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Abstract

Multi-task learning (MTL) has achieved suc-
cess over a wide range of problems, where
the goal is to improve the performance of a
primary task using a set of relevant auxiliary
tasks. However, when the usefulness of the
auxiliary tasks w.r.t. the primary task is not
known a priori, the success of MTL models de-
pends on the correct choice of these auxiliary
tasks and also a balanced mixing ratio of these
tasks during alternate training. These two
problems could be resolved via manual intu-
ition or hyper-parameter tuning over all com-
binatorial task choices, but this introduces in-
ductive bias or is not scalable when the number
of candidate auxiliary tasks is very large. To
address these issues, we present AUTOSEM, a
two-stage MTL pipeline, where the first stage
automatically selects the most useful auxiliary
tasks via a Beta-Bernoulli multi-armed ban-
dit with Thompson Sampling, and the sec-
ond stage learns the training mixing ratio of
these selected auxiliary tasks via a Gaussian
Process based Bayesian optimization frame-
work. We conduct several MTL experiments
on the GLUE language understanding tasks,
and show that our AUTOSEM framework can
successfully find relevant auxiliary tasks and
automatically learn their mixing ratio, achiev-
ing significant performance boosts on several
primary tasks. Finally, we present ablations
for each stage of AUTOSEM and analyze the
learned auxiliary task choices.

1 Introduction

Multi-task Learning (MTL) (Caruana, 1997) is
an inductive transfer mechanism which lever-
ages information from related tasks to improve
the primary model’s generalization performance.
It achieves this goal by training multiple tasks
in parallel while sharing representations, where
the training signals from the auxiliary tasks can
help improve the performance of the primary

task. Multi-task learning has been applied to a
wide range of natural language processing prob-
lems (Luong et al., 2015; Pasunuru and Bansal,
2017; Hashimoto et al., 2017; Ruder et al., 2017b;
Kaiser et al., 2017; McCann et al., 2018). Despite
its impressive performance, the design of a multi-
task learning system is non-trivial. In the con-
text of improving the primary task’s performance
using knowledge from other auxiliary tasks (Lu-
ong et al., 2015; Pasunuru and Bansal, 2017), two
major challenges include selecting the most rel-
evant auxiliary tasks and also learning the bal-
anced mixing ratio for synergized training of these
tasks. One can achieve this via manual intuition
or hyper-parameter tuning over all combinatorial
task choices, but this introduces human inductive
bias or is not scalable when the number of candi-
date auxiliary tasks is considerable. To this end,
we present AUTOSEM, a two-stage Bayesian op-
timization pipeline to this problem.

In our AUTOSEM framework1, the first stage
addresses automatic task selection from a pool of
auxiliary tasks. For this, we use a non-stationary
multi-armed bandit controller (MAB) (Bubeck
et al., 2012; Raj and Kalyani, 2017) that dynam-
ically alternates among task choices within the
training loop, and eventually returns estimates of
the utility of each task w.r.t. the primary task. We
model the utility of each task as a Beta distribu-
tion, whose expected value can be interpreted as
the probability of each task making a non-negative
contribution to the training performance of the pri-
mary task. Further, we model the observations
as Bernoulli variables so that the posterior distri-
bution is also Beta-distributed. We use Thomp-
son sampling (Chapelle and Li, 2011; Russo et al.,
2018) to trade off exploitation and exploration.

The second stage then takes the auxiliary tasks
1We make all our code and models publicly available at:

https://github.com/HanGuo97/AutoSeM
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selected in the first stage and automatically learns
the training mixing ratio of these tasks, through the
framework of Bayesian optimization, by modeling
the performance of each mixing ratio as a sam-
ple from a Gaussian Process (GP) to sequentially
search for the optimal values (Rasmussen, 2004;
Snoek et al., 2012). For the covariance function in
the GP, we use the Matern kernel which is param-
eterized by a smoothness hyperparameter so as to
control the level of differentiability of the samples
from GP. Further, following Hoffman et al. (2011),
we use a portfolio of optimistic and improvement-
based policies as acquisition functions (Shahriari
et al., 2016) for selecting the next sample point
from the GP search space.

We conduct several experiments on the GLUE
natural language understanding benchmark (Wang
et al., 2018), where we choose each of RTE,
MRPC, QNLI, CoLA, and SST-2 as the primary
task, and treat the rest of the classification tasks
from the GLUE benchmark as candidate auxiliary
tasks. Results show that our AUTOSEM frame-
work can successfully find useful auxiliary tasks
and automatically learn their mixing ratio, achiev-
ing significant performance boosts on top of strong
baselines for several primary tasks, e.g., 5.2% im-
provement on QNLI, 4.7% improvement on RTE,
and 2.8%/0.8% improvement on MRPC.

We also ablate the usefulness of our two stages
of auxiliary task selection and automatic mixing
ratio learning. The first ablation removes the task
selection stage and instead directly performs the
second GP mixing ratio learning stage on all aux-
iliary tasks. The second ablation performs the
task selection stage (with multi-armed bandit) but
replaces the second stage Gaussian Process with
manual tuning on the selected tasks. Our 2-stage
model performs better than both these ablations,
showing that both of our stages are crucial. Fur-
ther, we also discuss the learned auxiliary task
choices in terms of their intuitive relevance w.r.t.
the corresponding primary task.

2 Related Work

Multi-task learning (Caruana, 1998), known for
improving the generalization performance of a
task with auxiliary tasks, has successfully been
applied to many domains of machine learn-
ing, including natural language processing (Col-
lobert and Weston, 2008; Girshick, 2015; Lu-
ong et al., 2015; Pasunuru and Bansal, 2017; Pa-

sunuru et al., 2017), computer vision (Misra et al.,
2016; Kendall et al., 2017; Dai et al., 2016),
and reinforcement learning (Teh et al., 2017;
Parisotto et al., 2015; Jaderberg et al., 2016). Al-
though there are many variants of multi-task learn-
ing (Ruder et al., 2017b; Hashimoto et al., 2017;
Luong et al., 2015; McCann et al., 2018), our goal
is to improve the performance of a primary task
using a set of relevant auxiliary tasks, where dif-
ferent tasks share some common model param-
eters with alternating mini-batches optimization,
similar to Luong et al. (2015).

To address the problem of automatic shared
parameter selection, Ruder et al. (2017a) auto-
matically learned the latent multi-task sharing ar-
chitecture, and Xiao et al. (2018) used a gate
mechanism that filters the feature flows between
tasks. On the problem of identifying task relat-
edness, Ben-David and Schuller (2003) provided
a formal framework for task relatedness and de-
rived generalization error bounds for learning of
multiple tasks. Bingel and Søgaard (2017) ex-
plored task relatedness via exhaustively experi-
menting with all possible two task tuples in a non-
automated multi-task setup. Other related works
explored data selection, where the goal is to se-
lect or reorder the examples from one or more
domains (usually in a single task) to either im-
prove the training efficiency or enable better trans-
fer learning. These approaches have been applied
in machine translation (van der Wees et al., 2017),
language models (Moore and Lewis, 2010; Duh
et al., 2013), dependency parsing (Søgaard, 2011),
etc. In particular, Ruder and Plank (2017) used
Bayesian optimization to select relevant training
instances for transfer learning, and Tsvetkov et al.
(2016) applied it to learn a curriculum for train-
ing word embeddings via reordering data. Graves
et al. (2017) used the bandit approach (Exp3.S al-
gorithm) in the context of automated curriculum
learning, but in our work, we have two stages with
each stage addressing a different problem (auto-
matic task selection and learning of the training
mixing ratio). Recently, Sharma and Ravindran
(2017) used multi-armed bandits (MAB) to learn
the choice of hard vs. easy domain data selection
as input feed for the model. Guo et al. (2018) used
MAB to effectively switch across tasks in a dy-
namic multi-task learning setup. In our work, we
use MAB with Thompson Sampling for the novel
paradigm of automatic auxiliary task selection;
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and next, we use a Matern-kernel Gaussian Pro-
cess to automatically learn an exact (static) mixing
ratio (i.e., relatedness ratio) for the small number
of selected tasks.

Many control problems can be cast as a multi-
armed bandits problem, where the goal of the
agent is to select the arm/action from one of the
N choices that minimizes the regrets (Bubeck
et al., 2012). One problem in bandits learning is
the trade-off between exploration and exploitation,
where the agent needs to make a decision between
taking the action that yields the best payoff on
current estimates or exploring new actions whose
payoffs are not yet certain. Many previous works
have explored various exploration and exploita-
tion strategies to minimize regret, including Boltz-
mann exploration (Kaelbling et al., 1996), adver-
sarial bandits (Auer et al., 2002b), UCB (Auer
et al., 2002a), and information gain using varia-
tional approaches (Houthooft et al., 2016). In this
work, for task selection, we use Thompson Sam-
pling (Russo et al., 2018; Chapelle and Li, 2011),
an algorithm for sequential decision making prob-
lems, which addresses a broad range of problems
in a computationally efficient manner and is there-
fore enjoying wide use.

Gaussian Process (GP) is a non-parametric
Bayesian approach, and it can capture a wide
variety of underlying functions or relations be-
tween inputs and outputs by taking advantage of
the full information provided by the history of
observations and is thus very data-efficient (Ras-
mussen, 2004; Shahriari et al., 2016; Schulz et al.,
2018). Gaussian Processes have been widely used
as a black-box optimizer and hyper-parameter op-
timization (Snoek et al., 2012; Brochu et al., 2010;
Knudde et al., 2017; Cully et al., 2018; Swersky
et al., 2013; Golovin et al., 2017). In our work,
we use Gaussian Process for automatic learning of
the multi-task mixing ratio in our stage-2 among
the selected tasks from stage-1.

3 Models

We will first introduce our baseline model and its
integration for multiple classification tasks in a
multi-task learning (MTL) setup. Next, we will in-
troduce our AUTOSEM framework, an automatic
way of selecting auxiliary tasks and learning their
optimal training mixing ratio w.r.t. the primary
task, via a Beta-Bernoulli bandit with Thompson
Sampling and a Gaussian Process framework.
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Figure 1: Overview of our baseline model where we
use different projection layers for each task during
MTL, while sharing rest of the model parameters.

3.1 Bi-Text Classification Model
Let s1 and s2 be the input sentence pair in our
classification task, where we encode these sen-
tences via bidirectional LSTM-RNN, similar to
that of Conneau et al. (2017). Next, we do
max-pooling on the output hidden states of both
encoders where u and v are the outputs from
the max-pooing layer for s1 and s2 respectively.
Later, we map these two representations (u and v)
into a single rich dense representation vector h:

h = [u;v;u ? v; |u− v|] (1)

where [; ] represents the concatenation and u ? v
represents the element-wise multiplication of u
and v. We project this final representation h
to label space to classify the given sentence pair
(see Fig. 1). We also use ELMo (Peters et al.,
2018) representations for word embeddings in our
model. For this, we extract the three ELMo layer
representations for each of the sentence pair and
use their weighted sum as the ELMo output repre-
sentation, where the weights are trainable.

3.2 Multi-Task Learning
In this work, we focus on improving a task (pri-
mary task) by allowing it to share parameters
with related auxiliary tasks via multi-task learn-
ing (MTL). Let {D1, ..., DN} be a set of N tasks,
where we set D1 to be the primary task and the
rest of them as auxiliary tasks. We can extend
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Figure 2: Overview of our AUTOSEM framework. Left: the multi-armed bandit controller used for task selection,
where each arm represents a candidate auxiliary task. The agent iteratively pulls an arm, observes a reward, updates
its estimates of the arm parameters, and samples the next arm. Right: the Gaussian Process controller used for
automatic mixing ratio (MR) learning. The GP controller sequentially makes a choice of mixing ratio, observes a
reward, updates its estimates, and selects the next mixing ratio to try, based on the full history of past observations.

our single-task learning baseline (see Sec. 3.1)
into multi-task learning model by augmenting the
model with N projection layers while sharing the
rest of the model parameters across these N tasks
(see Fig. 1). We employ MTL training of these
tasks in alternate mini-batches based on a mixing
ratio η1:η2:..ηN , similar to previous work (Luong
et al., 2015), where we optimize ηi mini-batches
of task i and go to the next task.

In MTL, choosing the appropriate auxiliary
tasks and properly tuning the mixing ratio can be
important for the performance of multi-task mod-
els. The naive way of trying all combinations of
task selections is hardly tractable. To solve this is-
sue, we propose AUTOSEM, a two-stage pipeline
in the next section. In the first stage, we automat-
ically find the relevant auxiliary tasks (out of the
given N − 1 options) which improve the perfor-
mance of the primary task. After finding the rel-
evant auxiliary tasks, in the second stage, we take
these selected tasks along with the primary task
and automatically learn their training mixing ratio.

3.3 Automatic Task Selection: Multi-Armed
Bandit with Thompson Sampling

Tuning the mixing ratio for N tasks in MTL be-
comes exponentially harder as the number of aux-
iliary tasks grows very large. However, in most
circumstances, only a small number of these aux-
iliary tasks are useful for improving the primary
task at hand. Manually searching for this optimal
choice of relevant tasks is intractable. Hence, in
this work, we present a method for automatic task
selection via multi-armed bandits with Thompson
Sampling (see the left side of Fig. 2).

Let {a1, ..., aN} represent the set of N arms
(corresponding to the set of tasks {D1, ..., DN})
of the bandit controller in our multi-task setting,
where the controller selects a sequence of ac-
tions/arms over the current training trajectory to
maximize the expected future payoff. At each
round tb, the controller selects an arm based on
the noisy value estimates and observes rewards rtb
for the selected arm. Let θk ∈ [0, 1] be the utility
(usefulness) of task k. Initially, the agent begins
with an independent prior belief over θk. We take
these priors to be Beta-distributed with parameters
αk and βk, and the prior probability density func-
tion of θk is:

p(θk) =
Γ(αk + βk)

Γ(αk)Γ(βk)
θαk−1
k (1− θk)βk−1 (2)

where Γ denotes the gamma function. We for-
mulate the reward rtb ∈ {0, 1} at round tb as a
Bernoulli variable, where an action k produces a
reward of 1 with a chance of θk and a reward of 0
with a chance of 1− θk. The true utility of task k,
i.e., θk, is unknown, and may or may not change
over time (based on stationary vs. non-stationary
of task utility). We define the reward as whether
sampling the task k improves (or maintains) the
validation metric of the primary task,

rtb =

{
1, if Rtb ≥ Rtb−1

0, otherwise
(3)

where Rtb represents the validation perfor-
mance of the primary task at time tb. With our
reward setup above, the utility of each task (θk)
can be intuitively interpreted as the probability
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that multi-task learning with task k can improve
(or maintain) the performance of the primary task.
The conjugacy properties of the Beta distribution
assert that the posterior distribution is also Beta
with parameters that can be updated using a sim-
ple Bayes rule, which is defined as follows (Russo
et al., 2018),

p(θk|r) ∝ Bernθ(r)Betaα,β(θk)

∝ Betaα+r,β+1−r(θk)
(4)

(αk, βk) =

{
(αk, βk), if xstb 6= k

(αk, βk)+(rtb , 1− rtb), if xstb = k
(5)

where xstb is the sampled task at round tb. Finally,
at the end of the training, we calculate the expected
value of each arm as follows:

Ep[θk] =
αk

αk + βk
(6)

Here, the expectation measures the probability of
improving (or maintaining) the primary task by
sampling this task. To decide the next action to
take, we apply Thompson Sampling (Russo et al.,
2018; Chapelle and Li, 2011) to trade off exploita-
tion (maximizing immediate performance) and ex-
ploration (investing to accumulate new informa-
tion that might improve performance in the fu-
ture). In Thompson Sampling (Russo et al., 2018),
instead of taking action k that maximizes the ex-
pectation (i.e., arg maxk Ep[θk]), we randomly
sample the primary task improvement probabil-
ity θ̂k from the posterior distribution θ̂k ∼ p(θk),
and take the action k that maximizes the sam-
pled primary task improvement probability, i.e.,
arg maxk θ̂k. At the end of the training, the task
selection can proceed either via a threshold on
the expectation, or take the top-K tasks, and run
stage-2 using the selected task subset as auxiliary
tasks (details in Sec. 3.4).

Stronger Prior for Primary Task Note that at
the beginning of training, model performance is
usually guaranteed to improve from the initial ran-
dom choices. This causes issues in updating arm
values because less useful tasks will be given high
arm values when they happen to be sampled at the
beginning. To resolve this issue, we initially set
a slightly stronger prior/arm-value in favor of the
arm corresponding to the primary task. Intuitively,
the bandit will then sample the primary model
more often at the beginning, and then start ex-
ploring auxiliary tasks when the primary model’s

Algorithm 1 BernThompson(N,α, β, γ, α0, β0)

1: for tb = 1, 2, . . . do
2: # sample model:
3: for k = 1, . . . , N do
4: Sample θ̂k ∼ Beta(αk, βk)
5: end for
6: # select and apply action:
7: xstb ← argmaxk θ̂k
8: Apply xstb and observe rtb
9: # non-stationarity

10: for k = 1, . . . , N do
11: α̂k = (1− γ)αk + γα0

12: β̂k = (1− γ)βk + γβ0
13: if k 6= xstb then
14: (αk, βk)← (α̂k, β̂k)
15: else
16: (αk, βk)← (α̂k, β̂k)+(rtb , 1− rtb)
17: end if
18: end for
19: end for

performance stabilizes (as the arm value of the
primary model will start decreasing because sam-
pling it in later rounds produces smaller additional
improvements).

Non-Stationary Multi-Armed Bandit Also
note that the intrinsic usefulness of each task
varies throughout the training (e.g., the primary
task might be more important at the beginning,
but not necessarily at the end), and thus the agent
faces a non-stationary system. In such cases, the
agent should always be encouraged to explore in
order to track changes as the system drifts. One
simple approach to inject non-stationarity is to
discount the relevance of previous observations.
Thus we introduce a tunable decay ratio γ, and
modify Eq. 3.3 as follows:

(αk, βk) =

{
(α̂k, β̂k), if k 6= xstb
(α̂k, β̂k)+(rtb , 1− rtb), if k = xstb

(7)
where α̂k = (1−γ)αk+γα0 and β̂k = (1−γ)βk+
γβ0, and γ controls how quickly uncertainty is in-
jected into the system (α0, β0 are parameters of the
prior). Algorithm 1 presents the Thompson Sam-
pling algorithm with a Beta-Bernoulli MAB.

3.4 Automatic Mixing Ratio Learning via
Gaussian Process

The right side of Fig. 2 illustrates our Gaus-
sian Process controller for automatic learning of
the MTL training mixing ratio (see definition in
Sec. 3.2). Given the selected auxiliary tasks from
the previous section, the next step is to find a
proper mixing ratio of training these selected tasks
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along with the primary task.2 Manual tuning
of this mixing ratio via a large grid search over
the hyperparameter values is very time and com-
pute expensive (even when the number of selected
auxiliary tasks is small, e.g., 2 or 3). Thus,
in our second stage, we instead apply a non-
parametric Bayesian approach to search for the
approximately-optimal mixing ratio. In particular,
we use a ‘Gaussian Process’ to sequentially search
for the mixing ratio by trading off exploitation and
exploration automatically. Next, we describe our
Gaussian Process approach in detail.

A Gaussian Process (Rasmussen, 2004; Snoek
et al., 2012; Shahriari et al., 2016), GP(µ0, k),
is a non-parametric model that is fully charac-
terized by a mean function µ0 : X 7→ R and
a positive-definite kernel or covariance function
k : X × X 7→ R. Let x1,x2, ...,xn denote any
finite collections of n points, where each xi rep-
resents a choice of the mixing ratio (i.e., the ra-
tio η1:η2:..ηN described in Sec. 3.2), and fi =
f(xi) is the (unknown) function values evaluated
at xi (true performance of the model given the se-
lected mixing ratio). Let y1, y2, ..., yn be the cor-
responding noisy observations (the validation per-
formance at the end of training). In the context
of GP Regression (GPR), f = {f1, ..., fn} are as-
sumed to be jointly Gaussian (Rasmussen, 2004),
i.e., f |X ∼ N (m,K), where, mi = µ0(xi)
is the mean vector, and Ki,j = k(xi,xj) is the
covariance matrix. Then the noisy observations
y = y1, ..., yn are normally distributed around f
as follows: y|f ∼ N (f , σ2I).

Given D = (x1, y1), ..., (xn0 , yn0), the set of
random initial observations, where xi represents a
mixing ratio and yi represents the corresponding
model’s validation performance. Next, we model
the GP based on these initial observations as de-
scribed above. We sample a next point xn0+1 (a
mixing ratio in our case) from this GP and get its
corresponding model performance yn0+1, and up-
date the GP again by now considering the n0 + 1
points (Rasmussen, 2004). We continue this pro-
cess for a fixed number of steps. Next, we will
discuss how we perform the sampling (based on
acquisition functions) and the kernels used for cal-

2Note that ideally Gaussian Process can also learn to set
the mixing ratio of less important tasks to zero, hence allow-
ing it to essentially also perform the task selection step. How-
ever, in practice, first applying our task selection Thompson-
Sampling model (Sec. 3.3) allows GP to more efficiently
search the mixing ratio space for the small number of filtered
auxiliary tasks, as shown in results of Sec. 6.1.

culating the covariance.

Acquisition Functions Here, we describe the
acquisition functions for deciding where to sam-
ple next. While one could select the points that
maximize the mean function, this does not al-
ways lead to the best outcome (Hoffman et al.,
2011). Since we also have the variance of the
estimates along with the mean value of each
point xi, we can incorporate this information
into the optimization. In this work, we use
the GP-Hedge approach (Hoffman et al., 2011;
Auer et al., 1995), which probabilistically chooses
one of three acquisition functions: probability
of improvement, expected improvement, and up-
per confidence bound. Probability of improve-
ment acquisition functions measure the probabil-
ity that the sampled mixing ratio xi leads to an
improvement upon the best observed value so far
(τ ), P(f(xi) > τ). Expected improvement addi-
tionally incorporates the amount of improvement,
E[(f(xi) − τ)I(f(xi) > τ)]. The Gaussian Pro-
cess upper confidence bound (GP-UCB) algorithm
measures the optimistic performance upper bound
of the sampled mixing ratio (Srinivas et al., 2009),
µi(xi) + λσi(xi), for some hyper-parameter λ.

Matern Kernel The covariance function (or ker-
nel) defines the nearness or similarity of two points
in the Gaussian Process. Here, we use the auto-
matic relevance determination (ARD) Matern ker-
nel (Rasmussen, 2004), which is parameterized by
ν > 0 that controls the level of smoothness. In
particular, samples from a GP with such a kernel
are differentiable bν − 1c times. When ν is half-
integer (i.e. ν = p + 1/2 for non-negative integer
p), the covariance function is a product of an expo-
nential and a polynomial of order p. In the context
of machine learning, usual choices of ν include
3/2 and 5/2 (Shahriari et al., 2016).

4 Experiment Setup

Datasets: We evaluate our models on several
datasets from the GLUE benchmark (Wang et al.,
2018): RTE, QNLI, MRPC, SST-2, and CoLA.
For all these datasets, we use the standard splits
provided by Wang et al. (2018). For dataset de-
tails, we refer the reader to the GLUE paper.3

3We did not include the remaining tasks as primary tasks,
because STS-B is a regression task; MNLI is a very large
dataset and does not benefit much from MTL with other tasks
in the GLUE benchmark; and QQP and WNLI have dev/test
discrepancies and adversarial label issues as per the GLUE
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Models RTE MRPC QNLI CoLA SST-2
BiLSTM+ELMo (Single-Task) (Wang et al., 2018) 50.1 69.0/80.8 69.4 35.0 90.2
BiLSTM+ELMo (Multi-Task) (Wang et al., 2018) 55.7 76.2/83.5 66.7 27.5 89.6
Our Baseline 54.0 75.7/83.7 74.0 30.8 91.3
Our AUTOSEM 58.7 78.5/84.5 79.2 32.9 91.8

Table 1: Test GLUE results of previous work, our baseline, and our AUTOSEM MTL framework. We report
accuracy and F1 for MRPC, Matthews correlation for CoLA, and accuracy for all others.

Training Details: We use pre-trained ELMo4 to
obtain sentence representations as inputs to our
model (Peters et al., 2018), and the Gaussian Pro-
cess implementation is based on Scikit-Optimize5,
and we adopt most of the default configurations.
We use accuracy as the validation criterion for all
tasks. For all of our experiments except QNLI
and SST-2, we apply early stopping on the val-
idation performance plateau.6 The set of candi-
date auxiliary tasks consists of all 2-sentence clas-
sification tasks when the primary task is a classi-
fication of two sentences, whereas it consists of
all two-sentence and single-sentence classification
tasks when the primary task is a classification of a
single sentence.7 Since the utility estimates from
the multi-armed bandit controller are noisy, we
choose the top two tasks based on expected task
utility estimates, and include additional tasks if
their utility estimate is above 0.5. All the results
reported are the aggregate of the same experiment
with two runs (with different random seeds) unless
explicitly mentioned.8 We use a two-layer LSTM-
RNN with hidden size of 1024 for RTE and 512
for the rest of the models, and use Adam Opti-
mizer (Kingma and Ba, 2014). The prior parame-
ters of each task in stage-1 are set to be α0 = 1,
β0 = 1, which are commonly used in other liter-
ature. For stage-1, the bandit controller iteratively
selects batches of data from different tasks dur-
ing training to learn the approximate importance
of each auxiliary task (Graves et al., 2017). In
stage-2 (Gaussian Process), we sequentially draw
samples of mixing ratios and evaluate each sam-
ple after full training (Snoek et al., 2012). Without
much tuning, we used approximately 200 rounds

website’s FAQ: https://gluebenchmark.com/faq
4https://allennlp.org/elmo
5https://scikit-optimize.github.io
6In our initial experiments, we found early stopping on

larger datasets led to sub-optimal performance, and hence we
used a pre-specified maximum number of steps instead.

7We made this design decision because there are only
two single-sentence tasks in GLUE, so we mix them with 2-
sentence tasks to allow more auxiliary choices.

8We use the average of validation results across runs as
the tuning criterion, and use the ensemble of models across
runs for reporting the test results.

for the stage-1 bandit-based approach, where each
round consist of approximately 10 mini-batches of
optimization. For stage-2, we experimented with
15 and 20 as the number of samples to draw and
found that 15 samples for MRPC and 20 samples
for the rest of the tasks work well. This brings the
total computational cost for our two-stage pipeline
to be approximately (15+1)x and (20+1)x, where x
represents the time taken to run the baseline model
for the given task. This is significantly more ef-
ficient than a grid-search based manually-tuned
mixing ratio setup (which would scale exponen-
tially with the number of tasks).

5 Results

5.1 Baseline Models

Table 1 shows the results of our baseline and pre-
vious works (Wang et al., 2018). We can see that
our single-task baseline models achieve stronger
performance on almost all tasks in comparison to
previous work’s single-task models.9 Next, we
present the performance of our AUTOSEM frame-
work on top of these strong baselines.

5.2 Multi-Task Models

Table 1 also presents the performance of our AU-
TOSEM framework-based MTL models. As can
be seen, our MTL models improve significantly
(see Table 3 for standard deviations) upon their
corresponding single-task baselines for all tasks,
and achieve strong improvements as compared to
the fairly-comparable9 multi-task results of previ-
ous work (Wang et al., 2018).10 During the task

9Note that we do not report previous works which fine-
tune large external language models for the task (e.g.,
OpenAI-GPT and BERT), because they are not fairly com-
parable w.r.t. our models. Similarly, we report the non-
attention based best GLUE models (i.e., BiLSTM+ELMo)
for a fair comparison to our non-attention baseline. Our ap-
proach should ideally scale to large pre-training/fine-tuning
models like BERT, given appropriate compute resources.

10Note that even though the performance improvement
gaps of Wang et al. (2018) (MTL vs. baseline) and our im-
provements (AUTOSEM vs. our improved baseline) are sim-
ilar, these are inherently two different setups. Wang et al.
(2018) MTL is based on a ‘one model for all’ setup (Kaiser
et al., 2017; McCann et al., 2018), whereas our approach in-
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selection stage of our AUTOSEM framework, we
observe that MultiNLI is chosen as one of the aux-
iliary tasks in all of our MTL models. This is intu-
itive given that MultiNLI contains multiple genres
covering diverse aspects of the complexity of lan-
guage (Conneau et al., 2017). Also, we observe
that WNLI is sometimes chosen in the task selec-
tion stage; however, it is always dropped (mixing
ratio of zero) by the Gaussian Process controller,
showing that it is not beneficial to use WNLI as
an auxiliary task (intuitive, given its small size).
Next, we discuss the improvements on each of
the primary tasks and the corresponding auxiliary
tasks selected by AUTOSEM framework.
RTE: Our AUTOSEM approach achieves stronger
results w.r.t. the baseline on RTE (58.7 vs. 54.0).
During our task selection stage, we found out that
QQP and MultiNLI tasks are important for RTE
as auxiliary tasks. For the second stage of auto-
matic mixing ratio learning via Gaussian Process,
the model learns that a mixing ratio of 1:5:5 works
best to improve the primary task (RTE) using re-
lated auxiliary tasks of QQP and MultiNLI.
MRPC: AUTOSEM here performs much bet-
ter than the baseline on MRPC (78.5/84.5 vs.
75.7/83.7). During our task selection stage, we
found out that RTE and MultiNLI tasks are impor-
tant for MRPC as auxiliary tasks. In the second
stage, AUTOSEM learned a mixing ratio of 9:1:4
for these three tasks (MRPC:RTE:MultiNLI).
QNLI: Again, we achieve substantial improve-
ments with AUTOSEM w.r.t. baseline on QNLI
(79.2 vs. 74.0). Our task selection stage learned
that WNLI and MultiNLI tasks are best as auxil-
iary tasks for QNLI. We found that the Gaussian
Process further drops WNLI by setting its mixing
ratio to zero, and returns 20:0:5 as the best mixing
ratio for QNLI:WNLI:MultiNLI.
CoLA: We also observe a strong performance im-
provement on CoLA with our AUTOSEM model
w.r.t. our baseline (32.9 vs. 30.8). During our
task selection stage, we found out that MultiNLI
and WNLI tasks are important for CoLA as auxil-
iary tasks. In the second stage, GP learns to drop
WNLI, and found the mixing ratio of 20:5:0 for
CoLA:MultiNLI:WNLI.
SST-2: Here also our AUTOSEM approach per-
forms better than the baseline (91.8 vs. 91.3). The
task selection stage chooses MultiNLI, MRPC,

terpretably chooses the 2-3 tasks that are most beneficial for
the given primary task. Also see Sec. 4 for comparison of
training speeds for these two setups.

Name Validation Test
Baseline 78.3 75.7/83.7
w/o Stage-1 80.3 76.3/83.8
w/o Stage-2 80.3 76.7/83.8
Final MTL 81.2 78.5/84.5

Table 2: Ablation results on the two stages of our AU-
TOSEM framework on MRPC.

and WNLI as auxiliary tasks and the stage-2 Gaus-
sian Process model drops MRPC and WNLI by
setting their mixing ratio to zero (learns ratio of
13:5:0:0 for SST-2:MultiNLI:MRPC:WNLI).

6 Analysis

6.1 Ablation on MTL stages

In this section, we examine the usefulness of each
stage of our two-stage MTL pipeline.11

Removing Stage-1: The purpose of the Beta-
Bernoulli MAB in stage-1 is to find useful aux-
iliary tasks for the given primary task. Here, to
understand its importance, we remove the task se-
lection part, and instead directly run the Gaussian
Process (GP) model on all tasks (see ‘w/o Stage-
1’ row in Table 2). We can see that by remov-
ing the task selection stage, the Gaussian Process
model can still outperform the baseline, indicat-
ing the usefulness of the GP, but the large mixing
ratio search space causes the GP to be unable to
efficiently find the best mixing ratio setting.

Removing Stage-2: Given the selected tasks from
stage-1, the goal of the Gaussian Process in stage-
2 is to efficiently find the approximately-optimal
mixing ratio. To examine its usefulness, we re-
place the Gaussian Process controller by manually
tuning a grid of mixing ratios, where the num-
ber of tuning experiments equals to the number of
steps used in the Gaussian Process model (for a
fair comparison). Table 2 shows the results by re-
moving stage-2. We can see that a grid search over
hyper-parameters can improve upon the baseline,
indicating the usefulness of stage-1 task selection,
but a reasonable-sized fair-comparison grid search
(i.e., not exhaustive over all ratio values) is not
able to match our stage-2 GP process that lever-
ages prior experimental results to more efficiently
find the best setting.

11We present this ablation only on MRPC for now, because
GP stage-2 takes a lot of time without the task selection stage.
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Figure 3: Visualization of task utility estimates from
the multi-armed bandit controller on SST-2 (primary
task). The x-axis represents the task utility, and the y-
axis represents the corresponding probability density.
Each curve corresponds to a task and the bar corre-
sponds to their confidence interval.

6.2 Stability of MTL Models

In this section, we provide the mean and standard
deviation of our baseline and multi-task models
(over three runs) on the validation set. Note that
the test set is hidden, so we cannot do these stud-
ies on it. As seen in Table 3, our multi-task models
clearly surpass the performance of baseline mod-
els w.r.t. standard deviation gaps, in all tasks.

6.3 Visualization of Task Selection

In Fig. 3, we show an example of the task util-
ity estimates from the stage-1 multi-armed bandit
controller (Eq. 3.3) on SST-2. The x-axis repre-
sents the task utility, and the y-axis represents the
probability density over task utility. Each curve
represents a task (the blue curve corresponds to
the primary task, SST-2, and the rest of the curves
correspond to auxiliary tasks), and the width of the
bars represents the confidence interval of their es-
timates. We can see that the bandit controller gives
the highest (and most confident) utility estimate
for the primary task, which is intuitive given that
the primary task should be the most useful task for
learning itself. Further, it gives 2-3 tasks moderate
utility estimates (the corresponding expected val-
ues are around 0.5), and relatively lower utility es-
timates for the remaining tasks (the corresponding
expected values are lower than 0.5).

6.4 Educated-Guess Baselines

We additionally experimented with ‘educated-
guess’ baseline models, where MTL is performed
using manual intuition mixtures that seem a

Name RTE MRPC QNLI CoLA SST-2
BASELINES

Mean 58.6 78.3 74.9 74.6 91.4
Std 0.94 0.31 0.30 0.44 0.36

MULTI-TASK MODELS
Mean 62.0 81.1 76.0 75.7 91.8
Std 0.62 0.20 0.18 0.18 0.29

Table 3: Validation-set performance mean and standard
deviation (based on three runs) of our baselines and
Multi-task models in accuracy.

priori sensible.12 For example, with MRPC
as the primary task, our first educated-guess
baseline is to choose other similar paraphrasing-
based auxiliary tasks, i.e., QQP in case of
GLUE. This MRPC+QQP model achieves
80.8, whereas our AUTOSEM framework chose
MRPC+RTE+MultiNLI and achieved 81.2. Fur-
thermore, as our second educated-guess baseline,
we added MultiNLI as an auxiliary task (in
addition to QQP), since MultiNLI was helpful for
all tasks in our MTL experiments. This educated-
guess MRPC+QQP+MultiNLI model achieves
80.9 (vs. 81.2 for our AUTOSEM model). This
suggests that our AUTOSEM framework (that
automatically chose the seemingly less-related
RTE task for MRPC) is equal or better than
manual intuition based educated-guess models.

7 Conclusion

We presented the AUTOSEM framework, a two-
stage multi-task learning pipeline, where the first
stage automatically selects the relevant auxiliary
tasks for the given primary task and the second
stage automatically learns their optimal mixing ra-
tio. We showed that AUTOSEM performs better
than strong baselines on several GLUE tasks. Fur-
ther, we ablated the importance of each stage of
our AUTOSEM framework and also discussed the
intuition of selected auxiliary tasks.
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