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Abstract

The bigger the corpus, the more topics it can
potentially support. To truly make full use of
massive text corpora, a topic model inference
algorithm must therefore scale efficiently in
1) documents and 2) topics, while 3) achiev-
ing accurate inference. Previous methods have
achieved two out of three of these criteria si-
multaneously, but never all three at once. In
this paper, we develop an online inference
algorithm for topic models which leverages
stochasticity to scale well in the number of
documents, sparsity to scale well in the num-
ber of topics, and which operates in the col-
lapsed representation of the topic model for
improved accuracy and run-time performance.
We use a Monte Carlo inner loop in the on-
line setting to approximate the collapsed vari-
ational Bayes updates in a sparse and efficient
way, which we accomplish via the Metropolis-
Hastings Walker method. We showcase our
algorithm on LDA and the recently proposed
mixed membership skip-gram topic model.
Our method requires only amortized O(kd)
computation per word token instead of O(K)
operations, where the number of topics occur-
ring for a particular document kd ≪ the total
number of topics in the corpus K, to converge
to a high-quality solution.

1 Introduction

Topic models are powerful tools for analyzing to-
day’s massive, constantly expanding digital text
information by representing high-dimensional
data in a low-dimensional subspace. We can re-
cover the main themes of a corpus by using topic
models such as latent Dirichlet allocation (LDA)
to organize, understand, search, and explore the
documents (Blei et al., 2003).

Traditional LDA inference techniques such as
variational Bayes and collapsed Gibbs sampling
do not readily scale to corpora containing mil-
lions of documents. To scale up inference, the
main approaches are distributed algorithms (New-
man et al., 2008) and stochastic algorithms (Hoff-
man et al., 2010, 2013). Stochastic algorithms,
such as stochastic variational inference (SVI), op-
erate in an online fashion, and hence do not
need to see all of the documents before updating
the topics, so they can be applied to corpora of
any size, without expensive distributed hardware
(Hoffman et al., 2010). The “collapsed” represen-
tation of topic models is also frequently important,
as it leads to faster convergence, efficient updates,
and lower variance in estimation (Griffiths and
Steyvers, 2004). The stochastic collapsed vari-
ational Bayesian inference (SCVB0) algorithm,
proposed by (Foulds et al., 2013), combines the
benefits of stochastic and collapsed inference.

Larger corpora typically support more topics,
which brings the additional efficiency challenge
of training a larger model (Mimno et al., 2012).
This challenge has been addressed by exploiting
sparsity to perform updates in time sublinear in
the number of topics. A sparse variant of the SVI
algorithm for LDA, SSVI, proposed by (Mimno
et al., 2012), is scalable to large numbers of topics,
but does not fully exploit the collapsed represen-
tation of LDA, which is important for faster con-
vergence and improved inference accuracy, due to
a better variational bound (Teh et al., 2007). The
Metropolis Hastings Walker (MHW) method (Li
et al., 2014) scales well in the number of topics,
and uses a collapsed inference algorithm, but it
operates in the batch setting, so it is not scalable
to large corpora. LightLDA (Yuan et al., 2015)
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is a distributed approach to the MHW method
which adopts a data-and-model-parallel strategy
to maximize memory and CPU efficiency. How-
ever, it is not an online approach, and furthermore
requires multiple expensive computer clusters to
converge faster. Tensor methods are another ap-
proach to speeding up topic models (Anandku-
mar et al., 2014; Arora et al., 2012), which the-
oretically guarantee the recovery of the true pa-
rameters by overcoming the problem of local op-
tima. These techniques use the method of mo-
ments instead of maximum likelihood estimation
or Bayesian inference, which leads to lower data
efficiency, and sometimes unreliable performance.

In this work, we propose a highly efficient
and scalable inference algorithm for topic mod-
els. We develop an online algorithm which lever-
ages stochasticity to scale well in the number of
documents, sparsity to scale well in the number of
topics, and which operates in the collapsed rep-
resentation of topic models. We thereby combine
the individual benefits of SVI, SSVI, SCVB0, and
MHW into a single algorithm. Our approach is to
develop a sparse version of SCVB0. Inspired by
SSVI, we use a Monte Carlo inner loop to approx-
imate the SCVB0 variational distribution updates
in a sparse and efficient way, which we accom-
plish via MHW method. To show the generality
of our algorithm, we explore the benefits of our in-
ference method for LDA and another recently pro-
posed topic model, MMSGTM, with experiments
on both small and large-scale datasets.

2 Background

To build the foundation for our proposed method,
in this section we provide the necessary back-
ground on LDA and MMSGTM topic models and
their associated inference algorithms. This is fol-
lowed by a description of the MHW sampler for
reducing topic model sampling complexity.

2.1 Latent Dirichlet Allocation and SCVB0

Probabilistic topic models such as LDA (Blei
et al., 2003) use latent variables to encode co-
occurrence patterns between words in text corpora
and other bag-of-words represented data. In LDA,
we assume that the D documents in a corpus are
each from mixture distributions of K individual
topics ϕk, k ∈ {1, ...,K}, each of which are dis-

crete distributions over words. For a document
j of length Nj , the local (document-level) vari-
ables θj are a distribution over topics drawn from a
Dirichlet prior with parameters αk and for each to-
ken, global variables (corpus-level) ϕk are drawn
from a Dirichlet prior with parameters βw. Due to
conjugacy, we can marginalize out topics Θ and
distributions over topics Φ, and perform inference
only on the topic assignments Z in the collapsed
representation of LDA (Griffiths and Steyvers,
2004). For scalable and accurate inference, Foulds
et al. (2013) proposed a stochastic collapsed vari-
ational inference algorithm, SCVB0. The SCVB0
approach computes a variational discrete distribu-
tion γij over the K topic assignment probabilities
for each word i in each document j, but does not
maintain the γ variables that increase the mem-
ory requirement of original batch CVB0 algorithm
(Asuncion et al., 2009). SCVB0 iteratively up-
dates each γij using

γijk :∝
NΦ

wijk
+ βwij

NZ
k +

∑
w βw

(NΘ
jk + αk) (1)

for each topic k, with jth document’s ith word
wij . The NZ , NΘ, and NΦ are referred to as
CVB0 statistics, where NZ is the vector of ex-
pected number of words assigned to each topic,
each entry j, k of matrix NΘ, and each entry w,
k of matrix NΦ are the expected number of times
document j, and word w are assigned to topic k,
respectively, across the corpus. To do stochastic
updates of these variables, one sequence of step-
sizes ρΦ for NΦ and NZ and another sequence
ρΘ for NΘ are maintained. The update of NΘ

j

for every token i of document j with an online av-
erage of the current value and its expected value is

NΘ
j := (1− ρΘt )N

Θ
j + ρΘt Cjγij (2)

where Cj is the document length. In practice, it
is too expensive to update NΦ after every token.
This leads to the use of minibatch updates with the
average of the M per-token estimates of the form
Yij , which is a W ×K matrix with the wij th row
being γij and with zeros in the other entries:

NΦ := (1− ρΦt )N
Φ + ρΦt N̂

Φ (3)

NZ := (1− ρΦt )N
Z + ρΦt N̂

Z , (4)
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where N̂Φ = C
|M |

∑
ij∈M Yij , N̂Z =

C
|M |

∑
ij∈M γij , and C is the number of words in

the corpus. The SCVB0 algorithm outperforms
stochastic VB (Hoffman et al., 2010) on large
corpora by converging faster and often to a better
solution (Foulds et al., 2013). However, the
SCVB0 algorithm does not leverage sparsity, and
hence requires O(K) operations per word token.

2.2 MMSG Topic Model
To show the generality of our approach to topic
models other than LDA, we will also apply our
method to a recent model called the Mixed Mem-
bership Skip-gram Topic Model (MMSGTM)
(Foulds, 2018), which combines ideas from topic
models and word embeddings (cf. also (Das et al.,
2015; Liu et al., 2015)). MMSGTM’s generative
model for words and their surrounding context is:

• For each word wi in the corpus
– Sample a topic zi ∼ Discrete(θwi)

– For each word wc ∈ context(i)

∗ Sample a context word
wc ∼ Discrete(ϕzi) .

The inferred model can then be used to train em-
beddings for topics and words, although we do
not consider this here. The MMSGTM admits a
collapsed Gibbs sampler (CGS) which efficiently
resolves the cluster assignments. With Dirichlet
priors on the parameters, the CGS update is

p(zi = k|.) :∝ (N
(Φ)−i
wik

+ αk) ×
|context(i)|∏

c=1

N
(Φ)−i
wck

+ βwc +N
(i,c)
wc

N
(Z)−i
k +

∑
w βw + c− 1

, (5)

where α and β are parameter vectors for Dirichlet
priors over the topic and word distributions, NΦ

wi

and NΦ
wc

are input and output word-topic counts
(excluding the current word), NZ is the total topic
counts in output word-topic counts, and N

(i,c)
wc is

the number of occurrences of word wc before the
cth word in the ith context. MMSGTM exploits
the MHW algorithm, which scales sub-linearly in
K, but not in the number of training documents.

2.3 Metropolis-Hastings-Walker Sampler
The MHW method (Li et al., 2014), which is a key
component of our approach, uses a data structure
called an alias table which allows sampling from

a discrete distribution in amortized O(1) time.
Assuming initial probabilities p0, p1, ..., pl−1 of a
distribution over l outcomes and average of prob-
abilities a = 1

l , the alias table A can be formed as
follows (Marsaglia et al., 2004):

• Initialize: for i from 0 to l − 1
– Aalias[i] = i and Aprob = (i+ 1)a

• Do the following steps n− 1 times
– Find smallest pi and largest pj
– Set Aalias[i] = j and Aprob = i×a+pi

– pj := pj − (a− pi) and pi := a .

Then, to sample from p using the alias table:
• Roll l-sided fair die to choose element i of A

• If Rand(1) < Aprob[i] return i,
else return Aalias[i].

Li et al. (2014) cache alias table samples, avoid-
ing the need to store the table. Once the supply of
samples is exhausted they compute a new alias ta-
ble. They draw samples from the Gibbs sampling
update, analogous to γij in Equation 1, in amor-
tized O(kd) time by decomposing the update into

p(zij = k|.) ∝ NΘ
jk

NΦ
wijk

+ βwij

NZ
k +

∑
w βw

+ αk

NΦ
wijk

+ βwij

NZ
k +

∑
w βw

(6)

where the first term, sparse in kd, admits sampling
in O(kd) time, and the second term is dense but
slow changing. A Metropolis-Hastings (M-H) up-
date is used to correct for approximating the CGS
update with a proposal distribution q(k) based on
the stale alias samples. Foulds et al. (2018) pro-
pose to apply simulated annealing to optimize in-
stead of sample, and which improves mixing for
the MMSGTM. This is achieved by raising the
model part of the M-H acceptance ratio for a new
sample z

(new)
i ∼ q(k) to the power of 1

Tj
at itera-

tion j:

p(accept z
(new)
i |.) = (7)

min(1, (
p(z

(new)
i )

p(z
(old)
i )

)
1
Tj

q(z
(old)
i )

q(z
(new)
i )

) .

3 Sparse Stochastic CVB0

In this section, we introduce our approach, a
sparse version of SCVB0, which combines the in-
dividual benefits of the SVI, SSVI, SCVB0 and
MHW algorithms, to scale well not only in the
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SparseSCVB0 Original SCVB0 SVI
units
unit
net
hidden
output
neural
networks

neurons
model
synaptic
input
neuron
response
cell

support
kernel
margin
function
vector
svm
machines

data
clustering
cluster
clusters
algorithm
model
problem

matrix
pca
linear
principal
eigenvectors
eigenvalues
eigenvalue

eeg
time
data
brain
activity
signal
analysis

word
words
character
recognition
characters
trained
input

cells
cell
cortex
response
firing
cortical
inhibitory

circuit
current
circuits
figure
input
analog
filter

Table 1: Randomly selected example topics, while models trained on the NIPS corpus for K = 500.

Algorithm 1 SparseSCVB0 for TM Inference
Randomly initialize NG, NL; NZ :=

∑
w NG

w ;
doSparse = true or false
for each minibatch M do

N̂G := 0; N̂Z := 0
for each document j in M do

for each token i in j do
γ
(pseudo)
ij := 0

for each sample s in S do
draw z

(new)
i ∼ q(k)

//via efficient sampling or
cached alias samples

accept or reject z(new)
i via Eq. 7

if (accept), zi := z
(new)
i

γ
(pseudo)
ij [zi] := γ

(pseudo)
ij [zi] +

1
S

end for
NL

j := (1− ρLt )N
L
j + ρLt Cjγ

(pseudo)
ij

if (not burn-in pass),
//update estimates for i or for
each context word of i:

N̂G
wij

:= N̂G
wij

+ C
|M|γ

(pseudo)
ij

N̂Z := N̂Z + C
|M|γ

(pseudo)
ij

elseif(doSparse),NL
j [k] < τρLtCj

Cj := 0

end for
end for
update NG := (1− ρGt )N

G + ρGt N̂
G

update NZ := (1− ρGt )N
Z + ρGt N̂

Z

end for

number of documents but also in the number of
topics, while gaining the benefits of collapsed in-
ference. We refer to our method as the sparse
stochastic collapsed variational Bayesian infer-
ence (SparseSCVB0) algorithm.

In SparseSCVB0, we obtain sparsity by sub-
stituting sparse Monte Carlo approximations
γ
(pseudo)
ij for the original SCVB0 variational dis-

tributions γij . The justification for this procedure,
also used by (Mimno et al., 2012), is that the ex-
pected value of an average over one-hot samples
from a distribution is equal to that distribution:

Esi∼p(s)

[∑S
i=1 δk(si)

S

]
=

1

S

S∑
i=1

Esi∼p(s)

[
δk(si)

]
=

1

S

S∑
i=1

∑
k′

δk(si = k′)p(si = k′) = p(s = k) .

Thus, the overall procedure is still a valid stochas-
tic optimization algorithm. We approximate the
inner loop sampler in time sublinear in K, con-
structing γ(pseudo) by generating S samples from
γij using the MHW method. To describe the
general form of our algorithm, we introduce
SparseSCVB0 statistics: local (e.g. document-
level) expected counts NL, global (corpus-level)
expected counts NG, and total expected topic
counts NZ . We approximate local sufficient
statistics NL for each token i in document j via:

NL
jk ≈ CjEγ

(pseudo)
ij

[∑s∈S δzsij=k

S

]
.

Since γ(pseudo) is sparse, we can efficiently up-
date these statistics using only its non-zero entries.
This approach allows us to learn high-dimensional
topic models efficiently on very large corpora. Be-
fore updating global parameters in a similar fash-
ion, it may also be beneficial to perform a small
number of burn-in passes to learn the local param-
eters NL (Foulds et al., 2013). For large-scale
datasets (e.g. Wikipedia), SparseSCVB0 operates
in a “mini-epoch” approach where we process a
large subset of the corpus (e.g. 5, 000 documents)
several (e.g. 3) times, before discarding and pro-
cessing the next subset, and so on. This allows a
“warm start” of NL in repeating iterations, with a
small memory overhead. Pseudo-code of Spars-
eSCVB0 for a mini-epoch is provided in Algo-
rithm 1, which we discuss more in the next two
sections, including model-specific aspects.
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SparseSCVB0 Original SCVB0 SVI
infection
infected

infections
host

infectious
antiviral

inoculation

human
humans

chimpanzee
macaque
monkey
primates

chimpanzees

liver
hcv
hbv

hepatic
hepatitis

hepatocytes
cirrhosis

decreased
decrease
increased
increase

decreases
decreasing

dramatically

dna
replication
chromatin

origins
ssdna

primase
xenopus

medication
patients

medications
prescribed

patient
prescription
pharmacy

mutations
mutation
mutated
crosses

missense
mut
hpf

hormone
invasive
androgen
hormones

testosterone
chr

hormonal

intensive
icu

delirium
occurrences

sedation
haloperidol

psychotropic

Table 2: Randomly selected example topics, while models trained on the PubMed corpus with K = 1, 000.

SparseSCVB0 Original SCVB0 SVI
band
music
released
show
song
live
records

town
city
road
south
river
village
school

blood
treatment
disease
patients
medical
health
effects

army
war
division
battle
forces
corps
infantry

data
system
software
computer
systems
version
bit

gold
silver
diamond
golden
bronze
diamonds
pit

president
political
court
senate
constitution
politics
elected

japanese
china
chinese
japan
people
countries
asia

engine
test
center
small
gas
engines
base

Table 3: Randomly selected example topics, while models trained on the Wikipedia corpus for K = 1, 000.

4 SparseSCVB0 for LDA

To deploy SparseSCVB0 for LDA, we use the
M-H proposal distribution from (Li et al., 2014)
which involves drawing samples exactly from
document-specific sparse terms or approximately
using cached samples from the alias table:

q(k) :=
PL

PL +QG
pL(k) +

QG

PL +QG
qG(k) (8)

where pL(k) and qG(k) represent the sparse and
dense part, respectively from Equation 6 and
PL =

∑
k pL(k), QG =

∑
k qG(k). When

PL
PL+QG

> RandUnif(1), we sample from the
sparse part in O(kd) time depending on only the
non-zero entries of NL

j (analogous to NΘ
j ), as

NL
j is sparse in the LDA setting. Otherwise, we

sample from the dense part in amortized O(1)
time using the alias method. Unfortunately, due
to the stochastic update, any entry of NL

j never
becomes exactly zero, however it may maintain a
very small value. To address this, we apply a spar-
sification heuristic, where we threshold NL

j after
burn-in passes for each document iteration. We
parameterize the threshold as τρLtCj

Cj ; where Cj

is the length of the j document, ρLtCj
is the step

size for the last token of this document, and con-
stant 0 < τ ≤ 1 controls the sparsity. In our pre-
liminary experiments, we found that, somewhat
counter-intuitively, the Monte Carlo and sparsi-
fication approximations actually improve conver-
gence in early iterations. We believe that this

is because they help SCVB0 escape the initial
high-entropy regime, during which convergence
of variational algorithms is poor (Salakhutdinov
et al., 2003). This property makes the benefit of
annealing insignificant, so we do not use simu-
lated annealing for LDA inference, fixing Tj = 1.

An additional optimization of SparseSCVB0
for LDA inference can be performed by “clump-
ing” (Teh et al., 2007; Foulds et al., 2013), where
one update of the local parameters is performed
for each distinct word type in each document.
This is performed by fixing the variational dis-
tribution, and scaling the update by number of
copies of the distinct word type in the document.
If we observe the distinct word type waj , which
occurs maj times in document j, the update is

NL
j := (1− ρLt )

majNL
j

+ (1− (1− ρLt )
maj )Cjγ

(pseudo)
aj . (9)

5 SparseSCVB0 for MMSGTM

The main contribution of our approach for the
MMSGTM algorithm is to scale this algorithm in
number of documents with online inference, as
MMSGTM already scales sublinearly in K using
MHW. Foulds et al. (2018) use an MHW proposal
which approximates the CGS update, interpreted
as a product of experts (Hinton, 2002) in which
each word in the context is an “expert” which
weighs in multiplicatively on the update, with a
mixture of experts. In the proposal, they draw a
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Input word = learning
Top words in top 2 topics for the input word

NIPS
SparseSCVB0 algorithms algorithm reinforcement problem problems | learning gradient descent rate weight machine

Original SCVB0 learning networks network algorithm neural | propagation function reinforcement gradient algorithms

Wikipedia
SparseSCVB0 university school college education students research | public center science schools article information

Original SCVB0 students school education university college schools | center year program degree systems information

Table 4: Top words in the top 2 topics for an input word using original SCVB0 and SparseSCVB0 for MMSGTM.

context word wc uniformly from the context of the
current word, wc ∼ Uniform(|context(wi)|),
and then sample a word based on the chosen con-
text word’s contribution to the update:

q(k) :∝
NG

wck
+ βwc

NZ
k +

∑
w βw

(10)

where NG
wc

is analogous to the output context
word-topic counts NΦ

wc
of original MMSGTM

model. The proposal samples via the alias method
in amortized O(1) time, instead of O(kd) time,
since it does not involve the sparse term. We
use this proposal to approximate the CVB0 up-
date for the model, which is a deterministic ver-
sion of Equation 5, neglecting to exclude the cur-
rent assignment of zi. We update NG

wi
(analo-

gous to NΦ
wc

) for each current word wi locally,
but update NG

wc
and Nz via minibatch counts

N̂G
wc

and N̂Z , respectively, for each context word
wc of current word wi. Unlike for LDA, Cj in
the local updates represents the total number of
input word j in the corpus. As we draw multi-
ple output words from each topic assignment, the
effective temperature of the MMSGTM model is
much lower than for standard LDA which may
cause problems with mixing and leads it to get
stuck in the initial regime. Following Foulds et
al. (2018), we perform simulated annealing which
varies the M-H acceptance ratio to improve mix-
ing. We parameterize the temperature schedule as
Tj = T0 + λκ

µj
D , where T0 is the target final tem-

perature, κ ≤ 1, constant µ controls the amount
of temperature reduction after each document it-
eration j and λ controls the initial temperature.

6 Experiments

In this section we study the performance of our
SparseSCVB0 1 algorithm, on small as well as
large corpora to validate the proposed method for

1Code implementing SparseSCVB0 can be found at
https://github.com/dr97531/SparseSCVB0 .

Figure 1: Comparison of runtime per iteration for LDA
in terms of: (a) number of topics K and (b) number
of iterations when K = 10, 000. Original SCVB0 is
linear in K, while SparseSCVB0 is sublinear in K.

topic models such as LDA and MMSGTM, and to
compare with other state-of-the-art algorithms.

6.1 Experimental Environment and Datasets

We compared SparseSCVB0 to SCVB0 and SVI.
For a fair comparison, we implemented all of
them in the fast high-level language Julia V0.6.2
(Bezanson et al., 2017). We conducted all exper-
iments on a computer with 64GB memory and
an Intel Xeon E5-2623 V4 processor with 2.60
GHz clock rate, 8×256KB L2 Cache and 10MB
L3 Cache. As we only use one single thread for
sampling across all experiments, only one CPU
core is active throughout the experiment with only
256KB available L2 Cache.2

We used NIPS, Reuters-150, PubMed Central,
and Wikipedia as representative very small, small,
medium, and large-scale datasets, respectively.
The NIPS corpus has 1740 scientific articles from
years 1987-1999 with 2.3M tokens, due to Sam
Roweis. The newswire corpus Reuters-150 con-
tains 15, 500 articles with dictionary size of 8, 350
words. PubMed Central has 320M tokens across
165, 000 scientific articles and a vocabulary size
of around 38, 500 words. The Wikipedia cor-
pus contained 4.6 million articles from the online

2Since SSVI relies on multiple complex implementation
details, we were unable to develop a fair implementation, nor
were we able to obtain soure code for a previous implemen-
tation. We expect that its accuracy would be similar to SVI,
with a speed-up at or below that bestowed by a MHW-based
inner loop. (Mimno et al., 2012) apply it with only 200 topics
for most of their experiments, and at most 1000 topics.
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Figure 2: Per-topic coherence for LDA when K = 1, 000 on (a) NIPS, (b) PubMed, and (c) Wikipedia. Spars-
eSCVB0 completely outperforms other models for large-scale corpus.

network data communication information communicate connection
prison prisoners prisoner imprisoned jail escaped detained guards

dog dogs shepherd hounds bred coat scent instinct eating companion
song sung sing singing sings sang songs recorded melody tune

votes vote cast elections voted candidate parties majority election
wind winds blowing speed blows direction high low blown chill

hour hours noon time daylight minutes midnight morning seconds

Table 5: Randomly selected topics from a 10, 000-
topic model trained using SparseSCVB0 on Wikipedia

encyclopedia. We used the dictionary of 7, 700
words which was extracted by Hoffman et al.
(Hoffman et al., 2013). There were 811M tokens
in the corpus.

6.2 Performance for LDA

We implement SparseSCVB0, original SCVB0
and SVI algorithms using the clumping optimiza-
tion (Teh et al., 2007) technique. In all LDA ex-
periments, each algorithm was trained using mini-
batches of size 20 for the NIPS corpus and 100
for other corpora. For PubMed and Wikipedia,
we chose mini-epoch subsets of size 5, 000 doc-

uments and processed for 5 passes. We used a
step-size schedule of scale

(η+t)κ as in original SCVB0
for global parameters, where t is the document
iteration with scale = 100.0, η = 1000.0 and
κ = 0.9. For document-level parameters, we used
the scale = 1.0, η = 10.0 and κ = 0.9, with t
referring here to the word iteration of the current
document. In case of PubMed corpus, we found
out that original SCVB0 and SVI tend to stuck in
the initial regime for document-level step-size pa-
rameter η = 1.0 which we later fixed by setting
η = 10.0, while SparseSCVB0 didn’t suffer from
this problem due to the extra randomness from
the sparse sampled updates. Finally, we choose
hyper-parameters α = 0.1 and β = 0.01 and
burn-in pass of 5 for each document in all LDA
experiments. For SparseSCVB0, we used sample
size S = 5 to approximate γ(pseudo) and τ = 1/K
for the sparsification heuristic on local parameters.

To study the acceleration benefits of our ap-
proach, we evaluated the runtime performance per
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Figure 3: Comparison of average log-likelihood vs. Time for LDA on (a) NIPS, (b) PubMed, and (c) Wikipedia.

iteration on the number topics and the number of
iterations. In Figure 1(a), SparseSCVB0 is com-
pared to original SCVB0 in terms of the average
runtime per document iteration as a function of
the number topics. We see that original SCVB0
requires average linear runtime due to O(K) op-
erations to compute collapsed variational distribu-
tion, while the average runtime for SparseSCVB0
grows sublinearly in K, due to O(kd) operations
instead of O(K) operations. SparseSCVB0 starts
with approximately O(K) operations in its initial
stage of iterations, but it starts getting a benefit
from sparsification heuristic after burning in, as
shown in Figure 1(b) for K = 10, 000.

To evaluate the performance in terms of learned
topic quality, we start by comparing all of the al-
gorithms in qualitative experiments (see Table 1,
Table 2, and Table 3) where we show randomly se-
lected example topics, while all the models were
trained on the NIPS, PubMed, and Wikipedia cor-
pus for K = 500, K = 1, 000, and 1, 000, re-

spectively. To get a quantitative insight we evalu-
ated the topics using the per topic coherence met-
ric, which measures the semantic quality of a topic
based on the W most probable words for the top-
ics (Mimno et al., 2011), thereby approximating
the user viewing experience. In Figure 2, we see
that SparseSCVB0 generates better quality topics
with higher coherence scores than the other two
models for K = 1000 with W = 10 after running
all the models on each corpus for the same amount
of time. The coherence performance of Spars-
eSCVB0 increases substantially in the case of the
large-scale corpus (Figure 2(c)), since it gets the
opportunity to use its runtime advantage and pro-
cess more documents than the other algorithms.

To investigate model convergence, we mea-
sured the held-out log-probability versus wall-
clock time for all the algorithms. For each exper-
iment we held-out a set of documents (150 docu-
ments for NIPS, 3500 documents for Reuters, and
1000 documents for all other corpora) as test data
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Figure 4: Comparison of runtime per iteration for
MMSGTM in terms of: (a) number of topics K and (b)
number of iterations when K = 5, 000. SparseSCVB0
runs in amortized O(1) time, while original SCVB0 is
linear in K.

Figure 5: Per-topic coherence for MMSGTM, K =
500, on (a) NIPS and (b) Wikipedia. SparseSCVB0 has
higher coherence scores for both the small and large
corpora.

and trained the model on the rest of the corpus.
Then, we split each test document in half, esti-
mated local parameters on first half and finally
computed the log-likelihood of the remaining half
of the document. Figure 3 shows the comparison
of average log-likelihood versus wall-clock time
for all four corpora. In terms of log-likelihood,
SparseSCVB0 provides an approximately similar
result to original SCVB0 for the small corpus, but
it converged to a better solution than others in
the case of large corpora like Wikipedia (see Fig-
ure 3(c)), likely due to its processing a larger num-
ber of documents.

SparseSCVB0 enables the large-scale computa-
tion needed to learn high-dimensional topic mod-
els that could not feasibly be trained using previ-
ous methods due to their runtime complexity in
the number of documents and/or topics. We show
randomly selected topics from the LDA model
with K = 10, 000 in Table 5. This big topic model
was trained for 36 hours using SparseSCVB0 on
Wikipedia. We performed a dense initialization,
running original SCVB0 for the first 5 hours,
which was found to help avoid local optima.

6.3 Performance for MMSGTM
We also conducted experiments to evaluate the
performance of SparseSCVB0 for MMSGTM and
compare with original SCVB0. In all MMSGTM
experiments, we kept the same step size schedule
for global parameters as scale = 1.0, η = 5.0
and κ = 0.9, but for local parameter updates we
maintain a separate step-size schedule of scale

(η+t)κ

for each input word, with t referring to the number
of times we processed this input word, while η and
κ values remained the same. For simulated an-
nealing of SparseSCVB0, we used T0 = 0.00001,
κ = 0.9, µ = 5 and λ = |context| with a context
size of 5. We kept the same number of document
burn-in passes as we did for the LDA experiments.

In Figure 4, we show the runtime improvement
of SparseSCVB0 over original SCVB0 for MMS-
GTM in a similar experiment to the one for LDA.
For MMSGTM, SparseSCVB0 substantially out-
performs original SCVB0 by processing each doc-
ument in amortized O(1) time. We provide qual-
itative results in the case of MMSGTM model by
showing several top words in the top 2 topics for
an input word using original SCVB0 and Spars-
eSCVB0 in Table 4 for K = 500. As for LDA,
SparseSCVB0 allows us to generate topics with
higher coherence scores compared to the original
SCVB0 after running for the same amount of time
(Figure 5) on both small and large corpora.

7 Conclusions

This paper introduced SparseSCVB0, a sparse
version of the SCVB0 inference algorithm
which performs fast, scalable high-dimensional
topic model inference. SparseSCVB0 leverages
stochasticity to scale well in both the corpus size
and in the number of topics. It operates in the col-
lapsed representation of topic models which leads
to fast convergence while providing an improved
variational bound. We show that SparseSCVB0
reduces the operational complexity for the varia-
tional Bayes update of online topic models from
O(K) to O(kd) time for LDA and amortized O(1)
time for MMSGTM. We evaluated and compared
the performance of our approach with state-of-
the-art models such as original SCVB0 and SVI to
demonstrate that SparseSCVB0 converges much
more efficiently, while maintaining high quality
topics with a better per-topic coherence score.
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