level attention mecha-
nism (Yang et al., 2016) enables the model
to learn better representations by attending to
more informative words in an utterance, result-
ing in better performance (Bi-RNN + Attention).
The self-attention mechanism (Bi-RNN + Self-
attention) leads to even greater overall improve-
ments. Adding context information (previous re-
current state of the conversation) boosts perfor-
mance significantly.

A notable aspect of our model is how contex-
tual information is leveraged at different levels of
the sequence modeling task. The combination of
conversation-level contextual states for utterance-
representation learning (+ Context) and a CRF at
the conversation level to further inform conversa-
tion sequence modeling, leads to a collective per-
formance improvement. This is particularly pro-
nounced on the SwDA dataset: the two variants
of the context-aware attention models (Bi-RNN +
Attention + Context and Bi-RNN + Self-attention
+ Context) have significant performance gains.

6 Conclusion

We developed a model for DA classification with
context-aware self-attention, which significantly
outperforms earlier models on the commonly-used

Figure 2: Previous Label Entropy vs. Accuracy on the
SwDA Dataset

Figure 3: Previous Label Entropy vs. Accuracy on the
MRDA Dataset

SwDA dataset and is very close to state-of-the-art
on MRDA. We experimented with different utter-
ance representation learning methods and showed
that utterance representations learned at the lower
levels can impact the classification performance at
the higher level. Employing self-attention, which
has not previously been applied to this task, en-
ables the model to learn richer, more effective ut-
terance representations for the task.

As future work, we would like to experiment
with other attention mechanisms such as multi-
head attention (Vaswani et al., 2017), directional
self-attention (Shen et al., 2018a), block self-
attention (Shen et al., 2018b), or hierarchical at-
tention (Yang et al., 2016), since they have been
shown to address the limitations of vanilla atten-
tion and self-attention by either incorporating in-
formation from different representation subspaces
at different positions to capture both local and
long-range context dependencies, encoding tem-
poral order information, or by attending to context
dependencies at different levels of granularity.
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A Supplementary Material

A.1 Training & Hyperparameters
All hyperparameters were selected by tuning one
hyperparameter at a time while keeping the oth-
ers fixed. Validation splits were used for the tun-
ing process. The final set of hyperparameters were
then used to train two different models, one each
on SwDA and MRDA training splits. Table 5 lists
the range of values for each parameter that we ex-
perimented with, and the final value that was cho-
sen. Dropout was applied to the utterance embed-
dings. Early stopping was used on the validation
set with a patience of 15 epochs.

Hyperparams Range of values Final value
Word GloVe 100D GloVe 300D +
Embeddings GloVe 200D ELMo 1024D

GloVe 300D

Word2vec 300D
Word2vec 200D

ELMo 1024D

GloVe 300D +
ELMo 1024D

Word2Vec 300D +
ELMo 1024D

Sentence GRU 20 - 300 50
Size (u)
Utterance GRU 20 - 600 100
Size (k)
Learning Rate 0.01 - 2.0 0.015
Dropout 0.1 - 0.8 0.3
Optimizer SGD, Adam

RMSProp,
Adam

Table 5: Hyperparameter space and tuned values
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