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Abstract

Identifying the intent of a citation in sci-
entific papers (e.g., background information,
use of methods, comparing results) is criti-
cal for machine reading of individual publi-
cations and automated analysis of the scien-
tific literature. We propose structural scaf-
folds, a multitask model to incorporate struc-
tural information of scientific papers into ci-
tations for effective classification of citation
intents. Our model achieves a new state-of-
the-art on an existing ACL anthology dataset
(ACL-ARC) with a 13.3% absolute increase
in F1 score, without relying on external lin-
guistic resources or hand-engineered features
as done in existing methods. In addition, we
introduce a new dataset of citation intents (Sci-
Cite) which is more than five times larger and
covers multiple scientific domains compared
with existing datasets. Our code and data
are available at: https://github.com/
allenai/scicite.

1 Introduction

Citations play a unique role in scientific discourse
and are crucial for understanding and analyzing
scientific work (Luukkonen, 1992; Leydesdorff,
1998). They are also typically used as the main
measure for assessing impact of scientific pub-
lications, venues, and researchers (Li and Ho,
2008). The nature of citations can be different.
Some citations indicate direct use of a method
while some others merely serve as acknowledg-
ing a prior work. Therefore, identifying the in-
tent of citations (Figure 1) is critical in improving
automated analysis of academic literature and sci-
entific impact measurement (Leydesdorff, 1998;
Small, 2018). Other applications of citation in-
tent classification are enhanced research experi-
ence (Moravcsik and Murugesan, 1975), informa-
tion retrieval (Ritchie, 2009), summarization (Co-

…. A previously described comp-
uterized force sensitive system was 
used to quantify gait cycle timing, 
specifically the swing time and the 
stride-to-stride variability of swing 
time (Bazner et al. 2000).   ….

Title: Gait asymmetry in patients 
with Parkinson’s disease and 
elderly fallers ...

Citing paper

method

background

Bazner et al. 2000 

Springer et al. 2006

Cited papers

… Further details are included in the 
earlier reports (Springer et al. 2006). 

….

Figure 1: Example of citations with different intents
(BACKGROUND and METHOD).

han and Goharian, 2015), and studying evolution
of scientific fields (Jurgens et al., 2018).

In this work, we approach the problem of ci-
tation intent classification by modeling the lan-
guage expressed in the citation context. A ci-
tation context includes text spans in a citing pa-
per describing a referenced work and has been
shown to be the primary signal in intent classifi-
cation (Teufel et al., 2006; Abu-Jbara et al., 2013;
Jurgens et al., 2018). Existing models for this
problem are feature-based, modeling the citation
context with respect to a set of predefined hand-
engineered features (such as linguistic patterns or
cue phrases) and ignoring other signals that could
improve prediction.

In this paper we argue that better representa-
tions can be obtained directly from data, sidestep-
ping problems associated with external features.
To this end, we propose a neural multitask learn-
ing framework to incorporate knowledge into ci-
tations from the structure of scientific papers. In
particular, we propose two auxiliary tasks as struc-
tural scaffolds to improve citation intent predic-
tion:1 (1) predicting the section title in which the
citation occurs and (2) predicting whether a sen-
tence needs a citation. Unlike the primary task of
citation intent prediction, it is easy to collect large

1We borrow the scaffold terminology from Swayamdipta
et al. (2018) in the context of multitask learning.

https://github.com/allenai/scicite
https://github.com/allenai/scicite
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Figure 2: Our proposed scaffold model for identifying ci-
tation intents. The main task is predicting the citation intent
(top left) and two scaffolds are predicting the section title and
predicting if a sentence needs a citation (citation worthiness).

amounts of training data for scaffold tasks since
the labels naturally occur in the process of writ-
ing a paper and thus, there is no need for manual
annotation. On two datasets, we show that the pro-
posed neural scaffold model outperforms existing
methods by large margins.

Our contributions are: (i) we propose a neu-
ral scaffold framework for citation intent classi-
fication to incorporate into citations knowledge
from structure of scientific papers; (ii) we achieve
a new state-of-the-art of 67.9% F1 on the ACL-
ARC citations benchmark, an absolute 13.3% in-
crease over the previous state-of-the-art (Jurgens
et al., 2018); and (iii) we introduce SciCite, a new
dataset of citation intents which is at least five
times as large as existing datasets and covers a va-
riety of scientific domains.

2 Model

We propose a neural multitask learning framework
for classification of citation intents. In particu-
lar, we introduce and use two structural scaffolds,
auxiliary tasks related to the structure of scientific
papers. The auxiliary tasks may not be of inter-
est by themselves but are used to inform the main
task. Our model uses a large auxiliary dataset to
incorporate this structural information available in
scientific documents into the citation intents. The
overview of our model is illustrated in Figure 2.

Let C denote the citation and x denote the ci-

tation context relevant to C. We encode the to-
kens in the citation context of size n as x =
{x1, ...,xn}, where xi ∈ Rd1 is a word vector
of size d1 which concatenates non-contextualized
word representations (GloVe, Pennington et al.,
2014) and contextualized embeddings (ELMo, Pe-
ters et al., 2018), i.e.:

xi =
[
xGloVe
i ;xELMo

i

]
We then use a bidirectional long short-term mem-
ory (Hochreiter and Schmidhuber, 1997) (BiL-
STM) network with hidden size of d2 to obtain
a contextual representation of each token vector
with respect to the entire sequence:2

hi =
[−−−−→
LSTM(x, i);

←−−−−
LSTM(x, i)

]
,

where h ∈ R(n,2d2) and
−−−−→
LSTM(x, i) processes x

from left to write and returns the LSTM hidden
state at position i (and vice versa for the backward
direction

←−−−−
LSTM). We then use an attention mech-

anism to get a single vector representing the whole
input sequence:

z =
n∑

i=1

αihi, αi = softmax(w>hi),

where w is a parameter served as the query vec-
tor for dot-product attention.3 So far we have ob-
tained the citation representation as a vector z.
Next, we describe our two proposed structural
scaffolds for citation intent prediction.

2.1 Structural scaffolds

In scientific writing there is a connection between
the structure of scientific papers and the intent of
citations. To leverage this connection for more ef-
fective classification of citation intents, we pro-
pose a multitask framework with two structural
scaffolds (auxiliary tasks) related to the structure
of scientific documents. A key point for our pro-
posed scaffolds is that they do not need any addi-
tional manual annotation as labels for these tasks
occur naturally in scientific writing. The structural
scaffolds in our model are the following:

2In our experiments BiGRUs resulted in similar perfor-
mance.

3We also experimented BiLSTMs without attention; we
found that BiLSTMs/BiGRUs along with attention provided
best results. Other types of attention such as additive atten-
tion result in similar performance.
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Citation worthiness. The first scaffold task that
we consider is “citation worthiness” of a sentence,
indicating whether a sentence needs a citation.
The language expressed in citation sentences is
likely distinctive from regular sentences in scien-
tific writing, and such information could also be
useful for better language modeling of the citation
contexts. To this end, using citation markers such
as “[12]” or “Lee et al (2010)”, we identify sen-
tences in a paper that include citations and the neg-
ative samples are sentences without citation mark-
ers. The goal of the model for this task is to predict
whether a particular sentence needs a citation.4

Section title. The second scaffold task relates
to predicting the section title in which a citation
appears. Scientific documents follow a standard
structure where the authors typically first intro-
duce the problem, describe methodology, share re-
sults, discuss findings and conclude the paper. The
intent of a citation could be relevant to the section
of the paper in which the citation appears. For ex-
ample, method-related citations are more likely to
appear in the methods section. Therefore, we use
the section title prediction as a scaffold for pre-
dicting citation intents. Note that this scaffold task
is different than simply adding section title as an
additional feature in the input. We are using the
section titles from a larger set of data than training
data for the main task as a proxy to learn linguis-
tic patterns that are helpful for citation intents. In
particular, we leverage a large number of scientific
papers for which the section information is known
for each citation to automatically generate large
amounts of training data for this scaffold task.5

Multitask formulation. Multitask learning as
defined by Caruana (1997) is an approach to in-
ductive transfer learning that improves generaliza-
tion by using the domain information contained in
the training signals of related tasks as an induc-
tive bias. It requires the model to have at least
some sharable parameters between the tasks. In
a general setting in our model, we have a main
task Task(1) and n − 1 auxiliary tasks Task(i).
As shown in Figure 2, each scaffold task will have
its task-specific parameters for effective classifica-

4We note that this task may also be useful for helping au-
thors improve their paper drafts. However, this is not the fo-
cus of this work.

5We also experimented with adding section titles as addi-
tional feature to the input, however, it did not result in any
improvements.

tion and the parameters for the lower layers of the
network are shared across tasks. We use a Multi
Layer Perceptron (MLP) for each task and then a
softmax layer to obtain prediction probabilites. In
particular, given the vector z we pass it to n MLPs
and obtain n output vectors y(i):

y(i) = softmax(MLP(i)(z))

We are only interested in the output y(1) and
the rest of outputs (y(2), ...,y(n)) are regarding the
scaffold tasks and only used in training to inform
the model of knowledge in the structure of the sci-
entific documents. For each task, we output the
class with the highest probability in y. An alterna-
tive inference method is to sample from the output
distribution.

2.2 Training

Let D1 be the labeled dataset for the main task
Task(1), and Di denote the labeled datasets cor-
responding to the scaffold task Task(i) where i ∈
{2, ..., n}. Similarly, let L1 and Li be the main
loss and the loss of the auxiliary task i, respec-
tively. The final loss of the model is:

L =
∑

(x,y)∈D1

L1(x,y) +

n∑
i=2

λi

∑
(x,y)∈Di

Li(x,y), (1)

where λi is a hyper-parameter specifying the sen-
sitivity of the parameters of the model to each spe-
cific task. Here we have two scaffold tasks and
hence n=3. λi could be tuned based on perfor-
mance on validation set (see §4 for details).

We train this model jointly across tasks and in
an end-to-end fashion. In each training epoch, we
construct mini-batches with the same number of
instances from each of the n tasks. We compute
the total loss for each mini-batch as described in
Equation 1, where Li=0 for all instances of other
tasks j 6=i. We compute the gradient of the loss for
each mini-batch and tune model parameters using
the AdaDelta optimizer (Zeiler, 2012) with gradi-
ent clipping threshold of 5.0. We stop training the
model when the development macro F1 score does
not improve for five consecutive epochs.

3 Data

We compare our results on two datasets from dif-
ferent scientific domains. While there has been a
long history of studying citation intents, there are
only a few existing publicly available datasets on
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Intent cateogry Definition Example

Background
information

The citation states, mentions, or points to the background
information giving more context about a problem, concept,
approach, topic, or importance of the problem in the field.

Recent evidence suggests that co-occurring alexithymia may explain deficits [12].
Locally high-temperature melting regions can act as permanent termination sites [6-9].
One line of work is focused on changing the objective function (Mao et al., 2016).

Method Making use of a method, tool, approach or dataset
Fold differences were calculated by a mathematical model described in [4].
We use Orthogonal Initialization (Saxe et al., 2014)

Result
comparison

Comparison of the paper’s results/findings with the
results/findings of other work

Weighted measurements were superior to T2-weighted contrast imaging which was in
accordance with former studies [25-27]
Similar results to our study were reported in the study of Lee et al (2010).

Table 1: The definition and examples of citation intent categories in our SciCite.

Dataset Categories
(distribution)

Source #papers #instances

ACL-ARC Background (0.51)
Extends (0.04)
Uses (0.19)
Motivation (0.05)
Compare/Contrast (0.18)
Future work (0.04)

Computational
Linguistics

186 1,941

SciCite Background (0.58)
Method (0.29)
Result comparison (0.13)

Computer
Science &
Medicine

6,627 11,020

Table 2: Characteristics of SciCite compared with
ACL-ARC dataset by Jurgens et al. (2018)

the task of citation intent classification. We use the
most recent and comprehensive (ACL-ARC cita-
tions dataset) by Jurgens et al. (2018) as a bench-
mark dataset to compare the performance of our
model to previous work. In addition, to address
the limited scope and size of this dataset, we intro-
duce SciCite, a new dataset of citation intents that
addresses multiple scientific domains and is more
than five times larger than ACL-ARC. Below is a
description of both datasets.

3.1 ACL-ARC citations dataset

ACL-ARC is a dataset of citation intents released
by Jurgens et al. (2018). The dataset is based on a
sample of papers from the ACL Anthology Refer-
ence Corpus (Bird et al., 2008) and includes 1,941
citation instances from 186 papers and is anno-
tated by domain experts in the NLP field. The
data was split into three standard stratified sets of
train, validation, and test with 85% of data used
for training and remaining 15% divided equally
for validation and test. Each citation unit includes
information about the immediate citation context,
surrounding context, as well as information about
the citing and cited paper. The data includes six
intent categories outlined in Table 2.

3.2 SciCite dataset

Most existing datasets contain citation categories
that are too fine-grained. Some of these intent cat-
egories are very rare or not useful in meta analy-
sis of scientific publications. Since some of these
fine-grained categories only cover a minimal per-
centage of all citations, it is difficult to use them
to gain insights or draw conclusions on impacts
of papers. Furthermore, these datasets are usually
domain-specific and are relatively small (less than
2,000 annotated citations).

To address these limitations, we introduce Sci-
Cite, a new dataset of citation intents that is sig-
nificantly larger, more coarse-grained and general-
domain compared with existing datasets. Through
examination of citation intents, we found out many
of the categories defined in previous work such
as motivation, extension or future work, can be
considered as background information providing
more context for the current research topic. More
interesting intent categories are a direct use of a
method or comparison of results. Therefore, our
dataset provides a concise annotation scheme that
is useful for navigating research topics and ma-
chine reading of scientific papers. We consider
three intent categories outlined in Table 1: BACK-
GROUND, METHOD and RESULTCOMPARISON.
Below we describe data collection and annotation
details.

3.2.1 Data collection and annotation

Citation intent of sentence extractions was la-
beled through the crowdsourcing platform Figure
Eight.6 We selected a sample of papers from the
Semantic Scholar corpus,7 consisting of papers in
general computer science and medicine domains.
Citation contexts were extracted using science-

6https://www.figure-eight.com/
platform/

7https://semanticscholar.org/

https://www.figure-eight.com/platform/
https://www.figure-eight.com/platform/
https://semanticscholar.org/
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parse.8 The annotators were asked to identify the
intent of a citation, and were directed to select
among three citation intent options: METHOD,
RESULTCOMPARISON and BACKGROUND. The
annotation interface also included a dummy op-
tion OTHER which helps improve the quality of
annotations of other categories. We later removed
instances annotated with the OTHER option from
our dataset (less than 1% of the annotated data),
many of which were due to citation contexts which
are incomplete or too short for the annotator to in-
fer the citation intent.

We used 50 test questions annotated by a do-
main expert to ensure crowdsource workers were
following directions and disqualify annotators
with accuracy less than 75%. Furthermore, crowd-
source workers were required to remain on the an-
notation page (five annotations) for at least ten sec-
onds before proceeding to the next page. Annota-
tions were dynamically collected. The annotations
were aggregated along with a confidence score de-
scribing the level of agreement between multiple
crowdsource workers. The confidence score is the
agreement on a single instance weighted by a trust
score (accuracy of the annotator on the initial 50
test questions).

To only collect high quality annotations, in-
stances with confidence score of ≤0.7 were dis-
carded. In addition, a subset of the dataset with
100 samples was re-annotated by a trained, expert
annotator to check for quality, and the agreement
rate with crowdsource workers was 86%. Cita-
tion contexts were annotated by 850 crowdsource
workers who made a total of 29,926 annotations
and individually made between 4 and 240 annota-
tions. Each sentence was annotated, on average,
3.74 times. This resulted in a total 9,159 crowd-
sourced instances which were divided to training
and validation sets with 90% of the data used for
the training set. In addition to the crowdsourced
data, a separate test set of size 1,861 was anno-
tated by a trained, expert annotator to ensure high
quality of the dataset.

3.3 Data for scaffold tasks

For the first scaffold (citation worthiness), we
sample sentences from papers and consider the
sentences with citations as positive labels. We also
remove the citation markers from those sentences

8https://github.com/allenai/
science-parse

such as numbered citations (e.g., [1]) or name-year
combinations (e.g, Lee et al (2012)) to not make
the second task artificially easy by only detecting
citation markers. For the second scaffold (cita-
tion section title), respective to each test dataset,
we sample citations from the ACL-ARC corpus
and Semantic Scholar corpus9 and extract the ci-
tation context as well as their corresponding sec-
tions. We manually define regular expression pat-
terns mappings to normalized section titles: “in-
troduction”, “related work”, “method”, “experi-
ments”, “conclusion”. Section titles which did not
map to any of the aforementioned titles were ex-
cluded from the dataset. Overall, the size of the
data for scaffold tasks on the ACL-ARC dataset
is about 47K (section title scaffold) and 50K (ci-
tation worthiness) while on SciCite is about 91K
and 73K for section title and citation worthiness
scaffolds, respectively.

4 Experiments

4.1 Implementation

We implement our proposed scaffold framework
using the AllenNLP library (Gardner et al., 2018).
For word representations, we use 100-dimensional
GloVe vectors (Pennington et al., 2014) trained on
a corpus of 6B tokens from Wikipedia and Gi-
gaword. For contextual representations, we use
ELMo vectors released by Peters et al. (2018)10

with output dimension size of 1,024 which have
been trained on a dataset of 5.5B tokens. We
use a single-layer BiLSTM with a hidden dimen-
sion size of 50 for each direction11. For each of
scaffold tasks, we use a single-layer MLP with
20 hidden nodes , ReLU (Nair and Hinton, 2010)
activation and a Dropout rate (Srivastava et al.,
2014) of 0.2 between the hidden and input lay-
ers. The hyperparameters λi are tuned for best
performance on the validation set of the respective
datasets using a 0.0 to 0.3 grid search. For exam-
ple, the following hyperparameters are used for the
ACL-ARC. Citation worthiness saffold: λ2=0.08,
λ3=0, section title scaffold: λ3=0.09, λ2=0; both
scaffolds: λ2=0.1, λ3=0.05. Batch size is 8 for
ACL-ARC dataset and 32 for SciCite dataset (re-
call that SciCite is larger than ACL-ARC). We

9https://semanticscholar.org/
10https://allennlp.org/elmo
11Experiments with other types of RNNs such as BiGRUs

and more layers showed similar or slightly worst performance

https://github.com/allenai/science-parse
https://github.com/allenai/science-parse
https://semanticscholar.org/
https://allennlp.org/elmo
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use Beaker12 for running the experiments. On
the smaller dataset, our best model takes approxi-
mately 30 minutes per epoch to train (training time
without ELMo is significantly faster). It is known
that multiple runs of probabilistic deep learn-
ing models can have variance in overall scores
(Reimers and Gurevych, 2017)13. We control this
by setting random-number generator seeds; the re-
ported overall results are average of multiple runs
with different random seeds. To facilitate repro-
ducibility, we release our code, data, and trained
models.14

4.2 Baselines
We compare our results to several baselines in-
cluding the model with state-of-the-art perfor-
mance on the ACL-ARC dataset.

• BiLSTM Attention (with and without ELMo).
This baseline uses a similar architecture to our
proposed neural multitask learning framework,
except that it only optimizes the network for the
main loss regarding the citation intent classifi-
cation (L1) and does not include the structural
scaffolds. We experiment with two variants of
this model: with and without using the contex-
tualized word vector representations (ELMo) of
Peters et al. (2018). This baseline is useful for
evaluating the effect of adding scaffolds in con-
trolled experiments.

• Jurgens et al. (2018). To make sure our results
are competitive with state-of-the-art results on
this task, we also compare our model to Jur-
gens et al. (2018) which has the best reported
results on the ACL-ARC dataset. Jurgens et al.
(2018) incorporate a variety of features, ranging
from pattern-based features to topic-modeling
features, to citation graph features. They also
incorporate section titles and relative section po-
sition in the paper as features. Our implemen-
tation of this model achieves a macro-averaged
F1 score of 0.526 using 10-fold cross-validation,
which is in line with the highest reported results
in Jurgens et al. (2018): 0.53 using leave-one-
out cross validation. We were not able to use

12Beaker is a collaborative platform for reproducible re-
search (https://github.com/allenai/beaker)

13Some CuDNN methods are non-deterministic
and the rest are only deterministic under the same
underlying hardware. See https://docs.
nvidia.com/deeplearning/sdk/pdf/
cuDNN-Developer-Guide.pdf

14https://github.com/allenai/scicite

Model macro F1

B
as

el
in

es BiLSTM-Attn 51.8
BiLSTM-Attn w/ ELMo 54.3
Previous SOTA (Jurgens et al., 2018) 54.6

T
hi

s
w

or
k BiLSTM-Attn + section title scaffold 56.9

BiLSTM-Attn + citation worthiness scaffold 56.3
BiLSTM-Attn + both scaffolds 63.1
BiLSTM-Attn w/ ELMo + both scaffolds 67.9

Table 3: Results on the ACL-ARC citations dataset.

leave-one-out cross validation in our experiments
since it is impractical to re-train each variant of
our deep learning models thousands of times.
Therefore, we opted for a standard setup of strati-
fied train/validation/test data splits with 85% data
used for training and the rest equally split be-
tween validation and test.

4.3 Results

Our main results for the ACL-ARC dataset (Jur-
gens et al., 2018) is shown in Table 3. We observe
that our scaffold-enhanced models achieve clear
improvements over the state-of-the-art approach
on this task. Starting with the ‘BiLSTM-Attn’
baseline with a macro F1 score of 51.8, adding the
first scaffold task in ‘BiLSTM-Attn + section title
scaffold’ improves the F1 score to 56.9 (∆=5.1).
Adding the second scaffold in ‘BiLSTM-Attn + ci-
tation worthiness scaffold’ also results in similar
improvements: 56.3 (∆=4.5). When both scaf-
folds are used simultaneously in ‘BiLSTM-Attn +
both scaffolds’, the F1 score further improves to
63.1 (∆=11.3), suggesting that the two tasks pro-
vide complementary signal that is useful for cita-
tion intent prediction.

The best result is achieved when we also add
ELMo vectors (Peters et al., 2018) to the input rep-
resentations in ‘BiLSTM-Attn w/ ELMo + both
scaffolds’, achieving an F1 of 67.9, a major im-
provement from the previous state-of-the-art re-
sults of Jurgens et al. (2018) 54.6 (∆=13.3). We
note that the scaffold tasks provide major con-
tributions on top of the ELMo-enabled baseline
(∆=13.6), demonstrating the efficacy of using
structural scaffolds for citation intent prediction.
We note that these results were obtained without
using hand-curated features or additional linguis-
tic resources as used in Jurgens et al. (2018). We
also experimented with adding features used in Ju-
rgens et al. (2018) to our best model and not only
we did not see any improvements, but we observed

https://github.com/allenai/beaker
https://docs.nvidia.com/deeplearning/sdk/pdf/cuDNN-Developer-Guide.pdf
https://docs.nvidia.com/deeplearning/sdk/pdf/cuDNN-Developer-Guide.pdf
https://docs.nvidia.com/deeplearning/sdk/pdf/cuDNN-Developer-Guide.pdf
https://github.com/allenai/scicite
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Model macro F1

B
as

el
in

es BiLSTM-Attn 77.2
BiLSTM-Attn w/ ELMo 82.6
Previous SOTA (Jurgens et al., 2018) 79.6

T
hi

s
w

or
k BiLSTM-Attn + section title scaffold 77.8

BiLSTM-Attn + citation worthiness scaffold 78.1
BiLSTM-Attn + both scaffolds 79.1
BiLSTM-Attn w/ ELMo + both scaffolds 84.0

Table 4: Results on the SciCite dataset.

at least 1.7% decline in performance. This sug-
gests that these additional manual features do not
provide the model with any additional useful sig-
nals beyond what the model already learns from
the data.

Table 4 shows the main results on SciCite
dataset, where we see similar patterns. Each scaf-
fold task improves model performance. Adding
both scaffolds results in further improvements.
And the best results are obtained by using ELMo
representation in addition to both scaffolds. Note
that this dataset is more than five times larger
in size than the ACL-ARC, therefore the perfor-
mance numbers are generally higher and the F1
gains are generally smaller since it is easier for
the models to learn optimal parameters utilizing
the larger annotated data. On this dataset, the
best baseline is the neural baseline with addition
of ELMo contextual vectors achieving an F1 score
of 82.6 followed by Jurgens et al. (2018), which is
expected because neural models generally achieve
higher gains when more training data is available
and because Jurgens et al. (2018) was not designed
with the SciCite dataset in mind.

The breakdown of results by intent on ACL-
ARC and SciCite datasets is respectively shown in
Tables 5 and 6. Generally we observe that results
on categories with more number of instances are
higher. For example on ACL-ARC, the results on
the BACKGROUND category are the highest as this
category is the most common. Conversely, the re-
sults on the FUTUREWORK category are the low-
est. This category has the fewest data points (see
distribution of the categories in Table 2) and thus
it is harder for the model to learn the optimal pa-
rameters for correct classification in this category.

4.4 Analysis
To gain more insight into why the scaffolds are
helping the model in improved citation intent clas-
sification, we examine the attention weights as-
signed to inputs for our best proposed model
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(b) Example from SciCite: Correct label is RESULTCOMPARISON; our model
correctly predicts it, while baseline considers it as BACKGROUND.

Figure 3: Visualization of attention weights corresponding
to our best scaffold model compared with the best baseline
neural baseline model without scaffolds.

(‘BiLSTM-Attn w/ ELMo + both scaffolds’) com-
pared with the best neural baseline (‘BiLSTM-
Attn w/ ELMO’). We conduct this analysis for
examples from both datasets. Figure 3 shows an
example input citation along with the horizontal
line and the heatmap of attention weights for this
input resulting from our model versus the base-
line. For first example (3a) the true label is FU-
TUREWORK. We observe that our model puts
more weight on words surrounding the word “fu-
ture” which is plausible given the true label. On
the other hand, the baseline model attends most
to the words “compare” and consequently incor-
rectly predicts a COMPARE label. In second exam-
ple (3b) the true label is RESULTCOMPARISON.
The baseline incorrectly classifies it as a BACK-
GROUND, likely due to attending to another part
of the sentence (“analyzed seprately”). Our model
correctly classifies this instance by putting more
attention weights on words that relate to compari-
son of the results. This suggests that the our model
is more successful in learning optimal parameters
for representing the citation text and classifying its
respective intent compared with the baseline. Note
that the only difference between our model and the
neural baseline is inclusion of the structural scaf-
folds. Therefore, suggesting the effectiveness the
scaffolds in informing the main task of relevant
signals for citation intent classification.

Error analysis. We next investigate errors made
by our best model (Figure 4 plots classification er-
rors). One general error pattern is that the model
has more tendency to make false positive errors
in the BACKGROUND category likely due to this
category dominating both datasets. It’s interest-
ing that for the ACL-ARC dataset some prediction
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Category (# instances) Background (71) Compare (25) Extension (5) Future (5) Motivation (7) Use (26) Average (Macro)

P R F1 P R F1 P R F1 P R F1 P R F1 P R F1 P R F1

BiLSTM-Attn 78.6 77.5 78.0 44.8 52.0 48.1 50.0 40.0 44.4 33.3 40.0 36.4 50.0 28.6 36.4 65.4 65.4 65.4 53.7 50.6 51.5

BiLSTM-Attn w/ ELMo 76.5 87.3 81.6 59.1 52.0 55.3 66.7 40.0 50.0 33.3 40.0 36.4 50.0 28.6 36.4 69.6 61.5 65.3 59.2 51.6 54.2

Previous SOTA (Jurgens et al., 2018) 75.6 87.3 81.1 70.6 48.0 57.1 66.7 40.0 50.0 50.0 20.0 28.6 75.0 42.9 54.6 51.6 61.5 56.1 64.9 49.9 54.6

BiLSTM-Attn+section title scaffold 77.2 85.9 81.3 53.8 56.0 54.9 100.0 40.0 57.1 33.3 40.0 36.4 50.0 28.6 36.4 81.8 69.2 75.0 66.0 53.3 56.9

BiLSTM-Attn+citation worthiness scaffold 77.1 90.1 83.1 59.1 52.0 55.3 100.0 40.0 57.1 28.6 40.0 33.3 50.0 28.6 36.4 81.0 65.4 72.3 66.0 52.7 56.3

BiLSTM-Attn+both scaffolds 77.6 93.0 84.6 65.0 52.0 57.8 100.0 60.0 75.0 40.0 40.0 40.0 75.0 42.9 54.5 72.7 61.5 66.7 71.7 58.2 63.1

BiLSTM-Attn+both scaffolds /w ELMo 75.9 93.0 83.5 80.0 64.0 71.1 75.0 60.0 66.7 75.0 60.0 66.7 100.0 28.6 44.4 81.8 69.2 75.0 81.3 62.5 67.9

Table 5: Detailed per category classification results on ACL-ARC dataset.

Category (# instances) Background (1,014) Method (613) Result (260) Average (Macro)

P R F1 P R F1 P R F1 P R F1

BiLSTM-Attn 82.2 83.2 82.7 80.7 74.4 77.4 67.1 76.2 71.4 76.7 77.9 77.2

BiLSTM-Attn w/ ELMo 86.6 87 86.8 87.2 79.1 83.0 71.5 85.8 78.0 81.8 84.0 82.6

Previous SOTA (Jurgens et al., 2018) 77.9 92.9 84.7 91.5 63.1 74.7 79.1 77.3 78.2 82.8 77.8 79.2

BiLSTM-Attn + section title scaffold 81.3 86.0 83.6 85.3 68.8 76.2 66.8 81.9 73.6 77.8 78.9 77.8

BiLSTM-Attn + citation worthiness scaffold 82.9 84.8 83.8 84.6 73.2 78.5 65.4 80.0 72.0 77.6 79.3 78.1

BiLSTM-Attn + both scaffolds 85.4 80.8 83.0 78.6 80.4 79.5 69.8 80.8 74.9 77.9 80.7 79.1

BiLSTM-Attn w/ ELMo + both scaffolds 85.4 90.3 87.8 89.5 80.8 84.9 79.3 79.6 79.5 84.7 83.6 84.0

Table 6: Detailed per category classification results on the SciCite dataset.

Example True Prediction

Our work is inspired by the latent left-linking model in
(CITATION) and the ILP formulation from (CITATION).

MOTIVATION USE

ASARES is presented in detail in (CITATION) . USE BACKGROUND

The advantage of tuning similarity to the application of
interest has been shown previously by (CITATION).

COMPARE BACKGROUND

One possible direction is to consider linguistically mo-
tivated approaches , such as the extraction of syntactic
phrase tables as proposed by (CITATION).

FUTUREWORK BACKGROUND

After the extraction, pruning techniques (CITATION) can
be applied to increase the precision of the extraction.

BACKGROUND USE

Table 7: A sample of model’s classification errors on
ACL-ARC dataset

errors are due to the model failing to properly dif-
ferentiate the USE category with BACKGROUND.
We found out that some of these errors would have
been possibly prevented by using additional con-
text. Table 7 shows a sample of such classifica-
tion errors. For the citation in the first row of the
table, the model is likely distracted by “model in
(citation)” and “ILP formulation from (citation)”
deeming the sentence is referring to the use of an-
other method from a cited paper and it misses the
first part of the sentence describing the motivation.
This is likely due to the small number of training
instances in the MOTIVATION category, prevent-
ing the model to learn such nuances. For the exam-
ples in the second and third row, it is not clear if it
is possible to make the correct prediction without
additional context. And similarly in the last row

the instance seems ambiguous without accessing
to additional context. Similarly as shown in Fig-
ure 4a two of FUTUREWORK labels are wrongly
classified. One of them is illustrated in the forth
row of Table 7 where perhaps additional context
could have helped the model in identifying the cor-
rect label. One possible way to prevent this type of
errors, is to provide the model with an additional
input, modeling the extended surrounding context.
We experimented with encoding the extended sur-
rounding context using a BiLSTM and concatenat-
ing it with the main citation context vector (z), but
it resulted in a large decline in overall performance
likely due to the overall noise introduced by the
additional context. A possible future work is to
investigate alternative effective approaches for in-
corporating the surrounding extended context.

5 Related Work

There is a large body of work studying the intent
of citations and devising categorization systems
(Stevens and Giuliano, 1965; Moravcsik and Mu-
rugesan, 1975; Garzone and Mercer, 2000; White,
2004; Ahmed et al., 2004; Teufel et al., 2006;
Agarwal et al., 2010; Dong and Schäfer, 2011).
Most of these efforts provide citation categories
that are too fine-grained, some of which rarely oc-
cur in papers. Therefore, they are hardly useful
for automated analysis of scientific publications.
To address these problems and to unify previous
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Figure 4: Confusion matrix showing classification er-
rors of our best model on two datasets. The diagonal is
masked to bring focus only on errors.

efforts, in a recent work, Jurgens et al. (2018)
proposed a six category system for citation in-
tents. In this work, we focus on two schemes: (1)
the scheme proposed by Jurgens et al. (2018) and
(2) an additional, more coarse-grained general-
purpose category system that we propose (details
in §3). Unlike other schemes that are domain-
specific, our scheme is general and naturally fits
in scientific discourse in multiple domains.

Early works in automated citation intent clas-
sification were based on rule-based systems (e.g.,
(Garzone and Mercer, 2000; Pham and Hoffmann,
2003)). Later, machine learning methods based
on linguistic patterns and other hand-engineered
features from citation context were found to be
effective. For example, Teufel et al. (2006) pro-
posed use of “cue phrases”, a set of expressions
that talk about the act of presenting research in a
paper. Abu-Jbara et al. (2013) relied on lexical,
structural, and syntactic features and a linear SVM
for classification. Researchers have also investi-
gated methods of finding cited spans in the cited
papers. Examples include feature-based methods
(Cohan et al., 2015), domain-specific knowledge
(Cohan and Goharian, 2017), and a recent CNN-
based model for joint prediction of cited spans and
citation function (Su et al., 2018). We also exper-
imented with CNNs but found the attention BiL-
STM model to work significantly better. Jurgens
et al. (2018) expanded all pre-existing feature-
based efforts on citation intent classification by
proposing a comprehensive set of engineered fea-
tures, including boostrapped patterns, topic mod-
eling, dependency-based, and metadata features
for the task. We argue that we can capture nec-
essary information from the citation context using
a data driven method, without the need for hand-
engineered domain-dependent features or external
resources. We propose a novel scaffold neural

model for citation intent classification to incorpo-
rate structural information of scientific discourse
into citations, borrowing the “scaffold” terminol-
ogy from Swayamdipta et al. (2018) who use aux-
iliary syntactic tasks for semantic problems.

6 Conclusions and future work

In this work, we show that structural properties
related to scientific discourse can be effectively
used to inform citation intent classification. We
propose a multitask learning framework with two
auxiliary tasks (predicting section titles and cita-
tion worthiness) as two scaffolds related to the
main task of citation intent prediction. Our model
achieves state-of-the-art result (F1 score of 67.9%)
on the ACL-ARC dataset with 13.3 absolute in-
crease over the best previous results. We addition-
ally introduce SciCite, a new large dataset of cita-
tion intents and also show the effectiveness of our
model on this dataset. Our dataset, unlike exist-
ing datasets that are designed based on a specific
domain, is more general and fits in scientific dis-
course from multiple scientific domains.

We demonstrate that carefully chosen auxiliary
tasks that are inherently relevant to a main task
can be leveraged to improve the performance on
the main task. An interesting line of future work
is to explore the design of such tasks or explore
the properties or similarities between the auxiliary
and the main tasks. Another relevant line of work
is adapting our model to other domains containing
documents with similar linked structured such as
Wikipedia articles. Future work may benefit from
replacing ELMo with other types of contextual-
ized representations such as BERT in our scaffold
model. For example, at the time of finalizing the
camera ready version of this paper, Beltagy et al.
(2019) showed that a BERT contextualized repre-
sentation model (Devlin et al., 2018) trained on
scientific text can achieve promising results on the
SciCite dataset.
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