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Abstract

Existing computational models to understand
hate speech typically frame the problem as a
simple classification task, bypassing the un-
derstanding of hate symbols (e.g., 14 words,
kigy) and their secret connotations. In this pa-
per, we propose a novel task of deciphering
hate symbols. To do this, we leverage the Ur-
ban Dictionary and collected a new, symbol-
rich Twitter corpus of hate speech. We investi-
gate neural network latent context models for
deciphering hate symbols. More specifically,
we study Sequence-to-Sequence models and
show how they are able to crack the ciphers
based on context. Furthermore, we propose
a novel Variational Decipher and show how it
can generalize better to unseen hate symbols
in a more challenging testing setting.

1 Introduction

The statistics are sobering. The Federal Bureau
of Investigation of United States' reported over
6,000 criminal incidents motivated by bias against
race, ethnicity, ancestry, religion, sexual orienta-
tion, disability, gender, and gender identity dur-
ing 2016. The most recent 2016 report shows
an alarming 4.6% increase, compared with 2015
data®. In addition to these reported cases, thou-
sands of Internet users, including celebrities, are
forced out of social media due to abuse, hate
speech, cyberbullying, and online threats. While
such social media data is abundantly available, the
broad question we are asking is—What can ma-
chine learning and natural language processing do
to help and prevent online hate speech?

The vast quantity of hate speech on social me-
dia can be analyzed to study online abuse. In

Uhttps://www.fbi.gov/news/stories/2016-hate-crime-
statistics

Zhttps://www.fbi.gov/news/stories/2015-hate-crime-
statistics-released

a longstanding racist prison gang

based in the Nevada prison system
| wrote this prayer .. my son passed away
4 years ago. * un my bedside table to
remind m~ daily of my job in this world as a
True Aryan Warrior. White Pride World Wide
Please enjoy this my far-_.y, 1 truly love you
aII!’%Q 1488/2316 WPWW TTMFTT.

14=The 14 words, 88=Heil Hitler, 23=White, 16=Power

@

Figure 1: An example tweet with hate symbols.

recent years, there has been a growing trend of
developing computational models of hate speech.
However, the majority of the prior studies focus
solely on modeling hate speech as a binary or
multiclass classification task (Djuric et al., 2015;
Waseem and Hovy, 2016; Burnap and Williams,
2016; Wulczyn et al., 2017; Pavlopoulos et al.,
2017).

While developing new features for hate speech
detection certainly has merits, we believe that un-
derstanding hate speech requires us to design com-
putational models that can decipher hate sym-
bols that are commonly used by hate groups.
Figure 1 shows an example usage of hate sym-
bols in an otherwise seemingly harmless tweet
that promotes hate. For example, Aryan War-
rior is a longstanding racist prison gang based
in the Nevada prison system. WPWW is the
acronym for White Pride World Wide. The hate
symbols /488 and 2316 are more implicit. 74
symbolizes the 14 words: “WE MUST SECURE
THE EXISTENCE OF OUR PEOPLE AND A
FUTURE FOR WHITE CHILDREN”, spoken by
members of the Order neo-Nazi movement. H
is the 8th letter of the alphabet, so 88=HH=Heil
Hitler. Similarly, W is the 23rd and P is the
16th letter of the alphabet, so 2316=WP=White
Power.
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In this work, we propose the first models for de-
ciphering hate symbols. We investigate two fami-
lies of neural network approaches: the Sequence-
to-Sequence models (Sutskever et al., 2014; Cho
et al., 2014) and a novel Variational Decipher
based on the Conditional Variational Autoen-
coders (Kingma and Welling, 2014; Sohn et al.,
2015; Larsen et al., 2016). We show how these
neural network models are able to guess the mean-
ing of hate symbols based on context embeddings
and even generalize to unseen hate symbols during
testing. Our contributions are three-fold:

e We propose a novel task of learning to deci-
pher hate symbols, which moves beyond the
standard formulation of hate speech classifi-
cation settings.

e We introduce a new, symbol-rich tweet
dataset for developing computational models
of hate speech analysis, leveraging the Urban
Dictionary.

e We investigate a sequence-to-sequence neu-
ral network model and show how it is able to
encode context and crack the hate symbols.
We also introduce a novel Variational Deci-
pher, which generalizes better in a more chal-
lenging setting.

In the next section, we outline related work in text
normalization, machine translation, conditional
variational autoencoders, and hate speech analy-
sis. In Section 3, we introduce our new dataset for
deciphering hate speech. Next, in Section 4, we
describe the design of two neural network mod-
els for the decipherment problem. Quantitative
and qualitative experimental results are presented
in Section 5. Finally, we conclude in Section 6.

2 Related Work

2.1 Text Normalization in Social Media

The proposed task is related to text normal-
ization focusing on the problems presented by
user-generated content in online sources, such as
misspelling, rapidly changing out-of-vocabulary
slang, short-forms and acronyms, punctuation er-
rors or omissions, etc. These problems usually
appear as out-of-vocabulary words. Extensive re-
search has focused on this task (Beaufort et al.,
2010; Liu et al., 2011; Gouws et al., 2011; Han
and Baldwin, 2011; Han et al., 2012; Liu et al.,

2012; Chrupata, 2014). However, our task is dif-
ferent from the general text normalization in so-
cial media in that instead of the out-of-vocabulary
words, we focus on the symbols conveying hateful
meaning. These hate symbols can go beyond lex-
ical variants of the vocabulary and thus are more
challenging to understand.

2.2 Machine Translation

An extensive body of work has been dedi-
cated to machine translation. Knight et al. (2006)
study a number of natural language decipherment
problems using unsupervised learning. Ravi and
Knight (2011) further frame the task of machine
translation as decipherment and tackle it without
parallel training data. Machine translation using
deep learning (Neural Machine Translation) has
been proposed in recent years. Sutskever et al.
(2014) and Cho et al. (2014) use Sequence to Se-
quence (Seq2Seq) learning with Recurrent Neu-
ral Networks (RNN). Bahdanau et al. (2015) fur-
ther improve translation performance using the
attention mechanism. Google’s Neural Machine
Translation System (GNMT) employs a deep at-
tentional LSTM network with residual connec-
tions (Wu et al., 2016). Recently, machine transla-
tion techniques have been also applied to explain
non-standard English expressions (Ni and Wang,
2017). However, our deciphering task is not the
same as machine translation in that hate symbols
are short and cannot be modeled as language.

Our task is more closely related to (Hill et al.,
2016) and (Noraset et al., 2017). Hill et al. (2016)
propose using neural language embedding mod-
els to map the dictionary definitions to the word
representations, which is the inverse of our task.
Noraset et al. (2017) propose the definition mod-
eling task. However, in their task, for each word
to be defined, its pre-trained word embedding is
required as an input, which is actually the prior
knowledge of the words. However, such kind of
prior knowledge is not available in our decipher-
ment task. Therefore, our task is more challenging
and is not simply a definition modeling task.

2.3 Conditional Variational Autoencoder

Unlike the original Seq2Seq model that directly
encodes the input into a latent space, the Varia-
tional Autoencoder (VAE) (Kingma and Welling,
2014) approximates the underlying probability
distribution of data. VAE has shown promise
in multiple generation tasks, such as handwritten
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digits (Kingma and Welling, 2014; Salimans et al.,
2015), faces (Kingma and Welling, 2014; Rezende
et al,, 2014), and machine translation (Zhang
et al., 2016). Conditional Variational Autoen-
coder (Larsen et al., 2016; Sohn et al., 2015) ex-
tends the original VAE framework by incorporat-
ing conditions during generation. In addition to
image generation, CVAE has been successfully
applied to some NLP tasks. For example, Zhao
et al. (2017) apply CVAE to dialog generation,
while Guu et al. (2018) use CVAE for sentence
generation.

2.4 Hate Speech Analysis

Closely related to our work are Pavlopoulos et al.
(2017); Gao et al. (2017). Pavlopoulos et al.
(2017) build an RNN supplemented by an at-
tention mechanism that outperforms the previous
state of the art system in user comment moder-
ation (Wulczyn et al., 2017). Gao et al. (2017)
propose a weakly-supervised approach that jointly
trains a slur learner and a hate speech classifier.
While their work contributes to the automation of
harmful content detection and the highlighting of
suspicious words, our work builds upon these con-
tributions by providing a learning mechanism that
deciphers suspicious hate symbols used by com-
munities of hate to bypass automated content mod-
eration systems.

3 Dataset

In this section, we describe the dataset we col-
lected for hate symbol decipherment.

3.1 Hate Symbols

We first collect hate symbols and the correspond-
ing definitions from the Urban Dictionary. Each
term with one of the following hashtags: #hate,
#racism, #racist, #sexism, #sexist, #nazi is se-
lected as a candidate and added to the set Sy. We
collected a total of 1,590 terms. Next, we expand
this set by different surface forms using the Urban
Dictionary API. For each term s; in set Sy, we ob-
tain a set of terms I?; that have the same mean-
ing as s; but with different surface forms. For
example, for the term brown shirt, there are four
terms with different surface forms: brown shirt,
brown shirts, Brownshirts, brownshirt. Each term
in R; has its own definition in Urban Dictionary,
but since these terms have exactly the same mean-
ing, we select a definition d; with maximum up-

vote/downvote ratio for all the terms in R;. For
example, for each term in the set R;={brown shirt,
brown shirts, Brownshirts, brownshirt}, the corre-
sponding definition is “Soldiers in Hitler’s storm
trooper army, SA during the Nazi regime...” After
expanding, we obtain 2,105 distinct hate symbol
terms and their corresponding definitions. On av-
erage, each symbol consists of 9.9 characters, 1.5
words. Each definition consists of 96.8 characters,
17.0 words.

3.2 Tweet Collection

For each of the hate symbols, we collect all tweets
from 2011-01-01 to 2017-12-31 that contain ex-
actly the same surface form of hate symbol in the
text. Since we only focus on hate speech, we
train an SVM (Cortes and Vapnik, 1995) classi-
fier to filter the collected tweets. The SVM model
is trained on the dataset published by Waseem
and Hovy (2016). Their original dataset contains
three labels: Sexism, Racism, and None. Since the
SVM model is used to filter the non-hate speech,
we merge the instances labeled as sexism and
racism, then train the SVM model to do binary
classification. After filtering out all the tweets
classified as non-hate, our final dataset consists of
18,667 (tweet, hate symbol, definition) tuples.

4 Our Approach

We formulate hate symbol deciphering as the fol-
lowing equation:

Obj= >

(u,s,d*)EX

log p(d”|(u,s)) (1)

X is the dataset, (u, s,d*) is the (tweet, symbol,
definition) tuple in the dataset. The inputs are the
tweet and the hate symbol in this tweet. The out-
put is the definition of the symbol. Our objective is
to maximize the probability of the definition given
the (tweet, symbol) pair. This objective function
is very similar to that of machine translation. So
we first try to tackle it based on the Sequence-to-
Sequence model, which is commonly used in ma-
chine translation.

4.1 Sequence-to-Sequence Model

We implement an RNN Encoder-Decoder model
with attention mechanism based on Bahdanau
et al. (2015). We use GRU (Cho et al., 2014) for
decoding. However, instead of also using GRU
for encoding, we found that LSTM (Hochreiter
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Figure 2: Our Seq2Seq model. u, s,, are the word em-
beddings of the tweet text and hate symbol. s is the
character embedding of the symbol. ¢, is the encoded
tweet and £ is the concatenated hidden states. d is the
generated text. Detailed explanation is in section 4.1.

and Schmidhuber, 1997) performs better on our
task. Therefore, our Seq2Seq model uses LSTM
encoders and GRU decoders. An overview of our
Seq2Seq model is shown in Figure 2. The compu-
tation process is shown as the following equations:

Cuy hy = fu(u) (2)
Csws how = fsw(sw) (3)
Csey hse = fsc(sc) 4)

u is the word embedding of the tweet text, s,, is
the word embedding of the hate symbol, s, is the
character embedding of the symbol. f,, fsw, and
fsc are LSTM functions. ¢y, ¢y, Csc are the out-
puts of the LSTMs at the last time step and h,,
hsw, hse are the hidden states of the LSTMs at
all time steps. We use two RNN encoders to en-
code the symbol, one encodes at the word level
and the other one encodes at the character level.
The character-level encoded hate symbol is used to
provide the feature of the surface form of the hate
symbol while the word-level encoded hate symbol
is used to provide the semantic information of the
hate symbol. The hidden states of the two RNN
encoders for hate symbols are concatenated:

h == hsw D hsc (5)

¢y, 1s the vector of encoded tweet text. The tweet
text is the context of the hate symbol, which
provides additional information during decoding.
Therefore, the encoded tweet text it is also fed into

p(d*|(u,

the RNN decoder. The detailed attention mecha-
nism and decoding process at time step ¢ are as
follows:

wy = o(lw(di—1 @ er—1)) (6)
T

a =Y wiih (7
i=1

by = o(le(di—1 ® az)) ®)

o, e = k(cy @by, er—1) 9

p(dilu, s) = o(lo(0r))

wy is the attention weights at time step ¢ and wy;
is the iy, weight of wy. d;_; is the generated word
at last time step and e;_; is the hidden state of the
decoder at last time step. h; is the iy, time step
segment of h. I, l., and [, are linear functions.
o is a nonlinear activation function. k is the GRU
function. oy is the output and e; is the hidden state
of the GRU. p(dy|u, s) is the probability distribu-
tion of the vocabulary at time step ¢. The attention
weights w; are computed based on the decoder’s
hidden state and the generated word at time step
t — 1. Then the computed weights are applied to
the concatenated hidden states h of encoders. The
result a; is the context vector for the decoder at
time step t. The context vector and the last gen-
erated word are combined by a linear function [,
followed by a nonlinear activation function. The
result b; is concatenated with the encoded tweet
context ¢,, and then fed into GRU together with
the decoder’s last hidden state e;—;. Finally, the
probability of each vocabulary word is computed
from oy.

(10)

4.2 Variational Decipher

The Variational Decipher is based on the CVAE
model, which is another model that can be
used to parametrize the conditional probability
s)) in the objective function (Equation
1). Unlike the Seq2Seq model, which directly
parametrizes p(d*|(u, s)), our variational decipher
formulates the task as follows:

Obj= > logp(d|(u,s))
(u,s,d*)eX

= Y log [ pld e,z

(u,s,d*)eX ?

1D

where z is the latent variable. p(d*|(u, s) is writ-
ten as the marginalization of the product of two
terms over the latent space. Since the integration
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Figure 3: The Variational Decipher. Note that this
structure is used during training. During testing, the
structure is slightly different. d* is the word embed-
dings of the definition. =z is the encoded definition.
c is the concatenation of the encoded tweet and hate
symbol. p and p’ are output distributions. z is the la-
tent variable. The definitions of other variables are the
same as those in Figure 2. Detailed explanation is in
section 4.2.

over z is intractable, we instead try to maximize
the evidence lower bound (ELBO). Our variational
lower bound objective is in the following form:

Obj =E[log py(d*|z,u, s)]—
Dk p[pa(z|d*, u, s)||ps(z|u, s)]

where  p,(d*|z,u,s) is the likelihood,
Palz|d*,u,s) is the posterior, pg(z|u,s) is
the prior, and Dy, is the Kullback-Leibler (KL)
divergence. We use three neural networks to
model these three probability distributions. An
overview of our variational decipher is shown
in Figure 3. We first use four recurrent neural
networks to encode the (tweet, symbol, definition)
pair in the dataset. Similar to what we do in the
Seq2Seq model, there are two encoders for the
hate symbol. One is at the word level and the other
is at the character level. The encoding of symbols
and tweets are exactly the same as in our Seq2Seq
model (see Equations 2-4). The difference is
that we also need to encode definitions for the
Variational Decipher.

xz, ha = fd(d*)

(12)

(13)

Here, f; is the LSTM function. x is the output of
the LSTM at the last time step and A is the hidden
state of the LSTM at all time steps. The condition
vector c is the concatenation of the encoded sym-
bol words, symbol characters, and the tweet text:
C=Cy P Csw P Cse (14)
We use multi-layer perceptron (MLP) to model
the posterior and the prior in the objective func-
tion. The posterior network and the prior network
have the same structure and both output a prob-
ability distribution of latent variable z. The only
difference is that the input of the posterior net-
work is the concatenation of the encoded defini-
tion = and the condition vector ¢ while the input
of the prior network is only the condition vector
c. Therefore, the output of the posterior network
P = pa(z|d*, u, s) and the output of the prior net-
work p’ = pg(z|u, s). By assuming the latent vari-
able z has a multivariate Gaussian distribution, the
actual outputs of the posterior and prior networks
are the mean and variance: (u, X2) for the posterior
network and (1, X') for the prior network.

1Y =g(xdc)
//ng E/ — g/(C)

15)
(16)

g is the MLP function of the posterior network and
¢’ is that of the prior network. During training,
the latent variable z is randomly sampled from
the Gaussian distribution N'(x, ) and fed into
the likelihood network. During testing, the pos-
terior network is replaced by the prior network,
so z is sampled from N(x/,¥’). The likelihood
network is modeled by an RNN decoder with at-
tention mechanism, very similar to the decoder of
our Seq2Seq model. The only difference lies in
the input for the GRU. The decoder in our Varia-
tional Decipher model is to model the likelihood
Po(d*|z,u, s), which is conditioned on the latent
variable, tweet context, and the symbol. There-
fore, for the Variational Decipher, the condition
vector ¢ and the sampled latent variable z are fed
into the decoder.

Ot, €t :k(z@C@bt,etfl) (17)
e;—1 1s the hidden state of the RNN decoder at the
last time step. k is the GRU function. oy is its
output and e; is its hidden state. Detailed decoding
process and explanations are in section 4.1.
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According to the objective function in Equation
12, the loss function of the Variational Decipher is
as follows:

L =Lgrgc+ LkL
:EZNpa(Zld*,u,S) [_ log ps&(d* ’27 u, 8)]+ (18)
DKL[pOt(Z‘d*v u, s)Hpg(z\u, S)]

It consists of two parts. The first part Lrgc
is called reconstruction loss. Optimizing Lrpc
can push the sentences generated by the posterior
network and the likelihood network closer to the
given definitions. The second part L, is the KL
divergence loss. Optimizing this loss can push
the output Gaussian Distributions of the prior net-
work closer to that of the posterior network. This
means we teach the prior network to learn the
same knowledge learned by the posterior network,
such that during testing time, when the referen-
tial definition d* is no longer available for gener-
ating the latent variable z, the prior network can
still output a reasonable probability distribution
over the latent variable z. The complete training
and testing process for the Variational Decipher is
shown in Algorithm 1. M is the predefined maxi-
mum length of the generated text. BCE refers to
the Binary Cross Entropy loss.

5 Experiments

5.1 Experimental Settings

We use the dataset collected as described in sec-
tion 3 for training and testing. We randomly se-
lected 2,440 tuples for testing and use the remain-
ing 16,227 tuples for training. Note that there are
no overlapping hate symbols between the training
dataset U and the testing dataset D.

We split the 2,440 tuples of the testing dataset D
into two separate parts, Dg and D4. Dy consists of
1,681 examples and D, consists of 759 examples.
In the first testing dataset D, although each hate
symbol does not appear in the training dataset, the
corresponding definition appears in the training
dataset. In the second testing dataset D , neither
the hate symbols nor the corresponding definitions
appear in the training dataset. We do this split be-
cause deciphering hate symbols in these two cases
has different levels of difficulty.

This split criterion means that for each hate
symbol in Dy, there exists some symbol in the
training dataset that has the same meaning but in
different surface forms. For example, the hate

Algorithm 1 Train & Test Variational Decipher

1: function TRAIN(U)

2 randomly initialize network parameters p, «, [3;
3 for epoch = 1, E do

4 for (tweet, symbol, de finition) in U do
5: get embeddings u, Sy, S¢, d*;

6: compute x, ¢ and h with RNN encoders;
7 compute p, 3 with the posterior network;
8 compute ', ¥’ with the prior network;

9 compute KL-divergence loss Lk r.;

10: sample z = reparameterize(u,X);
11: initialize the decoder state eg = ¢;
12: Lrec =0;

13: fort =1, M do

14: compute attention weights w;
15: compute o¢, e; and p(d¢|z, u, s);
16: dy = indmaz(p(ds|z,u, s));

17: LREc—‘r:BCE(dt,d:);

18: if d;==EOS then

19: break;

20: end if

21: end for

22: update ¢, a, Bon L = Lrgc + Lkr;
23: end for

24: end for

25: end function

26:

27: function TEST(V)
28: for (tweet, symbol, de finition) in V do

29: get embeddings u, Sw, Sc;

30: compute c and h with RNN encoders;
31: compute ', ¥’ with the prior network;
32: sample z = reparameterize(y’,%');
33: initialize the decoder state eg = ¢;

34 fort =1, M do

35: compute attention weights w;

36: compute o¢, e; and p(d¢|z, u, s);
37: dy = indmazx(p(di|z,u, s));

38: if d;==EOS then

39: break;

40: end if

41: end for

42: end for

43: end function

symbol wigwog and Wig Wog have the same def-
inition but one is in the training dataset, the other
is in the first testing dataset. We assume that such
types of hate symbols share similar surface forms
or similar tweet contexts. Therefore, the first test-
ing dataset Dy is to evaluate how well the model
captures the semantic similarities among the tweet
contexts in different examples or the similarities
among different surface forms of a hate symbol.
Deciphering the hate symbols in the second test-
ing dataset Dy is more challenging. Both the
unseen hate symbols and definitions require the
model to have the ability to accurately capture the
semantic information in the tweet context and then
make a reasonable prediction. The second testing
dataset Dy is used to evaluate how well the model
generalizes to completely new hate symbols.
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Dataset | Method | BLEU | ROUGE-L | METEOR
D Seq2Seq | 37.80 41.05 36.67
s VD 34.77 32.96 31.03
D Seq2Seq | 25.44 12.96 5.54
d VD 28.38 14.01 5.41
D Seq2Seq | 33.96 32.32 26.98
VD 32.75 27.00 23.16

Table 1: The BLEU, ROUGE-L and METEOR scores
on testing datasets. VD refers to the Variational Deci-
pher. D is the entire testing dataset. D is the first part
of D and Dy is the second part. The better results are
in bold.

For the Seq2Seq model, we use negative log-
likelihood loss for training. Both models are op-
timized using Adam optimizer (Kingma and Ba,
2015). The hyper-parameters of two models are
exactly the same. We set the maximum generation
length M = 50. The hidden size of the encoders
is 64. The size of the word embedding is 200 and
that of character embedding is 100. The word em-
beddings and character embeddings are randomly
initialized. Each model is trained for 50 epochs.
We report the deciphering results of two models
on three testing datasets D, D and Dy.

5.2 Experimental Results

Quantitative Results: We use equally weighted
BLEU score for up to 4-grams (Papineni et al.,
2002), ROUGE-L (Lin, 2004) and METEOR
(Banerjee and Lavie, 2005) to evaluate the deci-
pherment results. The results are shown in Ta-
ble 1. Figure 4 shows the BLEU score achieved
by the two models on three testing datasets D,
D; and D, during the training process. Both our
Seq2Seq model and Variational Decipher achieve
reasonable BLEU scores on the testing datasets.
The Seq2Seq model outperforms the Variational
Decipher on D while Variational Decipher out-
performs Seq2Seq on Dy. Note that D, is more
than twice the size of D,. Therefore, Seq2Seq out-
performs Variational Decipher on the entire testing
dataset D. The different performance of the two
models on Dg and D, is more obvious in Figure 4.
The gap between the performance of the Seq2Seq
model on Dy and Dy is much larger than that be-
tween the performance of the Variational Decipher
on these two datasets.

Human Evaluation: We employed crowd-
sourced workers to evaluate the deciphering re-
sults of two models. We randomly sampled 100
items of deciphering results from D, and another

- M - Seq2SeqonDs
Seq2Seq on D
- @ - Seq2Seq on Dd
—Jl— VD onDs
VDonD
—@— VDonDd

50 Epochs

0 10 20 30 40

Figure 4: BLEU scores of two models on the testing
dataset D, Dy and Dg. The three dotted curves rep-
resent the performance of the Seq2Seq model while
the three solid curves represent the performance of the
Variational Decipher.

Dataset | Seq2Seq Lose | Seq2Seq Win Tie
D, 31.0% 32.0% 37.0%
Dy 30.5% 22.0% 47.5%

Table 2: The results of human evaluation on two sepa-
rate testing datasets Dy and Dg.

100 items from D,. Each item composes a choice
question and each choice question is assigned to
five workers on Amazon Mechanical Turk. In
each choice question, the workers are given the
hate symbol, the referential definition, the origi-
nal tweet and two machine-generated plain texts
from the Seq2Seq model and Variational Decipher.
Workers are asked to select the more reasonable
of the two results. In each choice question, the
order of the results from the two models is per-
muted. Ties are permitted for answers. We batch
five items in one assignment and insert an artificial
item with two identical outputs as a sanity check.
The workers who fail to choose “tie” for that item
are rejected from our test. The human evaluation
results are shown in Table 2, which coincide with
the results in Table 1 and Figure 4.

Discussion: When deciphering the hate symbols
that have the same definitions as in the training
dataset, the model can rely more on the surface
forms of hate symbols than the tweet context to
make a prediction because usually the hate sym-
bols that share the same definitions also have sim-
ilar surface forms. However, when it comes to the
hate symbols with unseen definitions, simply re-
lying on the surface forms cannot lead to a rea-
sonable deciphering result. Instead, the model
should learn the relationships between the con-
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Dataset Symbol tweet Referential definition Result of Seq2Seq Result of VD
Dy macaca What an ugly thing! And it's not | Common French racist slur Common French a racist Common term black slur
because she’s black, purple etc,
it's because she's soooooooo
ugly piece of macaca
Dy closet | wish the stupid Imams would | A Homosexual who A Homosexual who hasn’t A Homosexual who hasn’t
homosezuals just admit already that Muslim | hasn't told anyone about told anyone about and her told told anyone about his

men are sex addicts & closet
homosexuals.

his/her sexuality

sexuality

her sexuality

Dy confederate

Jlag

done w/ this stupid sh*t. |
support the confederate flag &
will wear it. Will post pictures

A flag that’s usually flown in the
south, most of the time flown
to represent southern pride and

When s is or a any of but but

The from is and is or is or
their south their to is or to

of it. Will fly it...

heritage, but sometimes is flown to
represent white power and racism

More like call of n*gger:

Dy niggering
advanced niggering

The act of being a n*gger

Athing is to black to to to to | A thing but a n*gger n*gger

n*gger

He:l Hitler!V\ RT
@Am_Yuggio: 41.) Who is your
role model ? :)

Dy Hezil Hitler

Its a gesture used by raising up the
right hand with a straighten hand

A Schizophrenic of the the
and Nazi Nazi by racist of
Nazi more

Leader person and and Nazi
and shit and

Figure 5: Some example errors in the generated results of our Seq2Seq model and Variational Decipher.

text information and the definition of the symbol.
Therefore, the different performances of two mod-
els on the two testing datasets D and Dy indi-
cate that the Seq2Seq model is better at captur-
ing the similarities among different surface forms
of a hate symbol, while the Variational Decipher
is better at capturing the semantic relationship be-
tween the tweet context and the hate symbol. The
Sequence-to-Sequence model tries to capture such
kinds of relationships by compressing all the con-
text information into a fixed length vector, so its
deciphering strategy is actually behavior cloning.
On the other hand, the Variational Decipher cap-
tures such relationships by explicitly modeling the
posterior and likelihood distributions. The mod-
eled distributions provide higher-level semantic
information compared to the compressed context,
which allows the Variational Decipher to general-
ize better to the symbols with unseen definitions.
This explains why the gap between the perfor-
mance of the Seq2Seq model on two datasets is
larger.

5.3 Error Analysis

Figure 5 shows some example errors of the deci-
phering results of our Seq2Seq model and Varia-
tional Decipher. One problem with the decipher-
ing results is that the generated sentences have
poor grammatical structure, as shown in Figure 5.
This is mainly because the size of our dataset is
small, and the models need a much larger corpus
to learn the grammar. We anticipate that the gener-
ation performance will be improved with a larger
dataset.

For the hate symbols in Dy, the deciphering re-
sults are of high quality when the length of refer-
ential definitions are relatively short. An example
is macaca, a French slur shows in Figure 5. The
deciphering result of the Seq2Seq model is close
to the referential definition. As to the Variational
Decipher, although the result is not literally the
same as the definition, the meaning is close. closet
homosexuals in Figure 5 is another example. How-
ever, when the length of the referential definition
increases, the performance of both models tends to
be unsatisfactory, as the third example confederate
flag shows in Figure 5. Although there exists the
symbol Confederate Flag with the same definition
in the training set, both models fail on this exam-
ple. One possible reason is that the complexity
of generating the referential definition grows sub-
stantially with the increasing length, so when the
tweet context and the symbol itself cannot provide
enough information, the generation model cannot
learn the relationship between the symbol and its
definition.

Deciphering hate symbols in Dy is much more
challenging. Even for humans, deciphering com-
pletely new hate symbols is not a simple task. The
two examples in Figure 5 show that the models
have some ability to capture the semantic simi-
larities. For the symbol niggering, the Variational
Decipher generates the word nigger and Seq2Seq
model generates black. For Heil Hitler, the Varia-
tional Decipher generates leader person and Nazi,
while Seq2Seq also generates Nazi. Although
these generated words are not in the definition,
they still make some sense.
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6 Conclusion

We propose a new task of learning to decipher hate
symbols and create a symbol-rich tweet dataset.
We split the testing dataset into two parts to ana-
lyze the characteristics of the Seq2Seq model and
the Variational Decipher. The different perfor-
mance of these two models indicates that the mod-
els can be applied to different scenarios of hate
symbol deciphering. The Seq2Seq model outper-
forms the Variational Decipher for deciphering the
hate symbols with similar definitions to that in the
training dataset. This means the Seq2Seq model
can better explain the hate symbols when Twitter
users intentionally misspell or abbreviate common
slur terms. On the other hand, the Variational De-
cipher tends to be better at deciphering hate sym-
bols with unseen definitions, so it can be applied
to explain newly created hate symbols on Twitter.
Although both models show promising decipher-
ing results, there still exists much room for im-
provement.
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