Shrinking Japanese Morphological Analyzers
With Neural Networks and Semi-supervised Learning

Arseny Tolmachev

Daisuke Kawahara

Sadao Kurohashi

Kyoto University, Graduate School of Informatics
Yoshida Honmachi, Sakyo-ku, Kyoto 606-8501, Japan

arseny@kotonoha.ws

Abstract

For languages without natural word bound-
aries, like Japanese and Chinese, word seg-
mentation is a prerequisite for downstream
analysis. For Japanese, segmentation is often
done jointly with part of speech tagging, and
this process is usually referred to as morpho-
logical analysis. Morphological analyzers are
trained on data hand-annotated with segmenta-
tion boundaries and part of speech tags. A seg-
mentation dictionary or character n-gram infor-
mation is also provided as additional inputs to
the model. Incorporating this extra informa-
tion makes models large. Modern neural mor-
phological analyzers can consume gigabytes of
memory. We propose a compact alternative
to these cumbersome approaches which do not
rely on any externally provided n-gram or word
representations. The model uses only unigram
character embeddings, encodes them using ei-
ther stacked bi-LSTM or a self-attention net-
work, and independently infers both segmen-
tation and part of speech information. The
model is trained in an end-to-end and semi-
supervised fashion, on labels produced by a
state-of-the-art analyzer. We demonstrate that
the proposed technique rivals performance of
aprevious dictionary-based state-of-the-art ap-
proach and can even surpass it when training
with the combination of human-annotated and
automatically-annotated data. Our model it-
self is significantly smaller than the dictionary-
based one: it uses less than 15 megabytes of
space.

1 Introduction

Languages with a continuous script, like Japanese
and Chinese, do not have natural word boundaries
in most cases. Natural language processing for
such languages requires to perform some variation
of word segmentation.

Although some NLP applications, like neu-
ral machine translation, started to use unsuper-

dk@i.kyoto-u.ac. jp

kuro@i.kyoto-u.ac. jp

Seg t1 t2 tN

BIE

\Tf T f f Softmax
o0 00 00 oee 00

Encoder

R
0 O @ M M m

H % T VD

Figure 1: Proposed model. We encode character uni-
gram embeddings into shared representations for each
character. The shared representation is projected into
a tag-specific representations from which we indepen-
dently infer segmentation and per-character tags.

vised segmentation methods (Kudo and Richard-
son, 2018), resulting segmentation often has deci-
sions which are not natural to humans. Supervised
segmentation based on a human-defined standard
is essential for applications which are designed for
interaction on a word-level granularity, for exam-
ple, full-text search. Segmentation is commonly
done jointly with part of speech (POS) tagging and
usually referred to as Morphological Analysis.
Modern Japanese Morphological Analyzers
(MA) are very accurate, having a >99 segmen-
tation tokenwise F1 score on news domain and a
>98.5 F1 on web domain (Tolmachev et al., 2018).
They often use segmentation dictionaries which
define possible words. Also, their models are gen-
erally large and unwieldy, spanning hundreds of
megabytes in case of traditional symbolic feature-
based approaches. Neural models with word or n-

2744

Proceedings of NAACL-HLT 2019, pages 2744-2755
Minneapolis, Minnesota, June 2 - June 7, 2019. (©2019 Association for Computational Linguistics

gram embeddings are even larger, easily reaching
gigabytes. This makes it difficult to deploy MA
in space-constrained environments such as mobile
applications and browsers.

It has been shown that simple or straightforward
models can match or outperform complex models
when using a large number of training data. For ex-
ample, a straightforward backoft technique rivals
a complicated smoothing technique for language
models (Brants et al., 2007). Pretraining a bidirec-
tional language model on a large dataset helps to
solve a variety of NLP tasks (Devlin et al., 2018).
Our approach is inspired by this line of work.

Contributions We propose a very straightfor-
ward fully-neural morphological analyzer which
uses only character unigrams as its input'. Such an
analyzer, when trained only on human-annotated
gold data has low accuracy. However, when
trained on a large amount of automatically tagged
silver data, the analyzer rivals and even outper-
forms, albeit slightly, the bootstrapping analyzer.
We conclude that there is no need for rich input
representation. Neural networks learn the infor-
mation to combine characters into words by them-
selves when given enough data.

Ignoring explicit dictionary information and
rich input representations makes it possible to
make analyzers that are highly accurate and very
compact at the same time. We also perform ab-
lation experiments which show that the encoder
component of such an analyzer is more important
than character embeddings.

2 Morphological Analysis Overview

Segmentation is a cornerstone requirement for pro-
cessing languages with a continuous script, and
thus it has been studied for a long time. Most cur-
rent approaches use either rich feature representa-
tion, e.g. character n-grams or their embeddings,
or a segmentation dictionary. There exist two main
lines of approaches: pointwise and search-based.
Pointwise approaches make a segmentation deci-
sion for each character, usually based on the in-
formation from its surroundings. Search-based ap-
proaches look for a maximum scored interpretation
in some structure over the input sentence.

Most Japanese analyzers use segmentation dic-
tionaries which define corpus segmentation stan-
dards. They usually have rich POS information at-

!The source code is avaliable at https://github.com/
eiennohito/rakkyo

tached and are human-curated. One focus of seg-
mentation dictionaries is to be consistent: it should
be possible to segment a sentence using the dictio-
nary entries only in a single correct way. Such dic-
tionaries are often maintained together with anno-
tated corpora. On the other hand, Chinese-focused
systems do not put much focus on dictionaries.
Still, almost all aproaches use rich feature tem-
plates or additional resources such as pretrained
character n-gram or word embeddings, which in-
crease the model size.

Pointwise approaches make a segmentation de-
cision independently for each position. They can
be seen as a sequence tagging task. Such ap-
proaches are more popular for Chinese.

KyTea (Neubig et al., 2011) is an example of this
approach in Japanese. It makes a binary decision
for each character: whether to insert a boundary
before it or not. It can be seen as sequence tagging
with {B, I} tagset. POS tagging is done after in-
ferring segmentation. The decisions are made by
feature-based approaches, using characters, char-
acter n-grams, character type information, and dic-
tionary information as features. KyTea can use
word features obtained from a dictionary. It checks
whether the character sequence before and after the
current character forms a word from the dictionary.
It also checks whether the current word is inside a
word.

Neural networks were shown to be useful for
Japanese in this paradigm as well (Kitagawa and
Komachi, 2017). They use character embeddings,
character type embeddings, character n-gram em-
beddings, and tricks to incorporate dictionary in-
formation into the model.

Many studies on Chinese adopt the pointwise
approach. Often, the segmentation task is refor-
mulated as sequence tagging (Xue, 2003) with {B,
I, E, S} tagset. Peng et al. (2004) showed that
CRFs help further in this task. This tactic was
followed by many subsequent feature-based ap-
proaches (Tseng et al., 2005; Zhao et al., 2006;
Zhang et al., 2013), using character n-gram, char-
acter type and word features.

Neural networks were applied to this paradigm
as well. Zheng et al. (2013) used a feed-forward
network on character and categorical features that
were shown to be useful for computing a segmen-
tation score from a fixed window. Qi et al. (2014)
used a similar architecture. They predicted not
only segmentation but POS tags and performed

2745

named entity recognition as well. The character
representation was pretrained on a language mod-
eling task. Shao et al. (2017) used a bidirectional
recurrent network with GRU cells followed by a
CRF layer for joint segmentation and POS tag-
ging. They used pretrained character n-gram em-
beddings together with sub-character level infor-
mation extracted by CNNs as features. Using a
dictionary with NN is also popular (Zhang et al.,
2018b; Liu et al., 2018).

Search-based approaches induce a structure
over a sentence and perform a search over it. A
most frequently used structure is a lattice which
contains all possible segmentation tokens. The
search then finds the highest scoring path through
the lattice. Another branch of search-based ap-
proaches splits decisions into transitions (starting
a new token and appending a character to the to-
ken) and searches for the highest scoring chain of
transitions. This also can be seen as dynamically
constructing a lattice while performing the search
in it at the same time.

Lattice-based approaches are popular for the
Japanese language. Most of the time, the lattice
is based on words which are present in a segmen-
tation dictionary and a rule-based component for
handling out-of-dictionary words. Usually, there
are no machine-learning components in lattice cre-
ation, but the scoring can be machine-learning
based. We believe that the availability of high
quality consistent morphological analysis dictio-
naries is the reason for that. Still, the work of Kaji
and Kitsuregawa (2013) is a counterexample of a
lattice-based approach for Japanese which uses a
machine-learning component for creating the lat-
tice.

Traditional lattice-based approaches for
Japanese use mostly POS tags or other hidden
information accessible from the dictionary to
score paths through the lattice. JUMAN (Kuro-
hashi, 1994) is one of the first analyzers, which
uses a hidden Markov model with manually-tuned
weights for scoring. Lattice path scores are
computed using connection weights for each pair
of part of speech tags.

Probably the most known and used morpholog-
ical analyzer for Japanese is MeCab (Kudo et al.,
2004), where CRFs were used for learning the scor-
ing. MeCab is very fast: it can analyze almost
50k sentences per second. It also achieves accept-
able accuracy, and so the tool is very popular. The

speed is realized by precomputing feature weights,
but it takes a lot of space when the total number of
features gets large. For example, the UniDic model
for modern Japanese v2.3.0° takes 5.5GB because
it uses many feature templates.

There were studies which tried to integrate NN
into lattice-based approaches as well. Juman++
(Morita et al., 2015) uses dictionary-based lattice
construction with the combination of two models
for path scoring: the feature-based linear model us-
ing soft-confidence weighted learning (Wang et al.,
2016) and a recurrent neural network (Mikolov,
2012). It significantly reduced the number of both
segmentation and POS tagging errors. However, it
was very slow, being able to analyze only about
15 sentences per second, hence the original ver-
sion was impractical. The following improvement
(Tolmachev et al., 2018) greatly increased analy-
sis speed by doing aggressive beam trimming and
performing heavyweight NN evaluation only after
lightweight scoring by the linear model.

Direct lattice-based approaches are not very
popular for Chinese, but some are lattice-based in
spirit. A line of work by Zhang and Clark (2008,
2010) builds the lattice dynamically from partial
words, searching paths with a perceptron-based
scorer and customized beam search. The dictio-
nary is built dynamically from the training data as
frequent word-tag pairs which help the system to
prune unlikely POS tags for word candidates.

One more variation on lattice-based approaches
for Chinese is the work by Cai and Zhao (2016).
In this work, a segmentation dictionary is used to
construct a subnetwork, which combines charac-
ter representations into word representations used
for computing sentence-wise segmentation scores.
This can be seen as explicitly learning dictionary
information by a model. Resulting segmentation
is still created from the start to the end by growing
words one by one while performing beam search.
The follow up (Cai et al., 2017) simplifies that
model and shows that greedy search can be enough
for estimating segmentation when using neural net-
works. Still, this line of work does not consider
POS tagging.

Transition-based approaches treat input data
(most frequently — characters) as input queue and
store a current, possibly incomplete, token in a
buffer. Models usually infer whether they should
create a new token from a character in the input

*https://unidic.ninjal.ac.jp/

2746

queue or append an input character to the already
existing token. Neural models are often used in this
paradigm (Ma and Hinrichs, 2015; Zhang et al.,
2016; Yang et al., 2017; Ma et al., 2018; Zhang
et al., 2018a). Almost all of them use both word
and charcter n-gram embeddings. This paradigm
was extended to do parsing jointly with MA (Ha-
tori et al., 2012; Kurita et al., 2017).

Semi-supervised approaches to segmentation
and POS tagging fall into several categories. The
first one uses raw or automatically-annotated data
to precompute feature representations and then
uses these feature representations for supervised
learning. For example, Sun and Xu (2011) and
Wang et al. (2011) use data from automatically
segmented texts as features. They precomute the
features beforehand and train an analyzer after-
wards. In addition to that, Zhang et al. (2013) use
a variation of smoothing for handling automatic
annotation errors. A lot of neural-based methods
pretrain word and character n-gram embeddings.
Yang et al. (2017) pretrain a part of the model on
different data sources, including automatically seg-
mented text, but the model itself is trained only on
the gold data.

Another approach is to use heterogeneous data
(annotated in incompatible annotation standards).
In addition to corpus statistics from a raw corpus,
Zhao and Kit (2008) exploit heterogeneous annota-
tions. Lietal. (2015) use corpora with different an-
notation standards. They combine tags into “bun-
dles” (e.g. [NN, n]) and infer them at the same time
while paying attention to ambiguity. Chen et al.
(2016) train a classifier that can annotate several
standards jointly.

Finally, it is possible to use raw or automatically-
annotated data directly. A study (Suzuki and
Isozaki, 2008) is an example of a feature-based al-
gorithm which uses raw data. Tri-training (Zhou
and Li, 2005) is a generic way to use raw data.
They propose to train on automatically analyzed
examples where two of three diverse analyzers
agree. Sggaard (2010) show that tri-training helps
English POS-tagging with SVM and MaxEnt-
based approaches. Zhou et al. (2017) use self-
training and tri-training for Chinese word segmen-
tation. They, however, also pretrain other features
like word-context character embeddings, chrarac-
ter unigrams and bigrams.

3 Proposed Approach

In order for MA to be practical, it should be not
only accurate, but also fast and have relatively
compact models. The speed of search-based ap-
proaches is dependent on how computationally
heavy a weighting function is. Heavyweight mod-
els, like neural networks, require a large number
of computations, and we think that it will be very
difficult to create a practical search-based fully NN
morphological analyzer with analysis speed com-
parable to traditional analyzers.

We do not want to use any explicit information
about how to combine characters to form a word,
like dictionaries, which takes space and is not triv-
ial to incorporate into a character-based model. We
also want our model to be fast, at least compara-
ble with the speed of traditional analyzers. To this
end, we follow a pointwise approach and force the
neural network to learn the dictionary information
from a corpus.

We use a straightforward architecture shown in
Figure 1. We embed each character, and then ap-
ply an encoder, which produces an encoded rep-
resentation for each character. Encoded charac-
ter representations are independently transformed
into tag representations. For each tag, the encoded
representation is projected with a fully-connected
layer with SeLU non-linearity (Klambauer et al.,
2017). Finally, we multiply the tag representa-
tion by tag-specific embeddings and apply softmax
non-linearity to get normalized tag probabilities.

Encoder Architectures We use two architec-
tures for the encoder: a stacked bidirectional re-
current architecture with LSTM cells (Hochre-
iter and Schmidhuber (1997), bi-LSTM) and a
Transofrmer-inspired mutihead self-attention net-
work (Vaswani et al. (2017), SAN). We concate-
nate both directions of bi-LSTM outputs before
passing them to the next layer without residual con-
nections. We also apply layer normalization (Ba
et al., 2016) to the concatenated outputs. We do
not use dropout in encoders when using silver data
for training.

Data Encoding Our model infers a tag for every
input character. While this decision is natural for
segmentation, POS tags are not usually tagged in
this way.

For segmentation, we adopt {B, I, E} scheme.
For POS tagging we broadcast tags to every char-
acter which is contained in a token. We use cor-

2747

» B By o ox ¥- HK
) E 3| * F- EK
B By EBh ¢ *
% B 2 12 EX
W E 2 117 £
B By #kBp + *
EOS | —

Seg 4-layered POS

Figure 2: An example of full sentence annotation

%) B g ? ?
% ? g ? ?
ya) ? ? ? ? ?
= B ? ? 1 EK
W E ? ? 17 EX
N B By #&kBp = *
EOS

Figure 3: An example of partial sentence annotation

pora with the JUMAN-based segmentation stan-
dard (Jumandic), which has 4-layered POS tags:
rough POS, fine POS, conjugation type and conju-
gation form. We treat each tag layer independently
in our model, as shown in Figure 2.

We also consider a partial annotation scheme,
where some tags are unknown. An example of
partial sentence annotation is shown in Figure 3.
Unknown tags are displayed by “?” symbols. We
create partially annotated silver data by marking as
unknown all tags which are ambiguous in a top-k
analysis result. When computing the training loss,
we treat unknown tags as padding: corresponding
values are masked out of loss computation.

Loss Following Vaswani et al. (2017), we
smooth softmax labels. They use the technique de-
scribed by Szegedy et al. (2016), which uniformly
distributes some small factor e like 0.1 to incor-
rect labels. However, we do not induce a uniform
smoothing. Instead, we want to prevent the model
from being overconfident in its decisions without
inducing uniformity. We slightly modify the cross-
entropy loss as follows.

Remember that softmax probabilities are com-
puted from unnormalized log-probabilities [; as
¢ = e/Z, where Z = > eli. The cross-
entropy loss will be L = — . p;logg;, where
p; are gold probabilities. In our case the vector
p is one-hot, meaning that p. = 1 and other val-
ues are zero. This gives a sparse cross-entropy
L = —logg. = logZ — l., which is often im-

Train Test
Corpus Sents Tokens Sents Tokens
KU 37k 930k 1783 46k
Leads 14k 217k 2195 36k

Table 1: Benchmark corpora sizes

plemented in deep learning frameworks. It has a
minimum when log Z is equal to /., but it makes
the model overconfident. Instead, we want to stop
when g. = 1 — ¢, or in other words el /Z = 1 —e.
This gives us our modified loss:

L = max(log Z — I + log(1 —¢€),0).

It can be efficiently implemented using the sparse
cross-entropy operation. In our experiments we
use € = 0.2.

Our final loss is a weighted sum of individual tag
softmax losses. We use a weight coefficient of 10
for segmentation and 2 for the first POS tag layer.

4 [Experiments

We conduct experiments on Japanese morphologi-
cal analysis. For training we use two data sources.
The first is usual human-annotated gold training
data. The second is silver data from the results of
automatic analysis. We use Juman++ V2 — the cur-
rent state-of-the-art analyzer for the JUMAN seg-
mentation standard as the bootstrap analyzer.

We use two gold corpora. The first is the Ky-
oto University Text Corpus (Kurohashi and Nagao
(2003), referred to as KU), containing newspaper
data. The second is the Kyoto University Web Doc-
ument Leads Corpus (Hangyo et al. (2012), re-
ferred to as Leads) which consists of web docu-
ments. Corpus statistics are shown in Table 1. We
denote models which use gold training data by G.

We take raw data to generate our silver annotated
data from a crawled web corpus of 9.8B unique
sentences. We sample 3B sentences randomly
from it and analyze them using the Juman++ base-
line model. From it we sample S00M sentences,
which become our training silver data, prioritizing
sentences which contain at least one not very fre-
quent word. We prepare both top-scored (denoted
as T) and non-ambigous in beam (denoted as B)
variants of the silver data. Our silver data is in-
domain for Leads and out-of-domain for KU.

Baselines We use four baselines: JUMAN,
MeCab, KyTea and Juman++ (V2). For MeCab,

2748

Parameter bi-LSTM SAN
Char embedding size 128 128
Tag embedding size 32 32
Layers 4 6
Hidden Size 128x2 32
Heads - 4
Projection Inner Dim - 512
Emedding Parameters 2.38M 2.38M
Total Parameters 3.88M 3.59M

Table 2: Hyperparameters for neural models

KyTea and Juman++ we train a model using the
same dictionary and merged training sections of
KU and Leads, which is evaluated on each corpus
independently.

Neural Models The hyper-parameters of the bi-
LSTM-based model are displayed in Table 2. We
use all unique characters present in our huge web
corpus (18,581) as input. We select sizes of both
neural models restricting the total number of pa-
rameters to be less than 4M. For optimization we
use the Adam optimizer (Kingma and Ba, 2016)
with hyperparameters and learning rate schedul-
ing described by Vaswani et al. (2017). We train
all models on Nvidia GPUs. On a single GeForce
1080Ti the bi-LSTM model can consume about
4,500 sentences per second and the SAN-based
model about 6,500 sentences per second for train-
ing. We denote bi-LSTM-based models by L and
SAN-based models by S in experimental results.

Treatment of Gold Data Existing methods are
already highly accurate on this task, and it is dif-
ficult to perform hyperparameter and architecture
selection reliably with a small development set.
Because of that, we split our data in an unusual
way. Generally, we use the silver data (B or T) as
a train set, the human-annotated original training
data (G) as a dev set and the original test set as
a test set. Our hyperparameter selection decisions
were based entirely on this setting. We do not per-
form additional hyperparameter search for a com-
bination of silver and gold data for training.

The exception is cases when we use only gold
data for training. For that, we cheat and optimize
our hyperparameters, including dropout, which we
use only for this setting, on test scores. Nonthe-
less, the best scores on this setting are significantly
lower than the worst baseline.

KU, News Leads, Web
Analyzer Seg +P1 +P2 Seg +P1 +P2
Baselines
JUMAN 98.41 97.18 9545 98.09 9696 9571
MeCab 99.10 9856 97.59 9825 97.60 96.22
KyTea 99.13 9825 97.01 9798 96.85 95.11
Juman++ 99.52 99.10 97.86 98.61 98.07 96.70
bi-LSTM
L:G 97.46 96.56 9478 96.33 9543 93.46
L:B 99.22 98.82 9750 98.57 98.01 96.61
L:T 99.33 9890 97.59 98.68 98.16 96.71
L:BG 99.43 99.05 98.06 98.59 98.04 96.76
L:TG 99.43 99.05 98.01 98.71 9819 96.80
Self-attention
S:G 9828 97.67 9566 97.23 9636 9391
S:B 99.19 9875 9734 9856 97.99 96.59
S:T 99.23 98.78 9736 98.66 98.15 96.75
S:BG 99.30 9890 97.83 98.60 98.03 96.70
S:TG 99.37 9897 9793 98.70 98.15 96.83

Pre-training scenario
S:B—G(a) 99.24 98.85 9775 9858 98.03 96.64
S:B—G(b) 99.15 98.65 9755 9839 97.78 96.36
S:B—G(c) 99.27 98.82 9775 9850 9791 96.43
S:B—G(d) 9926 98.82 9776 9852 97.94 96.48

Table 3: Test F1 score comparison on benchmark cor-
pora. Legend: bi-[L]STM, [S]AN, [G]old data, [T]op-
only and [B]eam-non-ambigous silver data.

Experimental Results Results of our experi-
ments are shown in Table 3. For each analyzer,
we show six values. Seg is a tokenwise F1 mea-
sure on segmentation. +P1 requires the 1st layer of
POS tags (coarse-grained POS tags) also to match
gold data. For the sake of simplicity, we use only
POS tags co-located with “B” Seg tags for the eval-
uation. +P2 is analogous for the 2nd layer of POS
tags. For all results in this table, we train NN-based
models for a single epoch, which means the train-
ing procedure sees each silver sentence only once.
We use one gold example for ten silver examples
for mixed-data settings, looping over the gold data
until the silver data is extinguished.

Training neural models only on gold data
quickly results in overfitting which can be seen in
L:G and S:G results. These scores are significantly
lower than that of our worst baseline: JUMAN.

Models trained on only non-ambiguous silver
data (*:B) are comparable to the best baseline on
Leads (in-domain), although they cannot reach the
accuracy of Juman++ on KU. Using top-only silver
data (*:T) further improves accuracy. Both of our
models in this setting slightly outperform previous
Leads SOTA and have more or less the same accu-
racy. On KU, the LSTM-based model seems to be
slightly better than the SAN-based one. In the con-
text of semi-supervised learning, tri-training em-
phasizes using data when there exists a disagree-
ment between the analyzers. Instead, we throw

2749

Size, MB

Analyzer Dictionary Model Total
JUMAN 288 1 289
MeCab 312 8 320
KyTea:G - 569 569
KyTea:TG - 3218 3218
Juman++ 157 288 434
bi-LSTM 1 14 15
SAN 1 13 14

Table 4: MA model sizes for Jumandic

away difficult cases for beam-based data, denois-
ing it in a sense, but NN seem to handle that kind
of noise relatively well.

Adding the gold data to the silver data (*:BG,
*:TG) allows both models to improve their accu-
racy further. Results on Leads are comparable for
both L:TG and S:TG and higher than the previous
SOTA, giving segmentation error reduction of 8%
in comparison to Juman++. On KU, the LSTM-
based models seem to perform better without a
significant difference on the TG and BG settings,
while still underperforming the Juman++ baseline
except +P2 case, where both models are stronger
than Juman++.

Pre-training Scenario We also check the fine-
tuning approach when we first learn the represen-
tations on a large corpus and then refine the model
on a gold corpus. S:B—G(a-d) are four such runs
of a SAN-based model with different hyperparam-
eters. All four runs are initialized with the same
S:B model and trained on the gold data only. We
found it difficult to find good hyperparameters for
fine-tuning. The models were prone to overfit very
fast. Mixing gold and silver data resulted in stable
training without hyperparameter search.

Model Sizes We compare the model sizes of an-
alyzers in Table 4. In case of dictionary-based an-
alyzers the dictionary takes most of the space. We
count sizes of compiled models for all analyzers.
KyTea, as another example of pointwise MA, uses
string-based features and treats its features uni-
formly, hence dictionary size is not applicable to
it. A KyTea:TG variant that uses additional 2M
silver sentences takes almost 6x the space of the
original model, reaching 3GB. When using neural
networks, on the other hand, it is possible to control
model sizes more easily. Moreover, our proposed

Analyzer KU Leads
KyTea-D:G 98.45 97.04
KyTea-D:T ~ 98.51 98.10
KyTea-D:TG 99.18 98.31
KyTea:G 99.13 97.98
KyTea: TG 99.33 98.42

Table 5: KyTea test Seg F1 comparison. -D models do
not use the dictionary. T models use silver data (2M
sentences, created like in the main experiment)

models take significantly less space while having
comparable accuracy.

Dictionary-based analyzers store other informa-
tion, like readings and lemma forms, in addition
to token surface forms and POS, but removing that
information would not make model sizes compara-
ble with NN-based ones. For NN-based analyzers,
we count a dictionary as 1 MB because they need a
character-to-id mapping to work. However, the list
of characters contains non-frequently used charac-
ters, some of which could be treated as UNKs with-
out any accuracy loss. We also treat weights as 4-
byte floating points, and so it would be possible to
further decrease the NN model size, for example
by using less precise storage formats.

5 Discussion

Dictionaries Dictionary information is usually
added to character-based models either using a bi-
nary feature vector (e.g. a dictionary contains a tri-
gram to the left of the decision point) or word em-
beddings. We believe that a dictionary can be re-
placed with a large training corpus which includes
most of the entries from that dictionary. A neural
model with only the unigram character input can
solve word segmentation and POS tagging only if
it builds some knowledge about the dictionary in-
ternally. Our main experimental results (Table 4)
show that it seems to be the case and there is no
need to model the dictionary explicitly.

Table 5 shows an effect of using dictionaries
and silver data on KyTea, an instance of symbolic
feature-based analyzer. Models tagged with T use
additional 2M silver training data analyzed by Ju-
man++. KyTea has better accuracy in settings
when it uses the dictionary. The dictionary even
helps in the setting with additional silver data. Un-
fortunately, the model size increases as well, lim-
iting the amount of silver data we can use, and the
accuracy cannot rival neural approaches.

2750

99.60

| L
99.55 ,,WW"M%"H

99.50 1

99.45 1
S:B

99.40 1
99.35 1 J
99.30

Figure 4: Dev Seg F1 curves for L:B and S:B

T T
500M 1B
Training Sentences

How much data do we need? For our main ex-
periments, we train all models for a single epoch
on our silver dataset. Figure 4 shows KU train (our
dev set) Seg F1 curves for L:B and S:B for three
epochs. We ran each experiment four times with
different random seeds. The learning curves be-
come less sloppy when reaching 500M sentences
but do not become flat there. The training does not
seem to completely converge even after 3 epochs.
We still use one full epoch (500M) for our main
experiments. The curves are pretty noisy, but it
seems that the model is robust with respect to ini-
tialization.

SAN Ablation Experiments The proposed MA
achieves high accuracy while having very compact
models. The inputs do not contain any information
on how to combine characters into words and we
assume that the model learns it from the data. To
get the model size even smaller, we check which
model parts contribute more to the resulting analy-
sis accuracy, meaning that they contain the dictio-
nary knowledge.

We perform ablation experiments on the SAN
model by varying its hyperparameters and check-
ing how it affects the accuracy of the resulting ana-
lyzer. The LSTM model could not converge in this
setting. We used 2.5M of silver training data for
these experiments.

Figure 5 shows the segmentation F1 score when
varying input embedding, shared representation
and SAN hidden dimension sizes. JUMAN score,
as a lowest acceptable baseline, is shown in red.
The embedding size seems to have a lower impact
on accuracy than the shared representation and the
SAN hidden dimension size. Namely, the (128-16)
model with the embedding size of 16 has higher
accuracy than the (128-4) model with the embed-

Seg F1

99.0 4

98.5 1

98.0 1

Shr.dim - hid.dim
% 64-4
== 64-16
~®- 1284
- 12816
=V- 256-4
=¥ 256-16

T

P
e

.
“‘
.
.
97.5
I“
.
.
s

T T T
16 32 64 128
Embedding dimension

Figure 5: Effect of embedding size on Seg F1

100

901

80 {
704 S 0

60{ — 64

99.01

98.5 1

98.0 1

97.54

0 2 4 6 8 10 12 14 16
SAN hidden dimension

Figure 6: Effect of SAN hidden dimension on Seg F1

ding size of 128. Accordingly, we believe that the
encoder contributes much stronger to learning the
dictionary than character embeddings.

One more interesting observation is that the
models are still better than JUMAN, while hav-
ing much less parameters than our base model. We
explore more extreme settings of the SAN hidden
state, shown in Figure 6. We fix embedding and
shared representation dimensions to 128 and vary
the SAN hidden and projection dimensions. The
lower subgraph is a scale-up version of top graph.
The point at SAN hidden size equal to 0 means
that we directly use unigram embeddings to pre-
dict segmentation without any encoder.

The SAN projection size is consistent with accu-
racy, especially on smaller SAN hidden sizes. An
interesting observation here is that the SAN model
seems to work even with hidden dimension of 2.
When the hidden dimension size reaches 4, the ex-
tremely small model accuracy is higher than the
JUMAN baseline. This shows that it is possible
to create an extremely small MA with acceptable
accuracy.

2751

System Segmentation

Correct Segmentation

Transliteration Meaning

ZI5|WIHhoT
RATITAIZW
AR IR\ o T
Ho|b R A LESRTZ\N

255> T
RATITAZWD

AR DT 7R\ > T
Ho|B % AL HEDC) 72\

ko:yu: kyoku tte
nante sungoi how awesome
nna wake nai tte no way!

see main text

this song is

Table 6: n-grams with inconsistent POS tags which are also Juman++ errors

Label Uncertainty and Error Analysis Be-
cause our neural models infer all tags indepen-
dently, they can be inconsistent, for example, a
word can have different POS tags on different char-
acters. We looked into frequent 3-grams where the
central word has inconsistent tags (POS tags are
not the same for all characters, or they do not form
a correct 4-layered tag). Most of these trigrams oc-
cur in ambiguous situations.

We have picked several examples which are ac-
tually errors in Juman++ segmentation as well.
They are shown in Table 6. In Japanese, words
often have several orthographic forms. The most
common variant is usage of hiragana (phonetic
script) instead of kanji (ideographic characters).
Verbs can have different possible endings, e.g. Hfi
735 and HH % (magaru — to turn or bend) are two
orthographic variants of a single verb. There are
also colloquial variants; namely the verb 5 9 is
usually read as \» D (iu — to say), but can also be
written as P 9 because the pronunciation is close.
These phenomena are relatively common in web
and user-generated texts, but corpus and segmen-
tation dictionary coverage of them is not very good.

The first two examples contain alternative col-
loquial spellings of words Z 9\ 5 (ko:iu — such)
and 9 2\ (sugoi —awesome). In the first example
the system incorrectly recognizes Hi|-> T (kyoku
tte) as il > T (magatte) — a conjugation of i 5.
The fourth example (a chanto asobitai/ac-chan to
asobitai - ah! [I] want to play properly/[I] want to
play with ac-chan <person name>) is actually am-
biguous and can have two meanings. The second
one is more probable though. The fact that fre-
quent words with uncertain POS tags are Juman++
errors as well implies that insufficient gold data
causes the uncertainty.

We also compare differences between Juman++
and our models to get an insight on general prob-
lems with proposed methods. Neural models make
many errors in hiragana words. For example, both
neural models make errors in the sentence 552 |)°
|& 5 72| X [T (jyakusya ga to:ta sarete - weak-

lings lose to natural selection). LSTM makes a
segmentation mistake (&|? 7= X) and SAN does
a POS tagging mistake, while Juman++ produces
the correct answer. It knows that & 5 7z is a spe-
cial type of noun that is often followed by & 41T
from POS tags. Hiragana-based spellings of most
content words are somewhat rare in Japanese, and
NN models do not have enough training data for
these spellings. It could be possible to improve the
situation by using data augmentation techniques.
Another frequent problem is segmentation and tag-
ging of proper nouns. We believe that this problem
could be solved by data augmentation, but we leave
this as future work.

6 Conclusion and Future Work

We presented a novel way to train small neural
models for Japanese Morphological analysis by di-
rectly feeding the network a large number of silver
training data. Our method achieves new SOTA on
web domain when combining the silver data with
gold one. This is an empirical evidence that there
is no need for feature engineering for neural mor-
phological analysis at all. A neural network can
learn implicit dictionary information itself and it
does not need to be large. We also show that train-
ing by mixing the data together works better than
fine-tuning and is more stable.

Our work can be extended in the future in dif-
ferent ways. We will consider how to make the
model to recognize new words, which is an im-
portant feature for a practical analyzer. Using tri-
training also seems to be a natural extension for
this work. It is easy to provide diverse models,
required for tri-training, by using different types
of encoder and varying network parameters. Fur-
thermore, our tagging approach should be univer-
sal and work with other tasks like named entity
recognition. A method to incorporate tags with
a large number of possible values (like readings
and lemmas) without introducing embeddings for
them, hence keeping the models small, could also
be a useful extension.

2752

References

Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E. Hin-
ton. 2016. Layer Normalization. arXiv:1607.06450

[cs].

Thorsten Brants, Ashok C. Popat, Peng Xu, Franz J.
Och, and Jeffrey Dean. 2007. Large Language Mod-
els in Machine Translation. In Proceedings of the
2007 Joint Conference on Empirical Methods in Nat-
ural Language Processing and Computational Nat-
ural Language Learning (EMNLP-CoNLL), pages
858-867, Prague, Czech Republic. Association for
Computational Linguistics.

Deng Cai and Hai Zhao. 2016. Neural Word Segmen-
tation Learning for Chinese. In Proceedings of the
54th Annual Meeting of the Association for Compu-
tational Linguistics (Volume 1: Long Papers), pages
409-420, Berlin, Germany. Association for Compu-
tational Linguistics.

Deng Cai, Hai Zhao, Zhisong Zhang, Yuan Xin,
Yongjian Wu, and Feiyue Huang. 2017. Fast and
Accurate Neural Word Segmentation for Chinese. In
Proceedings of the 55th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 2:
Short Papers), pages 608—615, Vancouver, Canada.
Association for Computational Linguistics.

Hongshen Chen, Yue Zhang, and Qun Liu. 2016. Neu-
ral Network for Heterogeneous Annotations. In
Proceedings of the 2016 Conference on Empirical
Methods in Natural Language Processing, pages
731-741, Austin, Texas. Association for Computa-
tional Linguistics.

Jacob Devlin, Ming-Wei Chang, Kenton Lee, and
Kristina Toutanova. 2018. BERT: Pre-training
of Deep Bidirectional Transformers for Language
Understanding. arXiv:1810.04805 [cs]. ArXiv:
1810.04805.

Masatsugu Hangyo, Daisuke Kawahara, and Sadao
Kurohashi. 2012. Building a Diverse Document
Leads Corpus Annotated with Semantic Relations.
In Proceedings of the 26th Pacific Asia Conference
on Language, Information, and Computation, pages
535-544, Bali, Indonesia. Faculty of Computer Sci-
ence, Universitas Indonesia.

Jun Hatori, Takuya Matsuzaki, Yusuke Miyao, and
Jun’ichi Tsujii. 2012. Incremental Joint Approach
to Word Segmentation, POS Tagging, and Depen-
dency Parsing in Chinese. In Proceedings of the
50th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1045-1053, Jeju Island, Korea. Association
for Computational Linguistics.

Sepp Hochreiter and Jirgen Schmidhuber. 1997.
Long Short-Term Memory. Neural Comput.,
9(8):1735-1780.

Nobuhiro Kaji and Masaru Kitsuregawa. 2013. Effi-
cient Word Lattice Generation for Joint Word Seg-
mentation and POS Tagging in Japanese. In Pro-
ceedings of the Sixth International Joint Conference
on Natural Language Processing, pages 153-161,
Nagoya, Japan. Asian Federation of Natural Lan-
guage Processing.

Diederik P. Kingma and Jimmy Ba. 2016.
Adam: A method for stochastic optimization.
arXiv:1412.6980 [cs.LG].

Yoshiaki Kitagawa and Mamoru Komachi. 2017. Long
Short-Term Memory for Japanese Word Segmenta-
tion. arXiv:1709.08011 [cs]. ArXiv: 1709.08011.

Giinter Klambauer, Thomas Unterthiner, Andreas
Mayr, and Sepp Hochreiter. 2017. Self-Normalizing
Neural Networks. In Advances in Neural Informa-
tion Processing Systems 30, pages 971-980. Curran
Associates, Inc.

Taku Kudo and John Richardson. 2018. SentencePiece:
A simple and language independent subword tok-
enizer and detokenizer for Neural Text Processing.
In Proceedings of the 2018 Conference on Empirical
Methods in Natural Language Processing: System
Demonstrations, pages 66—71, Brussels, Belgium.
Association for Computational Linguistics.

Taku Kudo, Kaoru Yamamoto, and Yuji Matsumoto.
2004. Applying Conditional Random Fields to
Japanese Morphological Analysis. In Proceedings
of the 2004 Conference on Empirical Methods in
Natural Language Processing.

Shuhei Kurita, Daisuke Kawahara, and Sadao Kuro-
hashi. 2017. Neural Joint Model for Transition-
based Chinese Syntactic Analysis. In Proceedings of
the 55th Annual Meeting of the Association for Com-
putational Linguistics (Volume 1: Long Papers),
pages 1204—-1214, Vancouver, Canada. Association
for Computational Linguistics.

Sadao Kurohashi. 1994. Improvements of Japanese
morphological analyzer JUMAN. In Proceedings
of The International Workshop on Sharable Natural
Language, 1994.

Sadao Kurohashi and Makoto Nagao. 2003. Building
A Japanese Parsed Corpus. In Treebanks: Building
and Using Parsed Corpora, Text, Speech and Lan-
guage Technology, pages 249-260. Springer Nether-
lands, Dordrecht.

Zhenghua Li, Jiayuan Chao, Min Zhang, and Wenliang
Chen. 2015. Coupled Sequence Labeling on Hetero-
geneous Annotations: POS Tagging as a Case Study.
In Proceedings of the 53rd Annual Meeting of the
Association for Computational Linguistics and the
7th International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
1783-1792, Beijing, China. Association for Compu-
tational Linguistics.

2753

Junxin Liu, Fangzhao Wu, Chuhan Wu, Yongfeng
Huang, and Xing Xie. 2018. Neural Chinese Word
Segmentation with Dictionary Knowledge. In Nat-
ural Language Processing and Chinese Computing,
Lecture Notes in Computer Science, pages 80-91.
Springer International Publishing.

Ji Ma, Kuzman Ganchev, and David Weiss. 2018.
State-of-the-art Chinese Word Segmentation with
Bi-LSTMSs. In Proceedings of the 2018 Conference
on Empirical Methods in Natural Language Process-
ing, pages 49024908, Brussels, Belgium. Associa-
tion for Computational Linguistics.

Jiangiang Ma and Erhard Hinrichs. 2015. Accurate
Linear-Time Chinese Word Segmentation via Em-
bedding Matching. In Proceedings of the 53rd An-
nual Meeting of the Association for Computational
Linguistics and the 7th International Joint Confer-
ence on Natural Language Processing (Volume 1:
Long Papers), pages 1733—1743, Beijing, China. As-
sociation for Computational Linguistics.

Tomas Mikolov. 2012. Statistical Language Models
Based on Neural Networks. Ph. D. Thesis, Brno Uni-
versity of Technology, Brno.

Hajime Morita, Daisuke Kawahara, and Sadao Kuro-
hashi. 2015. Morphological Analysis for Unseg-
mented Languages using Recurrent Neural Network
Language Model. In Proceedings of the 2015 Con-
ference on Empirical Methods in Natural Language
Processing, pages 2292-2297, Lisbon, Portugal. As-
sociation for Computational Linguistics.

Graham Neubig, Yosuke Nakata, and Shinsuke Mori.
2011. Pointwise Prediction for Robust, Adaptable
Japanese Morphological Analysis. In Proceedings
of the 49th Annual Meeting of the Association for
Computational Linguistics: Human Language Tech-
nologies, pages 529-533, Portland, Oregon, USA.
Association for Computational Linguistics.

Fuchun Peng, Fangfang Feng, and Andrew McCallum.
2004. Chinese Segmentation and New Word Detec-
tion Using Conditional Random Fields. In Proceed-
ings of the 20th International Conference on Compu-
tational Linguistics, COLING ’04, Stroudsburg, PA,
USA. Association for Computational Linguistics.

Yanjun Qi, Sujatha G. Das, Ronan Collobert, and Jason
Weston. 2014. Deep Learning for Character-Based
Information Extraction. In Advances in Information
Retrieval, Lecture Notes in Computer Science, pages
668—674. Springer International Publishing.

Yan Shao, Christian Hardmeier, Jorg Tiedemann, and
Joakim Nivre. 2017. Character-based Joint Seg-
mentation and POS Tagging for Chinese using Bidi-
rectional RNN-CRF. In Proceedings of the Eighth
International Joint Conference on Natural Lan-
guage Processing (Volume 1: Long Papers), pages
173-183, Taipei, Taiwan. Asian Federation of Natu-
ral Language Processing.

Weiwei Sun and Jia Xu. 2011. Enhancing Chinese
Word Segmentation Using Unlabeled Data. In
Proceedings of the 2011 Conference on Empirical
Methods in Natural Language Processing, pages
970-979, Edinburgh, Scotland, UK. Association for
Computational Linguistics.

Jun Suzuki and Hideki Isozaki. 2008. Semi-Supervised
Sequential Labeling and Segmentation Using Giga-
Word Scale Unlabeled Data. In Proceedings of ACL-
08: HLT, pages 665-673, Columbus, Ohio. Associ-
ation for Computational Linguistics.

Christian Szegedy, Vincent Vanhoucke, Sergey loffe,
Jon Shlens, and Zbigniew Wojna. 2016. Rethink-
ing the inception architecture for computer vision. In
The IEEE Conference on Computer Vision and Pat-
tern Recognition (CVPR).

Anders Sggaard. 2010. Simple Semi-Supervised Train-
ing of Part-Of-Speech Taggers. In Proceedings
of the ACL 2010 Conference Short Papers, pages
205-208, Uppsala, Sweden. Association for Compu-
tational Linguistics.

Arseny Tolmachev, Daisuke Kawahara, and Sadao
Kurohashi. 2018. Juman++: A Morphological Anal-
ysis Toolkit for Scriptio Continua. In Proceedings
of the 2018 Conference on Empirical Methods in
Natural Language Processing: System Demonstra-
tions, pages 54-59. Association for Computational
Linguistics.

Huihsin Tseng, Pichuan Chang, Galen Andrew, Daniel
Jurafsky, and Christopher Manning. 2005. A Con-
ditional Random Field Word Segmenter for Sighan
Bakeoff 2005. In Proceedings of the Fourth SIGHAN
Workshop on Chinese Language Processing. Associ-
ation for Computational Linguistics.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob
Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz
Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In I. Guyon, U. V. Luxburg, S. Bengio,
H. Wallach, R. Fergus, S. Vishwanathan, and R. Gar-
nett, editors, Advances in Neural Information Pro-
cessing Systems 30, pages 5998—6008. Curran Asso-
ciates, Inc.

Jialei Wang, Peilin Zhao, and Steven C. H. Hoi. 2016.
Soft Confidence-Weighted Learning. ACM Trans.
Intell. Syst. Technol., 8(1):15:1-15:32.

Yiou Wang, Jun’ichi Kazama, Yoshimasa Tsuruoka,
Wenliang Chen, Yujie Zhang, and Kentaro Torisawa.
2011. Improving Chinese Word Segmentation and
POS Tagging with Semi-supervised Methods Using
Large Auto-Analyzed Data. In Proceedings of 5th
International Joint Conference on Natural Language
Processing, pages 309-317, Chiang Mai, Thailand.
Asian Federation of Natural Language Processing.

Nianwen Xue. 2003. Chinese Word Segmentation as
Character Tagging. In International Journal of Com-
putational Linguistics & Chinese Language Process-

2754

ing, Volume 8, Number 1, February 2003: Special Is-
sue on Word Formation and Chinese Language Pro-
cessing, pages 29-48.

Jie Yang, Yue Zhang, and Fei Dong. 2017. Neural Word
Segmentation with Rich Pretraining. In Proceed-
ings of the 55th Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), pages 839-849, Vancouver, Canada. Associa-
tion for Computational Linguistics.

Longkai Zhang, Houfeng Wang, Xu Sun, and Mairgup
Mansur. 2013. Exploring Representations from Un-
labeled Data with Co-training for Chinese Word Seg-
mentation. In Proceedings of the 2013 Conference
on Empirical Methods in Natural Language Process-
ing, pages 311-321, Seattle, Washington, USA. As-
sociation for Computational Linguistics.

Meishan Zhang, Nan Yu, and Guohong Fu. 2018a. A
Simple and Effective Neural Model for Joint Word
Segmentation and POS Tagging. IEEE/ACM Trans-
actions on Audio, Speech, and Language Processing,
26(9):1528-1538.

Meishan Zhang, Yue Zhang, and Guohong Fu. 2016.
Transition-Based Neural Word Segmentation. In
Proceedings of the 54th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:
Long Papers), pages 421431, Berlin, Germany. As-
sociation for Computational Linguistics.

Qi Zhang, Xiaoyu Liu, and Jinlan Fu. 2018b. Neu-
ral Networks Incorporating Dictionaries for Chinese
Word Segmentation. In Proceedings of the Thirty-
Second AAAI Conference on Artificial Intelligence,
(AAAI-18), the 30th innovative Applications of Arti-
ficial Intelligence (IAAI-18), and the 8th AAAI Sym-
posium on Educational Advances in Artificial Intel-
ligence (EAAI-18), New Orleans, Louisiana, USA,
February 2-7, 2018, pages 5682-5689.

Yue Zhang and Stephen Clark. 2008. Joint Word Seg-
mentation and POS Tagging Using a Single Per-
ceptron. In Proceedings of ACL-08: HLT, pages
888-896, Columbus, Ohio. Association for Compu-
tational Linguistics.

Yue Zhang and Stephen Clark. 2010. A Fast Decoder
for Joint Word Segmentation and POS-Tagging Us-
ing a Single Discriminative Model. In Proceedings
of the 2010 Conference on Empirical Methods in
Natural Language Processing, pages 843-852, Cam-
bridge, MA. Association for Computational Linguis-
tics.

Hai Zhao, Chang-Ning Huang, Mu Li, and Bao-Liang
Lu. 2006. Effective Tag Set Selection in Chinese
Word Segmentation via Conditional Random Field
Modeling. In Proceedings of the 20th Pacific Asia
Conference on Language, Information and Compu-
tation. Association for Computational Linguistics.

Hai Zhao and Chunyu Kit. 2008. Exploiting unlabeled
text with different unsupervised segmentation crite-
ria for chinese word segmentation. Research in Com-
puting Science, 33:93-104.

Xiaoqing Zheng, Hanyang Chen, and Tianyu Xu. 2013.
Deep Learning for Chinese Word Segmentation and
POS Tagging. In Proceedings of the 2013 Con-
ference on Empirical Methods in Natural Language
Processing, pages 647-657, Seattle, Washington,
USA. Association for Computational Linguistics.

Hao Zhou, Zhenting Yu, Yue Zhang, Shujian Huang,
XIN-YU DAL, and Jiajun Chen. 2017. Word-Context
Character Embeddings for Chinese Word Segmen-
tation. In Proceedings of the 2017 Conference on
Empirical Methods in Natural Language Processing,
pages 760-766, Copenhagen, Denmark. Association
for Computational Linguistics.

Zhi-Hua Zhou and Ming Li. 2005. Tri-training: ex-
ploiting unlabeled data using three classifiers. IEEE

Transactions on Knowledge and Data Engineering,
17(11):1529-1541.

2755

