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Abstract

State-of-the-art LSTM language models
trained on large corpora learn sequential
contingencies in impressive detail and have
been shown to acquire a number of non-local
grammatical dependencies with some success.
Here we investigate whether supervision with
hierarchical structure enhances learning of a
range of grammatical dependencies, a ques-
tion that has previously been addressed only
for subject-verb agreement. Using controlled
experimental methods from psycholinguistics,
we compare the performance of word-based
LSTM models versus two models that rep-
resent hierarchical structure and deploy it in
left-to-right processing: Recurrent Neural
Network Grammars (RNNGs) (Dyer et al.,
2016) and a incrementalized version of the
Parsing-as-Language-Modeling configuration
from Charniak et al. (2016). Models are tested
on a diverse range of configurations for two
classes of non-local grammatical dependen-
cies in English—Negative Polarity licensing
and Filler–Gap Dependencies. Using the
same training data across models, we find that
structurally-supervised models outperform
the LSTM, with the RNNG demonstrating
best results on both types of grammatical
dependencies and even learning many of the
Island Constraints on the filler–gap depen-
dency. Structural supervision thus provides
data efficiency advantages over purely string-
based training of neural language models in
acquiring human-like generalizations about
non-local grammatical dependencies.

1 Introduction

Long Short-Term Memory Recurrent Neural Net-
works (LSTMs) (Hochreiter and Schmidhuber,
1997) have achieved state of the art language mod-
eling performance (Jozefowicz et al., 2016) and
have been shown to indirectly learn a number
of non-local grammatical dependencies, such as

subject-verb number agreement and filler-gap li-
censing (Linzen et al., 2016; Wilcox et al., 2018),
although they fail to learn others, such as Nega-
tive Polarity Item and anaphoric pronoun licensing
(Marvin and Linzen, 2018; Futrell et al., 2018).
LSTMs, however, require large amounts of train-
ing data and remain relatively uninterpretable.
One model that attempts to address both these is-
sues is the Recurrent Neural Network Grammar
(Dyer et al., 2016). RNNGs are generative mod-
els, which represent hierarchical syntactic struc-
ture and use neural control to deploy it in left-to-
right processing. They can achieve state-of-the-art
broad-coverage scores on language modeling and
phrase structure parsing tasks, learn Noun Phrase
headedness (Kuncoro et al., 2016), and outper-
form linear models at learning subject-verb num-
ber agreement (Kuncoro et al., 2018).

In this work, we comparatively evaluate
LSTMs, RNNGs and a third model trained using
syntactic supervision—similar to the Parsing-as-
Language-Modeling configuration from Charniak
et al. (2016)—by conducting side-by-side tests on
two novel English grammatical dependencies, de-
ploying methodology from psycholinguistics. In
this paradigm, the language models are fed with
hand-crafted sentences, designed to draw out be-
havior that belies whether they have learned the
underlying syntactic dependency. For example,
Linzen et al. (2016) and Kuncoro et al. (2018)
assessed how well neural language models were
able to learn subject-verb number agreement by
feeding the prefix The keys to the cabinet... If the
model assigns a relatively higher probability to the
grammatical plural verb are than the ungrammat-
ical singular is it can be said to have learned the
agreement dependency. Here, we investigate two
non-local dependencies that remain untested for
RNNGs: Negative Polarity Item (NPI) licensing
is the dependency between a negative licensor—
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such as not or none—and a Negative Polarity Item
such as any or ever. The filler–gap dependency
is the dependency between a filler—such as who
or what—and a gap, which is an empty syntactic
position. Both dependencies have been shown to
be learnable by LSTMs trained on large amounts
of data (Wilcox et al., 2018; Marvin and Linzen,
2018). Here, we investigate whether, after control-
ling for size of the training data, explicit hierarchi-
cal representation results in learning advantages.

2 Methodology

2.1 Neural Language Models

Recurrent Neural Network LMs model a sen-
tence in a purely sequential basis, without ex-
plicitly representing the latent syntactic structure.
We use the LSTM architecture in Hochreiter and
Schmidhuber (1997), deploying a 2-layer LSTM
language model with hidden layer size 256, input
embedding size 256, and dropout rate 0.3. We re-
fer to this model as the “LSTM” model in the fol-
lowing sections.
Recurrent Neural Network Grammars (Dyer
et al., 2016) predict joint probability of a sentence
as well as its syntactic parse. RNNGs contain
three sub-components, all of which are LSTMS:
the neural stack, which keeps track of the cur-
rent parse, the output buffer, which keeps track
of previously-seen terminals and the history of ac-
tions. At each timestep the model can take three
different actions: NT, which introduces a non-
terminal symbol—such as a VP or NP—onto the
stack; SHIFT, which places a terminal symbol onto
the top of the stack, or REDUCE. REDUCE pops
terminal symbols (words) off the stack until a non-
terminal phrasal boundary is encountered; it then
combines the terminals into a single representation
via a bidirectional-LSTM and pushes the newly-
reduced constituent back onto the stack. By reduc-
ing potentially unbounded constituents within the
neural stack, the RNNG is able to create structural
adjacency between co-dependent words that may
be linearly distal. Following Dyer et al. (2016),
we use 2-layer LSTMs with 256 hidden layer size
for the stack-LSTM, action LSTM, and terminal
LSTM, and dropout rate 0.3.
ActionLSTM: It is the combination of the neural
stack and the REDUCE function that may give the
RNNG an advantage over purely sequential mod-
els (such as LSTMS) or models that deploy syn-
tactic supervision without explicit notions of com-

positionality. In order to assess the gains from
explicitly modeling compositionality, we com-
pare the previous two models against an incre-
mentalized version of the Parsing-as-Language-
Modeling configuration presented in Charniak
et al. (2016). In this model, we strip an RNNG
of its neural stack and output buffer, and train it
to jointly predict the action sequence of a parse
tree as well as the upcoming word. The action
space of the model contains a set of non-terminal
nodes (NT), terminal generations (GEN), as well
as a (REDUCE) action, which functions only as a
generic phrasal boundary marker. The model was
trained using embedding size 256, dropout 0.3,
and was able to achieve a parsing F1 score of 92.81
on the PTB, which is only marginally better than
the performance of the original architecture on the
same test set, as reported in Kuncoro et al. (2016).
We will refer to this model as the “ActionLSTM”
model in the following sections.

All three models are trained on the training-
set portion of the English Penn Treebank stan-
dardly used in the parsing literature (PTB; sec-
tions 2-21), which consists of about 950,000 to-
kens of English language news-wire text (Marcus
et al., 1993). The RNNG and Action models get
supervision from syntactic annotation–crucially,
only constituent boundaries and major syntactic
categories, with functional tags and empty cat-
egories stripped away—whereas the LSTM lan-
guage model only uses the sequences of termi-
nal words. We train the models until performance
converges on the held-out PTB development-set
data.

2.2 Psycholinguistic Assessment Paradigm
2.2.1 Surprisal
The surprisal, or negative log-conditional prob-
ability, S(xi) of a sentence’s ith word xi, tells us
how strongly xi is expected in context and is also
known to correlate with human processing diffi-
culty (Smith and Levy, 2013; Hale, 2001; Levy,
2008). For sentences out of context, surprisal is:

S(xi) =− log p(xi|x1 . . .xi−1)

We investigate a model’s knowledge of a gram-
matical dependency, which is the co-variance be-
tween an upstream licensor and a downstream li-
censee, by measuring the effect that an upstream
licensor has on the surprisal of a downstream li-
censee. The idea is that grammatical licensors
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should set up an expectation for the licensee thus
reducing its surprisal compared to minimal pairs
in which the licensor is absent. We derive the
word surprisal from the LSTM language model by
directly computing the negative log value of the
predicted conditional probability p(xi|x1 . . .xi−1)
from the softmax layer.

Following the method in Hale et al. (2018)
for estimating word surprisals from RNNG, we
use word-synchronous beam search (Stern et al.,
2017) to find a set of most likely incremental
parses and sum their forward probabilities to ap-
proximate P(x1, . . .xi) and P(x1, . . .xi−1) for com-
puting the surprisal. We set the action beam size to
100 and word beam size to 10. We ensured that the
correct incremental RNNG parses were present
on the beam immediately before and throughout
the material over which surprisal was calculated
through manual spot inspection; the correct parse
was almost always at the top of the beam.

2.2.2 Wh-Licensing Interaction
Unlike NPI, licensing, the filler—gap dependency
is the covariance between a piece of extant mate-
rial, a filler, and a piece of absent material, a gap.
Here, we employ the methodology from Wilcox
et al. (2018), which introduces the Wh-Licensing
Interaction. To compute the wh-licensing inter-
action for a sentence, Wilcox et al. (2018) con-
struct four variants, given in (1), that exhibit the
four possible combinations of fillers and gaps for
a specific syntactic position. The underscores are
for presentational purposes only and were not in-
cluded in experimental materials.
(1) a. I know that the lion devoured the gazelle at sunrise.

[-FILLER -GAP]
b. *I know what the lion devoured the gazelle at sunrise.

[+FILLER -GAP]
c. *I know that the lion devoured at sunrise. [-FILLER

+GAP]
d. I know what the lion devoured at sunrise.

[+FILLER +GAP]

If a filler sets up an expectation for a gap, then
filled syntactic positions should be more surpris-
ing in the context of a filler than in a minimally-
different, non-filler variants. We measure this ex-
pectation by calculating the difference of surprisal
between (1-b) and (1-a). Similarly, if gaps require
fillers to be licensed, transitions from transitive
verbs to adjunct clauses that skip an obligatory ar-
gument should be less surprising in the context of
a filler than in minimally-different, non-filler vari-
ants. We measure this expectation by computing
the difference in surprisal between (1-c) and (1-d).

Because the filler–gap dependency is a two-way
interaction, the wh-licensing interaction consists
of the difference of these two differences, which
is given in (2).
(2) (S(1-b)−S(1-a))− (S(1-c)−S(1-d))
For basic filler—gap dependencies, we expect the
presence of a filler to set up a global expectation
for a gap, thus we measure the summed licens-
ing interaction across the entire embedded clause,
which we expect to be significantly above zero if
the model is learning the dependency. Our exper-
imental materials include only vocabulary items
within the PTB, avoiding the need for Out of Vo-
cabulary handling. We determine statistical sig-
nificance using a mixed-effects linear regression
model, using sum-coded conditions (Baayen et al.,
2008). For within-model comparison we use sur-
prisal as the dependent variable and experimental
conditions as predictors; for between-model com-
parison, we use wh-licensing interaction as the de-
pendent variable with model type and experimen-
tal conditions as predictors. All figures depict by-
item means, with error bars representing 95% con-
fidence intervals, computed by subtracting out the
within-item means from each condition as advo-
cated by Masson and Loftus (2003). The strength
of a wh-licensing interaction can be interpreted as
either its mean size in bits, or as its mean size
normalized by its standard deviation across items.
The latter is Cohen’s d, rooted in signal-detection
theory (?); because all our experiments involve
similar number of items, it is roughly proportional
to the size of wh-interaction relative to the size of
the associated confidence interval.1

3 Negative Polarity Item Licensing

In English, Negative Polarity Items (NPIs), such
as any, ever must be in the SCOPE of a negative
LICENSOR such as no, none, or not (?Ladusaw,
1979). Crucially, the scope of a licensor is char-
acterized structurally, not in purely linear terms;
for present purposes, a sufficient approximation is
that an NPI is in the proper scope of a licensor if
it is c-commanded by it. Thus while ever in (3-b)
and (3-d) is grammatical because it is licensed by
no in the main-clause subject, ever is ungrammat-
ical in (3-c) despite the linearly preceding no, be-

1All of our experiments were pre-registered online
at http://aspredicted.org/blind.php?x={xd9cw9,
3xv2du, jd384m, cy6zp6, 2hk4gf, zt73qt, f9pk9f,
ab9f3h, yt6pi4}
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cause inside a subject-modifying relative clause is
not a valid position for an NPI licensor; we call
this a DISTRACTOR position.
(3) a. *The senator that supported the measure has ever

found any support from her constituents.
b. No senator that supported the measure has ever found

any support from her constituents.
c. *The senator that supported no measure has ever

found any support from her constituents.
d. No senator that supported no measure has ever found

any support from her constituents.

Learning of NPI licensing conditions by LSTM
language models trained on large corpora has pre-
viously been investigated by Marvin and Linzen
(2018) and Futrell et al. (2018). Futrell et al.
found that the language models of both Gulordava
et al. (2018) and Jozefowicz et al. (2016) (here-
after called ‘Large Data LSTMs’) learned a con-
tingency between licensors and NPIs: the NPIs in
examples like (3) were lower-surprisal when lin-
early preceded by negative licensors. However,
both papers reported that these models failed to
constrain the contingency along the correct struc-
tural lines: negative NPI surprisal was decreased
at least as much by a preceding negative distractor
as by a negative licensor.

Syntactic supervision might plausibly facilitate
learning of NPI licensing conditions. We tested
this following the method of Futrell et al. (2018),
constructing 27 items on the design of in (3), with
two variants: one included ever and omitting any,
and one including any and omitting ever. Figure 1,
left panel, shows the results. For the RNNG and
the ActionLSTM, negative licensors and distrac-
tors alike reduced surprisal of both NPIs (p < 0.05
for the RNNG, p < 0.001 for the ActionLSTM).
For the LSTM, negative licensors and distractors
alike reduced surprisal of ever (both p < 0.01),
but not any. This may seem surprising as any is
considerably more frequent than ever (123 vs. 727
instances in the training data), but any’s non-NPI
uses (e.g., I will eat anything fried) may compli-
cate its learning.

From Figure 1 it is also apparent that the RNNG
and ActionLSTM show signs of stronger NPI li-
censing effects from negation in the licensor po-
sition than in the distractor position, at least for
ever. To quantify this, we follow Marvin and
Linzen (2018) in computing item-mean classifica-
tion accuracies, with classification being consid-
ered correct if the NPI is assigned higher prob-
ability in context for (3-b) than for (3-c). Re-
sults are shown in Figure 1, right panel. No

Figure 1: NPI Licensing at left: Y-axis shows sur-
prisal at the NPI, x-axis indicates polarity of the c-
commanding licensor, and color indicates distractor
polarity. Licensing accuracy at right: Y-axis shows
classification accuracy, x-axis indicates the NPI tested,
and color indicates the model. Error bars represent
95% binomial confidence intervals.

model is significantly above chance for any, but
for ever the syntactically supervised models per-
form much better: The RNNG reaches 85% per-
formance, and the ActionLSTM 88%, both sig-
nificantly above chance (p < 0.001 by binomial
test for each), and are not significantly different
from each other, but both better than the LSTM
(p < 0.01 for the RNNG/LSTM; p < 0.001 for the
ActionLSTM/LSTM by Fisher’s exact test). To
our knowledge this is the first demonstration of a
language model learning the licensing conditions
for an NPI without direct supervision.

Overall, we find that syntactic supervision facil-
itates the contingency of NPIs on a negative licen-
sor in context, but is not sufficient for clean gen-
eralization of the structural conditions on NPI li-
censing with the training dataset used here.

4 Filler–Gap Dependencies

The dependency between a FILLER, which is a wh-
word such as who or what, and a GAP, which is
an empty syntactic position, is characterized by a
number of properties, some of which were tested
for large data LSTMs by Wilcox et al. (2018).
Here we investigate the effect of syntactic super-
vision on filler–gap dependency learning. Syntac-
tic annotation of the dependency itself is stripped
from the training data (Figure 2), so syntactic su-
pervision can play only an indirect facilitatory role
for the models’ neural learning mechanisms.
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Figure 2: Example of filler–gap dependency represen-
tation in the Penn Treebank. Non-local dependency
annotation indicated in bold, red font is stripped from
the training data, so that the RNNG must learn about
the filler-gap dependency purely through neural gener-
alization.

Location of Gap All Fillers ‘Who’ ‘What’
All Positions 13907 1888 660
Subject Position 6632 1510 236
Object Position 2080 12 332
Indirect Object Position 57 0 6

Table 1: Filler—Gap Dependency Statistics for the
Penn Treebank training data (used for both models).

4.1 Flexibility of Gap Position
The filler–gap dependency is flexible: a filler can
license a gap in any of a number of syntactic posi-
tions, including the argument positions of subject,
object, and indirect object, as illustrated in (4), as
well as in other positions (e.g. the adjunct position
for how in Figure 2).
(4) a. I know who introduced the accountant to the guests

after lunch.
b. I know who the CEO introduced to the guests after

lunch.
c. I know who the CEO introduced the accountant to

after lunch.

These gap positions differ in frequency, however
(Table 1): the majority (63.1%) are in some argu-
ment structure position, of which the vast major-
ity (75.6%) are subject position (mostly subject-
extracted relative clauses), 23.7% are object posi-
tion, and 0.7% are indirect object position.

Using the wh-interaction measure described in
Section 2.2, Wilcox et al. (2018) showed that
large-data LSTMs learn filler–gap dependencies
for all three argument positions, with the size
of the wh-interaction generally largest for subject
gaps and smallest for indirect-object gaps. Ta-
ble 1 suggests that this gradation may reflect fre-
quency of learning signal, with the dependency be-
ing learned more robustly the more frequent the
extraction type. We applied the same method,

adapting Wilcox et al.’s items to the smaller train-
ing dataset. The results can be seen in the upper-
left panel of Figure 3.

All three models learn the filler-gap dependency
for subject and object positions, and there is sug-
gestive but inconclusive evidence for learning in
the rare indirect object position. We see stronger
dependency learning for more frequent gap types,
as was found for large data LSTMs, and the super-
vised models show a much stronger wh-licensing
effect than the LSTM.

4.2 Syntactic Hierarchy

As with NPIs, the filler–gap dependency is subject
to a number of hierarchical, structural constraints.
The most basic of these constraints is that the filler
must be “above” the gap in the appropriate struc-
tural sense (to a first approximation, the filler must
c-command the gap, though see e.g. ? for qualifi-
cations). Hence who in (5-a) is a legitimate extrac-
tion from the relative clause, but (5-b) is ungram-
matical as the gap is in the matrix clause, above
the filler.
(5) a. The policeman who the criminal shot with his gun

shocked the jury during the trial.
b. *The policeman who the criminal shot the politician

with his gun shocked during the trial.

A model that properly generalizes this constraint
on the filler–gap dependency should not show
a wh-interaction for cases like (5-b): an undis-
charged who filler should not make the matrix-
clause gap particularly more expected. As far
as we are aware, no prior work has investigated
this property of the filler–gap dependency in lan-
guage models; we do so here. Because the con-
text in (5) does not allow for an immediate that
clause initiation for the –FILLER condition as in
(1), we instantiate this condition by contrasting the
+FILLER,+GAP condition of (5-b) with the vari-
ants in (6), where the who filler is immediately
discharged as the RC verb’s extracted subject:
(6) a. *The policeman who knows that the criminal shot

the politician with his gun shocked during the trial.
-FILLER,+GAP

b. *The policeman who the criminal shot the politi-
cian with his gun shocked the jury during the trial.
+FILLER,–GAP

c. The policeman who knows that the criminal shot
the politician with his gun shocked the jury during
the trial. -FILLER,–GAP

We created 22 items following the templates of
(5-a) (Subject condition) and (5-b) (Matrix con-
dition); results are shown in the top-right panel
of 3. The supervised models show a large
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Figure 3: Model results for the basic properties of filler–gap licensing. “N” indicates grammatical conditions in
which models should display strong wh-licensing interaction, “–” indicates ungrammatical conditions in which
models should display reduced wh-licensing interaction. The RNNG model significantly outperforms the LSTM
model in 8/13 grammatical cases; the ActionLSTM model outperforms the LSTM model in 5/13 cases; and the
RNNG outperforms the ActionLSTM model in 6/13 cases where strong licensing is expected.

wh-licensing interaction effect for a gap inside
the subject-modifying relative clause—with the
RNNG demonstrating more licensing interaction
than the ActionLSTM—and neither model inap-
propriately generalizes this licensing effect to a
matrix-clause gap. The LSTM shows no wh-
licensing effects in either position, suggesting
that syntactic supervision facilitates appropriately
generalized filler-gap dependencies for subject-
modifying relative clauses.2

4.3 Robustness to Intervening Material

For a model that learns human-like syntactic gen-
eralizations and maintains accurate phrase-like
representations throughout a string, filler–gap de-
pendencies should be robust to linearly inter-
vening material that does not change the tree-
structural relationship between the filler and the
gap. Wilcox et al. (2018) found that the large-
data RNNs described earlier exhibit a robust wh-
interaction of this type, by introducing an optional

2Results for the Larger Data LSTM models for the Hier-
archy and Unboundedness experiments presented here can be
found in the appendix.

postnominal modifier between filler and gap to
sentence templates like (7), with no modification
(7-a), short (3–5 word) modifiers (7-b), medium
(6–8 word) modifiers (7-c), and long (8–12 word)
modifiers (7-d).

(7) a. I know what your friend gave to Alex last weekend.

b. I know what your friend in the hat gave to Alex
last weekend.

c. I know what your friend who you ate lunch with yes-
terday gave to Alex last weekend.

d. I know what your friend who recently took you on a
walking tour of the city gave to Alex last weekend.

We adapted their materials for the small training
dataset and tested our three models; results are
shown in 3, bottom-left panel. The RNNG shows a
robust licensing interaction that does not diminish
with additional intervening material (all d > 1.3).
The LSTM shows smaller wh-licensing interac-
tions across the board; these are still substantial
in the No Modifier and Short Modifier conditions
(d = 0.88,d = 0.98, respectively), but are smaller
in the Medium Modifier and Long Modifier con-
ditions (d = 0.45,d = 0.37 respectively), suggest-
ing less robustness to intervening material. The
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ActionLSTM shows strong interactions in the No
Modifier condition (d = 1.02), but weak interac-
tion once any modifying material is introduced
(d < 0.4 in all other conditions). This result is sig-
nificant, as it indicates that RNNG is able to lever-
age the structural locality afforded by the neural
stack to maintain robust gap expectancy.

4.4 Unboundedness

For humans, filler–gap dependencies are not only
robust to linearly intervening material that does
not change their tree-structural relationship, they
can be STRUCTURALLY NON-LOCAL as well,
propagating through intervening syntactic struc-
tures (subject to constraints examined in Sec-
tion 5). For example, a filler can be extracted from
multiply-nested complement clauses as in (8-b):
(8) a. I know who your aunt insulted at the party.

b. I know who the chauffeur said [S the hostess believed
[S the butler reported [S her friend thinks your aunt
insulted at the party.]]]

Humans show sensitivity to a single layer of sen-
tential embedding when processing filler—gap de-
pendencies in an offline ‘complexity rating’ task
(Phillips et al., 2005). This may due to the rela-
tive frequency of single versus doubly-embedded
filler—gap dependencies. In our training data
there were 13,907 examples of filler—gap depen-
dencies, however only 758 examples that spanned
two layers of sentential embedding and 19 that
spanned three layers. There were no instances of
filler—gap dependencies spanning over more than
three sentential embeddings, as in (8-b).

The unboundedness of filler–gap dependencies
has not previously been tested for contemporary
language models. To do this, we constructed
22 test items like (8), varying embedding depth
within-item between zero, one, two, three, and
four levels, and measured the resulting licens-
ing interactions. The results are in Figure 3,
bottom-right panel. No model’s filler–gap de-
pendency is perfectly robust to clausal embed-
ding. The LSTM’s wh-licensing interaction starts
out small and diminishes with embedding depth.
The RNNG and ActionLSTM show strong wh-
licensing interaction in the unembedded condition
but no significant wh-licensing interaction after
even a single layer of embedding. Since these
experimental materials are new, we also tested
the large-data LSTMs on them, which exhibited
much larger and more robust filler–dependency ef-
fects (Appendix B). Hence the syntactic supervi-

θ

ν

ζX

δγ

β

filler

α

×

Figure 4: Anatomy of an island constraint. If node X is
an island, then a filler outside X cannot associate with
a gap inside X. For our analyses, successful learning
of an island constraint implies that we should not see a
wh-licensing interaction at the first part of the material
δ immediately following the potential gap site.

sion explored here is not sufficient to guarantee
that learned filler–gap dependencies can be struc-
turally unbounded.

5 Island Constraints

A crucial exception to the flexibility and unbound-
edness of filler–gap dependencies is that ISLAND

CONSTRAINTS prevent association of a filler and
a gap through certain types of syntactic nodes, il-
lustrated in Figure 4 (Ross, 1967). Contempo-
rary theories variously attribute island effects to
grammatical rules, incremental processing consid-
erations, or discourse-structural factors (Ambridge
and Goldberg, 2008; Hofmeister and Sag, 2010;
Sprouse and Hornstein, 2013). In our setting,
a language model is sensitive to an island con-
straint if it fails to show a wh-licensing interac-
tion between a filler and a gap that cross an is-
land. Wilcox et al. (2018) found evidence that
large-data LSTMs are sensitive to some island
constraints (although see Chowdhury and Zampar-
elli (2018) for a contrasting view), but not to oth-
ers. Here we investigate whether LSTMs would
learn these from smaller training datasets, and if an
RNNG’s syntactic supervision provides a learning
advantage for island constraints. In this section
we measure the wh-licensing interaction in the
material immediately following the potential gap
site, which is guaranteed to implicate the model’s
(lack of) expectation for a gap inside the island,
rather than throughout the entire embedded clause,
which also implicates filler-driven expectations af-
ter the end of the island.

5.1 Adjunct Islands

Adjunct clauses block the filler–gap dependency.
Wilcox et al. (2018) found evidence that large-
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data LSTMs are sensitive to adjunct islands, as ev-
idenced by attenuated and often fully eliminated
wh-licensing interactions for materials like (9-b)–
(9-c) relative to (9-a) below. (In this and the sub-
sequent subsections, the post-gap material used for
wh-interaction computation is in bold.)
(9) a. The director discovered what the robbers stole last

night. [OBJECT]
b. *The director discovered what the security guard slept

while the robbers stole last night. [ADJ-BACK]
c. *The director discovered what, while the robbers stole

last night, the security guard slept. [ADJ-FRONT]

We adapted these materials; results are in Fig-
ure 5, upper-left panel. The RNNG shows a strong
licensing interaction in the baseline main-clause
object extraction position, but no licensing inter-
action for a gap in an adjunct either at the back or
front of the main clause. Because RNNGs failed
our test for unboundedness of filler–gap depen-
dency, however (Section 4.4), this result is incon-
clusive as to whether anything corresponding to an
island constraint is learned. The LSTM and the
ActionLSTM show no sign of filler–gap depen-
dency attenuation from adjunct islands, in contrast
to previous findings using the LSTM architecture
on much larger training datasets.

5.2 Wh Islands

Embedded sentences introduced by wh- words are
also islands; hence, (10-c) is anomalous but (10-a)
and (10-b) are not.
(10)a. I know what the guide said the lion devoured yes-

terday. [NULL COMP]
b. I know what the guide said that the lion devoured

yesterday. [THAT COMP]
c. *I know what the guide said whether the lion devoured

yesterday. [WH- COMP]

Wilcox et al. (2018) found that the large-data
LSTMs learned this island constraint: the wh-
licensing interaction was eliminated or severely at-
tenuated for the WH-COMPlementizer variant but
not for the other variants. Results for our three
models are in Figure 5, top-right panel. These ma-
terials paint a slightly more optimistic picture than
the results of Section 4.4 for the RNNG’s abil-
ity to propagate a gap expectation from a filler
down one level of clausal embedding. However,
no models show an appreciable attenuation in the
WH- COMP condition that would suggest an is-
land constraint-like generalization.

5.3 Complex Noun-Phrase Islands

Extractions from within clauses dominated by a
lexical head noun are unacceptable; this is the

Complex Noun Phrase Constraint. For example,
(11-b) and (11-c) are unacceptable object extrac-
tions compared with (11-a); the same acceptability
pattern holds for subject extractions.
(11)a. I know what the collector bought last week.

[ARGUMENT extraction]
b. *I know what the collector bought the painting which

depicted last week. [WH- COMPLEX NP]
c. *I know what the collector bought the painting that

depicted last week. [THAT- COMPLEX NP]

Wilcox et al. (2018) found that large-data LSTM
behavior reflected this island constraint, with at-
tenuated wh-licensing interactions for complex
NPs like (11-b)–(11-c) and for analogous complex
NPs involving subject extractions. Our results for
adaptations of their materials are shown in Fig-
ure 5, bottom-left panel. All three models show at-
tenuated wh-licensing interactions inside complex
NPs in subject position, with the licensing interac-
tion in the grammatical ARGUMENT STRUCTURE

position greatest for the RNNG and ActionLSTM.
This may be taken as an indication of Complex NP
Constraint-like learning, but is inconclusive due to
the models’ general failure to propagate gap ex-
pectations into embedded clauses (Section 4.4).

5.4 Subject Islands
Prepositional phrases attaching to subjects are is-
lands: this is the Subject Constraint, and ac-
counts for the unacceptability of (12-d) compared
to (12-c) (Huang, 1998).
(12)a. I know what the collector bought yesterday. [OBJ

VERBAL-ARG]
b. I know what the collector bought a painting of yes-

terday. [OBJ PREP-ARG]
c. I know what sold for a high price at auction. [SUBJ

VERBAL-ARG]
d. *I know what a painting of sold for a high price at

auction. [SUBJ PREP-ARG]

Wilcox et al. (2018) found that the wh-licensing
interactions of large-data LSTMs fail to distin-
guish between subject-modifying PPs, which can-
not be extracted from, and object-modifying PPs,
which can. Our results for adaptations of their ma-
terials can be seen in Figure 5, bottom right panel.
The syntactically supervised models show a sig-
nificant decrease between the verbal argument and
prepositional argument conditions in subject posi-
tion (p < 0.001 for RNNG; p < 0.01 for ActionL-
STM), and no significant difference between the
two conditions in object position (however, note
that the licensing in object position is significantly
less than the licensing in the grammatical, Verbal
Argument Subject position, following the pattern
in 4.1). LSTMs fare worse, showing a clear wh-
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Figure 5: Model results for Syntactic Islands. “N” indicates grammatical conditions in which models should
display strong wh-licensing interaction, “–” indicates ungrammatical conditions in which models should display
reduced wh-licensing interaction.

licensing interaction for subject-modifying PPs,
which should be islands, and no wh-licensing in-
teraction for object-modifying PPs.

6 Conclusion

In this paper we have argued that structural su-
pervision provides advantages over purely string-
based training of neural language models in ac-
quiring more human-like generalizations about
non-local grammatical dependencies. We have
also demonstrated how the neural compositional-
ity of the RNNG architecture can provide even
further advantages, especially at maintaining ex-
pectations into structurally-local but linearly dis-
tant material. We compared RNNG, ActionL-
STM and LSTM models using recently developed
controlled experimental materials, and developed
additional experimental materials to further test
several characteristics of grammatical dependency
learning for neural language models (Sections 4.2,
4.4). We found advantages for syntactic super-
vision in learning conditions for Negative Polar-
ity Item licensing and a majority of tests involv-
ing filler–gap dependencies, showing particularly
strong wh-licensing effects in tree-structurally-
local contexts. On basic filler—gap dependency

properties the RNNG significantly outperformed
the LSTM in 8/13 and the ActionLSTM outper-
formed the LSTM on 5/13 cases where strong
licensing interaction was expected. While the
RNNG, and to some extent the ActionLSTM, ex-
hibited more humanlike behavior than the LSTM
for a number of Island Constraints, the tests
were inconclusive due to the models’ failure to
propagate gap expectation into embedded clauses:
island-like behavior may merely be sensitivity
to general syntactic complexity, not the highly-
specific syntactic arrangements that constitute the
family of island constructions. Thus, major-
category supervision does not provide enough in-
formation for the neural component to learn fully
robust and human-like filler—gap dependencies
from 1-million words alone. However, for some
dependencies tested (i.e. NPIs) structural supervi-
sion on 1 million words provides better outcomes
than even large-data LSTMs. Scaling the gains de-
rived from structural supervision is a challenge for
data-scarce NLP and is the basis for future work.
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Appendix
We present results for two large data LSTM mod-
els on novel experiments described in the paper.
The two models tested here are the ‘BIG LSTM
+ CNN Inputs’ from Jozefowicz et al. (2016)
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(the ‘google’ model) and the highest-performing
model presented in the supplementary materials of
Gulordava et al. (2018) (the ‘Gulordava’ model).
Both models where shown in (Wilcox et al., 2018)
to represent filler—gap dependencies and some is-
land constraints.

A Syntactic Hierarchy
We tested the two large LSTM models using our
stimuli from the syntactic hierarchy experiment
and measured the wh-licensing interaction across
the entire embedded clause. The results of this ex-
periment can be seen in Figure 6. Both models
show significant licensing interaction in the gram-
matical Subject condition (p < 0.001), and a sig-
nificant reduction in licensing interaction between
the Subject and Matrix conditions (p < 0.001 in
both models). Additionally, there is a significant
licensing interaction in the Matrix condition for
the Google model, but not so for the Gulordava
model.

B Unboundedness
We tested the two large LSTM models from
Wilcox et al. (2018) following the stimuli from
our unboundedness experiment, with two variants,
one that included gaps in Object position and one
that included gaps in indirect object or Goal posi-
tion. The results can be seen in Figure 7. For the
Google model in Object position, we find a signif-
icant reduction of wh-licensing interaction across
more than three layers of embedding (p < 0.001).
For the Gulordava model, we find a significant re-
duction in wh-licensing interaction after only one
layer of embedding (p < 0.001). In the Goal posi-
tion: For the Google model, we find a significant
reduction in licensing interaction after two layers
of embedding (p < 0.05 for 2 layers, p < 0.001
for 3-4 layers). For the Gulordava model, we find
no significant licensing interaction after one layer
of embedding. These results indicate the larger
LSTMs are able to thread gap expectation through
embedded clauses.
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Figure 6: Syntactic Hierarchy. %s indicate conditions
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Figure 7: Unboundedness, %s indicate conditions
where we expect a strong wh-licensing interaction.


