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Abstract

Character-level models of tokens have been
shown to be effective at dealing with within-
token noise and out-of-vocabulary words.
However, they often still rely on correct token
boundaries. In this paper, we propose to elim-
inate the need for tokenizers with an end-to-
end character-level semi-Markov conditional
random field. It uses neural networks for its
character and segment representations. We
demonstrate its effectiveness in multilingual
settings and when token boundaries are noisy:
It matches state-of-the-art part-of-speech tag-
gers for various languages and significantly
outperforms them on a noisy English version
of a benchmark dataset. Our code and the
noisy dataset are publicly available at http:
//cistern.cis.lmu.de/semiCRF.

1 Introduction

Recently, character-based neural networks (NNs)
gained popularity for different tasks, ranging
from text classification (Zhang et al., 2015) and
language modeling (Kim et al., 2016) to ma-
chine translation (Luong and Manning, 2016).
Character-level models are attractive since they
can effectively model morphological variants of
words and build representations even for unknown
words, suffering less from out-of-vocabulary
problems (Pinter et al., 2017).

However, most character-level models still rely
on tokenization and use characters only for cre-
ating more robust token representations (Santos
and Zadrozny, 2014; Lample et al., 2016; Ma and
Hovy, 2016; Plank et al., 2016). This leads to high
performance on well-formatted text or text with
misspellings (Yu et al., 2017; Sakaguchi et al.,
2017) but ties the performance to the quality of
the tokenizer. While humans are very robust to

* Work was done at Center for Information and Lan-
guage Processing, LMU Munich.

noise caused by insertion of spaces (e.g., “car ni-
val”) or deletion of spaces (“deeplearning”), this
can cause severe underperformance of machine
learning models. Similar challenges arise for lan-
guages with difficult tokenization, such as Chinese
or Vietnamese. For text with difficult or noisy to-
kenization, more robust models are needed.

In order to address this challenge, we propose a
model that does not require any tokenization. It is
based on semi-Markov conditional random fields
(semi-CRFs) (Sarawagi and Cohen, 2005) which
jointly learn to segment (tokenize) and label the
input (e.g., characters). To represent the character
segments, we compare different NN approaches.

In our experiments, we address part-of-speech
(POS) tagging. However, our model is gener-
ally applicable to other sequence-tagging tasks as
well since it does not require any task-specific
hand-crafted features. Our model achieves state-
of-the-art results on the Universal Dependencies
dataset (Nivre et al., 2015). To demonstrate its
effectiveness, we evaluate it not only on English
but also on languages with inherently difficult to-
kenization, namely Chinese, Japanese and Viet-
namese. We further analyze the robustness of our
model against difficult tokenization by randomly
corrupting the tokenization of the English dataset.
Our model significantly outperforms state-of-the-
art token-based models in this analysis.

Our contributions are: 1) We present a truly
end-to-end character-level sequence tagger that
does not rely on any tokenization and achieves
state-of-the-art results across languages. 2) We
show its robustness against noise caused by cor-
rupted tokenization, further establishing the im-
portance of character-level models as a promis-
ing research direction. 3) For future research,
our code and the noisy version of the dataset are
publicly available at http://cistern.cis.
lmu.de/semiCRF.
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2 Model

This section describes our model which is also de-
picted in Figure 1.

2.1 Character-based Input Representation

The input to our model is the raw character se-
quence. We convert each character to a one-hot
representation. Out-of-vocabulary characters are
represented with a zero vector. Our vocabulary
does not include the space character since there is
no part-of-speech label for it. Instead, our model
represents space as two “space features” (lowest
level in Figure 1): two binary dimensions indicate
whether the previous or next character is a space.
Then, a linear transformation is applied to the ex-
tended one-hot encoding to produce a character
embedding. The character embeddings are fed
into a bidirectonal LSTM (biLSTM) (Hochreiter
and Schmidhuber, 1997) that computes context-
aware representations. These representations form
the input to the segment-level feature extractor.

2.2 Semi-Markov CRF

Our model partitions a sequence of characters x =
{z1,...,27} of length T, into (token-like) seg-
ments s = {s1,...,8|5 } with s; = (a;,d;,y;)
where a; is the starting position of the j" segment,
d; is its length and y; is its label. Thus, it as-
signs the same label y; to the whole segment s;.
The sum of the lengths of the segments equals the
number of non-space characters: Z';S:|1 dj=T.1

The semi-CRF defines the conditional distribu-
tion of the input segmentations as:

P(s]2)=7yexp(X L F sy, oH-A(y;-1,9;))

Z(2)=Yyes exp(0 F (sl 2 AW,y y))

where F'(s;, x) is the score for segment s; (includ-

ing its label y;), and A(y;—1,y:) is the transition

score of the labels of two adjacent segments. Thus,

p(s|z) jointly models the segmentation and label

assignment. For the normalization term Z(x), we

sum over the set of all possible segmentations .S.
The score F'(s;,x) is computed as:

— w )
F(sj, x) = wy, f(s5,2) + by,
where W = (wy,...,wy|)| € RYIXP and
"For efficiency, we define a maximum segment length L:

d; < L,1 < j <|s|. Lisahyperparameter. We choose it
based on the observed segment lengths in the training set.
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Figure 1: Overview of our model. Illustration of gating
for grConv taken from (Zhuo et al., 2016).

b= (b1,..., by
ters, f(s;j,7) € RP is the feature representation
of the labeled segment s;, |Y'| is the number of
output classes and D is the length of the segment
representation.

For training and decoding, we use the semi-
Markov analogies of the forward and Viterbi algo-
rithm, respectively (Sarawagi and Cohen, 2005).
In order to avoid numerical instability, all compu-
tations are performed in log-space.

)T o€ RIY1 are trained parame-

2.2.1 Segment-level Features

Sarawagi and Cohen (2005) and Yang and Cardie
(2012) compute segment-level features by hand-
crafted rules. Recent work learns the features au-
tomatically with NNs (Kong et al., 2015; Zhuo
et al., 2016). This avoids the manual design of
new features for new languages/tasks. We adopt
Gated Recursive Convolutional Neural Networks
(grConv) (Cho et al., 2014; Zhuo et al., 2016)
since they allow to hierarchically combine features
for segments. We argue that this is especially use-
ful for compositionality in language. An example
is the word “airport” which can be composed of
the segments “air” and “port”.

GrConv constructs features by recursively com-
bining adjacent segment representations in a pyra-
mid shape way (see Figure 1). The d™ level of
the pyramid consists of all representations for seg-
ments of length d. The first level holds the char-
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acter representations from our biLSTM. The rep-
resentation zlid) € RP, stored in the k™ node of
layer d, is computed as follows:

2D =0, 02 40502l 4 04p 0 3
with .9 = g(WLz,gd_l) + WRz,(i_ll) + bw)

where Wi, Wi € RP*P and b,, € RP are glob-
ally shared parameters, 61, 0, and O are gates, g
is a non-linearity and o denotes element-wise mul-
tiplication. The gates are illustrated in the blue box
of Figure 1 and described in (Zhuo et al., 2016).

3 Experiments and Analysis

Our implementation is in PyTorch (Paszke et al.,
2017). Hyperparameters are tuned on the devel-
opment set. We use mini-batch gradient descent
with a batch size of 20 and Adam (Kingma and
Ba, 2014) as the optimizer. The learning rate is
le-3, the coefficients for computing running av-
erages of the gradient and its square are 0.9 and
0.999, respectively. A term of le-8 is added to
the denominator for numerical stability. We use
character embeddings of size 60 and three stacked
biLSTM layers with 100 hidden units for each di-
rection. For the semi-CRF, we set the maximum
segment length to L = 23 as tokens of bigger
length are rarely seen in the training sets. To avoid
overfitting, we apply dropout with a probability of
0.25 on each layer including the input. For input
dropout, we randomly replace a character embed-
ding with a zero vector, similar to Gillick et al.
(2016). This avoids overfitting to local character
patterns. Moreover, we employ early stopping on
the development set with a minimum of 20 train-
ing epochs. We run our experiments on a gpu
which speeds up the training compared to multiple
cpu cores considerably. We assume that it espe-
cially benefits from parallelizing the computation
of each level of the grConv pyramid.

3.1 Multilingual Experiments on Clean Data

Data and Evaluation. To compare our model to
state-of-the-art character-based POS taggers, we
evaluate its accuracy on the English part of the
Universal Dependencies (UD) v1.2 dataset (Nivre
et al., 2015). For multilingual experiments, we
use the English (EN), Chinese (ZH), Japanese (JA)
and Vietnamese (VI) part of UD v2.0% (Nivre and

2UD v1.2 does not provide data for JA, VI, ZH.

Model [} c

MarMot 94.36 -
bilstm-aux 92.10 91.62
CNN Tagger 92.64 93.76
Our - 94.27
Our without space feature - 93.35
Our with SRNN - 93.86

Table 1: POS tag accuracy on UD v1.2 (EN).
’-> denotes that the model does not use this input.

Zeljko Agic, 2017), using the splits, training and
evaluation rules from the CoNNL 2017 shared task
(Zeman et al., 2017). In particular, we calculate
joint tokenization and UPOS (universal POS) F}
scores.

Baselines for UD v1.2. We compare our model
to two character-based models that are state of the
art on UD v1.2: bilstm-aux (Plank et al., 2016)
and CNN Tagger (Yu et al., 2017). We also com-
pare to a state-of-the-art word-based CRF model
MarMot® (Miiller and Schiitze, 2015).

Results on English (UD v1.2). Table 1 pro-
vides our results on UD vl1.2, categorizing the
models into token-level (@) and character-only
models (¢). While most pure character-level mod-
els cannot ensure consistent labels for each charac-
ter of a token, our semi-CRF outputs correct seg-
ments in most cases (tokenization F} is 98.69%,
see Table 4), and ensures a single label for all char-
acters of a segment. Our model achieves the best
results among all character-level models and com-
parable results to the word-level model MarMot.

In addition, we assess the impact of two compo-
nents of our model: the space feature (see Section
2.1) and grConv (see Section 2.2.1). Table 1 shows
that the performance of our model decreases when
ablating the space feature, confirming that infor-
mation about spaces plays a valuable role for En-
glish. To evaluate the effectiveness of grConv
for segment representations, we replace it with a
Segmental Recurrent Neural Network (SRNN)
(Kong et al., 2015).* SRNN uses dynamic pro-
gramming and biLSTMs to create segment repre-
sentations. Its performance is slightly worse com-
pared to grConv (last row of Table 1). We attribute

Shttp://cistern.cis.lmu.de/marmot/

“In an initial experiment, we also replaced it with a sim-
pler method that creates a segment representation by sub-
tracting the character biLSTM hidden state of the segment
start from the hidden state of the segment end. This is one of
the segment-level features employed, for instance, by Ye and
Ling (2018). However, this approach did not lead to promis-
ing results in our case. We assume that more sophisticated
methods like grConv or SRNN are needed in this setup.
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UDPipe 1.2 Stanford FBAML TRL IMS Our
Tokens POS | Tokens POS | Tokens POS | Tokens POS | Tokens POS | Tokens POS
EN 99.03 9350 | 98.67 95.11 | 98.98  94.09 | 94.31 82.41 98.67 9329 | 9879 9345
JA 90.97 88.19 | 89.68 88.14 | 93.32 91.04 | 98.59 9845 | 91.68 89.07 | 93.86 91.34
VI 8426 7529 | 8247 7528 83.80 75.84 | 85.41 74.53 86.67 77.88 | 88.06 77.67
ZH 89.55 83.47 | 88.91 85.26 | 94.57 88.36 | 83.64 71.31 92.81 86.33 | 93.82  88.15
Avg | 90.95 85.11 89.93 8595 | 92.67 87.33 | 9049 81.68 | 9246 86.64 | 93.66 87.65

Table 2: Tokenization and joint token-POS F} on UD v2.0. Best scores are in bold, second-best are underlined.

this to the different way of feature creation: While
grConv hierarchically combines context-enhanced
n-grams, SRNN constructs segments in a sequen-
tial order. The latter may be less suited for com-
positional segments like “airport”.

Baselines for UD v2.0. We compare to the
top performing models for EN, JA, VI, ZH from
the CoNLL 2017 shared task: UDPipe 1.2 (Straka
and Strakova, 2017), Stanford (Dozat et al., 2017),
FBAML (Qian and Liu, 2017), TRL (Kanayama
et al., 2017), and IMS (Bjorkelund et al., 2017).

Multilingual Results (UD v2.0). Table 2 pro-
vides our results. While for each language another
shared task system performs best, our system per-
forms consistently well across languages (best or
second-best except for EN), leading to the best av-
erage scores for both tokenization and POS tag-
ging. Moreover, it matches the state of the art for
Chinese (ZH) and Vietnamese (VI), two languages
with very different characteristics in tokenization.

3.2 Analysis on Noisy Data

To further investigate the robustness of our model,
we conduct experiments with different levels of
corrupted tokenization in English. We argue that
this could also give us insights into why it per-
forms well on languages with difficult tokeniza-
tion, e.g., on Chinese which omits spaces between
tokens, or on Vietnamese which has spaces inside
tokens, after each syllable. Note that we do not ap-
ply input dropout for these experiments, since the
corrupt tokenization already acts as a regularizer.
Data. We are not aware of a POS tagging
dataset with corrupted tokenization. Thus, we cre-
ate one based on UD v1.2 (EN). For each token,
we either delete the space after it with probabil-
ity P = pg or insert a space between two charac-
ters with P = p;: "The fox chased the rabbit” —
”The f ox cha sed therabbit”. We vary p, and p;
to construct three datasets with different noise lev-
els (LOW, MID, HIGH, see Table 3). We note that
there are more sophisticated ways of creating “er-
rors” in text. An example is Kasewa et al. (2018)

who generate grammatical errors. We leave the
investigation of other methods for generating tok-
enization errors to future work.

level | pg #deletions | p;  #insertions
LOW | 0.1 15198 0.05 26497
MID 0.3 39361 0.11 40474
HIGH | 0.6 65387 0.33 68209

Table 3: Noisy dataset statistics (three different noise
levels).

Labeling. As mentioned before, we either
delete the space after a token with probability pg
or insert a space between two of its characters with
probability p;. We assign the label from the orig-
inal token to every sub-token created by space in-
sertion. For space deletions, we randomly choose
one of the two original labels for training and eval-
uate against the union of them. Figure 2 shows an
example.

The fox chased the rabbit
DET NOUN VERB DET NOUN
The f [o)'¢ cha sed therabbit

DET NOUN NOUN VERB VERB {DET|NOUN}

Figure 2: Example of label assignment.

Baseline. We compare our joint model to a tra-
ditional pipeline of tokenizer (UDpipe 1.0)° and
token-level POS tagger (MarMot).® We re-train
MarMot on the corrupted datasets.

Evaluation. We evaluate the models on the
noisy datasets using two different metrics: (i) to-
kenization and joint token-POS F as in Table 2,
and (ii) a relaxed variant of POS tag accuracies.
With the latter, we can assess the performance of
MarMot without penalizing it for potential errors
of UDpipe. For calculating the relaxed accuracy,
we count the POS tag of a gold token as correct
if MarMot predicts the tag for any subpart of it.

>http://lindat. mff.cuni.cz/services/udpipe/
%In contrast to Table 1 where we use gold tokens for Mar-
Mot.
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UDpipe+MarMot Our
F acc Fy acc
Noise Tokens POS | POS | Tokens POS | POS
CLEAN| 9848 92.75| 93.48| 98.69 93.48| 94.27
LOW 7090 65.56| 83.73| 96.08 90.51| 92.80
MID 20.62 19.07| 58.53| 95.28 89.80| 92.54
HIGH | 2047 18.05| 56.96| 95.45 89.82| 92.14

Table 4: Tokenization F1, joint token-POS F} and (re-
laxed) POS tag accuracies on noisy version of UD v1.2.

We provide more details on the relaxed evaluation
(description, examples and implementation) in our
code repository. Note that we apply the relaxed
evaluation only to UDpipe+MarMot but not to our
model. The output of our model is directly evalu-
ated against the gold labels of the clean corpus.

Results. The performance of our model de-
creases only slightly when increasing the noise
level while the performance of UDpipe+MarMot
drops significantly (Table 4). This confirms that
our model is robust against noise from tokeniza-
tion. Note that most other character-based models
would suffer from the same performance drop as
MarMot since they rely on tokenized inputs.

Discussion. The results in Table 4 show that our
model can reliably recover token boundaries, even
in noisy scenarios. This also explains its strong
performance across languages: It can handle dif-
ferent languages, independent of whether the lan-
guage merges tokens without whitespaces (e.g.,
Chinese) or separates tokens with whitespaces into
syllables (e.g., Vietnamese).

4 Related Work

Character-based POS Tagging. Most work uses
characters only to build more robust token rep-
resentations but still relies on external tokenizers
(Santos and Zadrozny, 2014; Lample et al., 2016;
Plank et al., 2016; Dozat et al., 2017; Liu et al.,
2017). In contrast, our model jointly learns seg-
mentation and POS tagging. Gillick et al. (2016)
do not rely on tokenization either but in contrast
to their greedy decoder, our model optimizes the
whole output sequence and is able to revise lo-
cal decisions (Lafferty et al., 2001). For process-
ing characters, LSTMs (Lample et al., 2016; Plank
et al., 2016; Dozat et al., 2017) or CNNs (Ma and
Hovy, 2016; Yu et al., 2017) are used. Our model
combines biLSTMs and grConv to model both the
context of characters (LSTM) and the composi-
tionality of language (grConv).

Joint Segmentation and POS Tagging. The

top performing models of EN, JA, VI and ZH use
a pipeline of tokenizer and word-based POS tag-
ger but do not treat both tasks jointly (Bjorkelund
et al., 2017; Dozat et al., 2017; Kanayama et al.,
2017; Qian and Liu, 2017). Especially for Chi-
nese, there is a lot of work on joint word segmen-
tation and POS tagging, e.g., (Zhang and Clark,
2008; Sun, 2011; Hatori et al., 2012; Zheng et al.,
2013; Kong et al., 2015; Cai and Zhao, 2016; Chen
et al., 2017; Shao et al., 2017), of which some use
CRFs to predict one POS tag per character. How-
ever, this is hard to transfer to languages like En-
glish and Vietnamese where single characters are
less informative and tokens are much longer, re-
sulting in a larger combinatory label space. Thus,
we choose a semi-Markov formalization to di-
rectly model segments.

Semi-Markov CRFs for Sequence Tagging.
Zhuo et al. (2016) and Ye and Ling (2018) ap-
ply semi-CRFs to word-level inputs for named en-
tity recognition. In contrast, we model character-
based POS tagging. Thus, the expected length of
our character segments is considerably larger than
the expected length of word-based segments for
NER. Kong et al. (2015) build SRNNs that we use
as a baseline. In contrast to their 0-order model,
we train a 1-order semi-CRF to model dependen-
cies between segment labels.

5 Conclusion

We presented an end-to-end model for character-
based part-of-speech tagging that uses semi-
Markov conditional random fields to jointly seg-
ment and label a sequence of characters. In-
put representations and segment representations
are trained parameters learned in end-to-end train-
ing by the neural network part of the model.
The model achieves state-of-the-art results on two
benchmark datasets across several typologically
diverse languages. By corrupting the tokeniza-
tion of the dataset, we show the robustness of our
model, explaining its good performance on lan-
guages with difficult tokenization.
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