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Abstract

Arabic text is typically written without short
vowels (or diacritics). However, their pres-
ence is required for properly verbalizing Ara-
bic and is hence essential for applications such
as text to speech. There are two types of dia-
critics, namely core-word diacritics and case-
endings. Most previous works on automatic
Arabic diacritic recovery rely on a large num-
ber of manually engineered features, particu-
larly for case-endings. In this work, we present
a unified character level sequence-to-sequence
deep learning model that recovers both types
of diacritics without the use of explicit fea-
ture engineering. Specifically, we employ a
standard neural machine translation setup on
overlapping windows of words (broken down
into characters), and then we use voting to se-
lect the most likely diacritized form of a word.
The proposed model outperforms all previ-
ous state-of-the-art systems. Our best settings
achieve a word error rate (WER) of 4.49%
compared to the state-of-the-art of 12.25% on
a standard dataset.

1 Introduction

Arabic uses two types of vowels, namely long
vowels, which are explicitly placed in the text,
and short vowels, which are diacritic marks that
are typically omitted during writing. In order to
read Arabic words properly, readers need to rein-
troduce the missing diacritics. Therefore, accu-
rate diacritic recovery is essential for some ap-
plications such as text-to-speech. There are, in
turn, two types of Arabic diacritics, namely core-
word diacritics (CW), which specify lexical se-
lection, and case endings (CE), which typically
indicate syntactic role. For example, the word
“AlElm”1 can accept many possible core-word
diacritics depending on the intended meaning

1In this paper, we use Buckwalter transliteration.

such as: “AaloEalam” (the flag) and “AaloEilom”
(the knowledge/science). In our training corpus,
17.1% of the word-cores have more than one
valid diacritized form. In the sentence “Zahara
AaloEalamu” (the flag appeared), “AaloEalamu”
is the subject and takes the case ending “u”, and
in the sentence “ra>ayotu AaloEalama” (I saw
the flag), “AaloEalama” is the object and takes
the case ending “a”. Aside from function words,
past tense and accusative verb forms, and for-
eign names, most words can accept different case-
endings depending on context.

In this paper, we introduce a unified model
for both diacritic types while improving upon the
state-of-the-art. Specifically, we approached the
task as a sequence-to-sequence (seq2seq) prob-
lem (Cho et al., 2014); taking advantage of the re-
cent advancements in Neural Machine Translation
(NMT) (Britz et al., 2017; Kuchaiev et al., 2018)
among other applications where seq2seq models
made a breakthrough (Yu et al., 2016; Witten et al.,
2016; Abadi et al., 2016). Using the analogy of
translation which employs a sequential encoder
and a sequential decoder, the input undiacritized
text will be encoded and then decoded into dia-
critized form.

As we show later, directly applying a seq2seq
model at sentence level using word or charac-
ter representations produces nearly unusable re-
sults that are much worse than the state-of-the-art
due to word insertions, omissions, and substitu-
tions. Such problems are exaggerated when us-
ing word-based models due to Out-Of-Vocabulary
words (OOVs). Conversely, character-based mod-
els suffer from not learning long-term dependen-
cies. To avoid these problems, we train a seq2seq
model on a sliding window of words that are rep-
resented using characters, and we employ voting
to pick the best most likely diacritized form from
different windows. In doing so, we provide suffi-
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cient context to properly guess proper diacritized
forms, while stinting the aforementioned undesir-
able word operations. Further, the use of voting
has the effect of picking the most frequent dia-
critized form obtained from applying the model on
different contexts. The resultant system makes full
use of NMT machinery to achieve error rates that
are 63.3% lower than the best state-of-the-art sys-
tem2.

The contributions in this paper are:

• Adaptation of neural machine translation for
Arabic diacritic recovery with voting.

• Unified model to handle both core-diacritics
and case-endings.

• Substantial improvement over state-of-the-
art with 4.49% word error rate compared to
12.25%.

2 Background

One of the first approaches to Arabic diacritiza-
tion used a Hidden Markov Model (Gal, 2002;
Elshafei et al., 2006) that was applied to the
Qur’an achieving double digit word error rates
(WER). Vergyri and Kirchhoff (2004) used acous-
tic features in conjunction with morphological and
contextual constrains to train a diacritizer and re-
ported a 9% and 28% diacritics error rate (DER)
without and with CEs. Since words are com-
posed of multiple letters with corresponding dia-
critics, DER values are typically lower than WER
values. Nelken and Shieber (2005) used a cas-
cade of word-level, character-level, and morpho-
logical models finite state transducers to attain a
Word Error Rate (WER) of 7.33% without CE
and and 23.61% WER with CE. Zitouni et al.
(2006) trained a maximum entropy model for se-
quence classification using the LDCs Arabic Tree-
bank (ATB) and attained a WER of 18% (with CE)
on 600 articles from An-Nahar Newspaper.

Habash and Rambow (2005); Rashwan et al.
(2011); Bebah et al. (2014); Pasha et al. (2014);
Metwally et al. (2016); Darwish et al. (2017)
combined morphological features along with POS
tagging information and n-gram language mod-
els. MADA-D system (Habash and Rambow,
2007) achieved a 5.5% and 14.9% WER respec-
tively without and with CE. MADAMIRA (Pasha
et al., 2014) ranks a list of candidate analyses from

2Patent pending.

the Buckwalter analyzer (Buckwalter, 2004) using
an SVM classifier and achieves 19.0% and 6.7%
WER with and without CE respectively. Similarly,
Microsoft Arabic Toolkit Services (ATKS) dia-
critizer (Said et al., 2013) uses a rule-based mor-
phological analyzer that produces possible anal-
yses and an HMM in conjunction with rules to
guess the most likely analysis. They report WER
of 11.4% and 4.4% with and without CE. Dar-
wish et al. (2017) used a Viterbi decoder to guess
core word diacritics and SVM-rank to guess case-
endings and their system achieves a WER of
3.29% and 12.77% for words without and with
CE. They trained their system using a large cor-
pus of roughly 4.5 million words.
More recent work employed different neural ar-
chitectures to model the diacritization problem.
Abandah et al. (2015) used a biLSTM-based re-
current neural network trained on the same dataset
as (Zitouni et al., 2006), and they report a WER
of 9.1% including CE on ATB. Similar architec-
tures were explored but with lower results (Rash-
wan et al., 2015; Belinkov and Glass, 2015). Azmi
and Almajed (2015); Osama Hamed (2017) survey
recent work on Arabic diacritization. They con-
cluded that: reported results are often incompara-
ble due to the usage of different test sets; a large
unigram LM for CW diacritic recovery is compet-
itive with many of the systems in the literature. In
this paper, we compare our results to those of Said
et al. (2013); Pasha et al. (2014); Rashwan et al.
(2015); Belinkov and Glass (2015); Darwish et al.
(2017) on standard test set.

3 Methodology

Representation Unit. The diacritization of Ara-
bic is a word-internal property dependent on both
character and word-level contexts. Therefore,
we consider characters as units of representa-
tion. We represent source sentences as a se-
quence of characters by adding a space after ev-
ery character and a word boundary “ ” between
words. The target side, which is fully diacritized,
is split into a sequence of subword units each
consisting of a letter and its diacritic(s). For
example, source word “AlElm” would be rep-
resented as “A/l/E/l/m” and its diacritized target
“AaloEalamu” as “Aa/lo/Ea/la/mu”.

The character-level representation has several
benefits, such as reducing the vocabulary size and
avoiding OOV words. The splitting of diacritized
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words into subword units simplifies the problem as
there will be identical number of source and target
tokens in a parallel sentence. Later, we support our
design decisions with results in the experiments
section. Subwords (BPE (Sennrich et al., 2016))
have been used as a defacto standard in building
NMT systems. They are a natural choice to han-
dle unknown words. However, BPE does not fit in
our scenario as it may create source and target seg-
ments of different lengths. In the Arabic diacriti-
zation problem, both source and target words and
characters are strictly tied to each other and loos-
ening it would result in sub-optimal performance
and may generate unexpected errors.

Context Window. The diacritization of Arabic
words is highly sensitive to context. Character rep-
resentations significantly increase the size of the
source and target sequences. This leads to a well
known limitation of character-based LSTM-based
models, namely poor handling of long range de-
pendencies (Sennrich, 2017). An easy fix is to split
sentences greater than a certain length into multi-
ple lines. However, boundary words may loose
context in the newly created sequences. To handle
this, we propose to keep a fixed size context win-
dow c for every word. Given a sentence, we use
a sliding context window to split it into segments
of overlapping windows of size c as in Table 1.
This fixes the problems of both long range depen-
dencies and context of neighboring words. We are
further aided by the fact that local context can con-
clusively determine the correct diacritization in the
vast majority of cases.

Voting. As shown in Table 1, the sliding window
approach replicates a word present in a sentence c
times. At test time, a word may get different dia-
critized forms from different contexts. We use vot-
ing to choose the most frequent diacritized form
from the c predictions. In case of a tie, we favor
the context where the word appears in the middle.

Sentence w1 w2 w3 w4 w5

c=3 w1 w2 w3

w2 w3 w4

w3 w4 w5

Table 1: Example sentence: w1 w2 w3 w4 w5 with con-
text window c of size 3.

Train Test
Total Uniq Total Uniq OOV

Diacritized 4.5M 333k 18.3k 7.9k 5.0%
Undiacritized 209k 6.8k 3.3%

Table 2: Number of tokens in training and test data.

Seq2Seq Model. We use a seq2seq model con-
sisting of three main components: i) Encoder,
ii) Decoder, and iii) Attention. Given a source
sentence s = w1, ..., wN and a target sentence t
= v1, ..., vN , the encoder models the source sen-
tence and computes a set of hidden states h =
h1, ..., hN . The attention mechanism (Bahdanau
et al., 2014) computes a weighted average of these
hidden states from the previous decoder state,
known as the context vector ci, while decoder
models the target sentence. The seq2seq model is
trained jointly on a large parallel corpus by maxi-
mizing the log-likelihood of the data:

log p(t|s) =
∑
i

|ti|∑
j=1

log p(vij |vi1, ..., vij−1, si)

(1)
where si and ti are the ith source and target sen-
tences. In addition, we experiment with a Trans-
former model (Vaswani et al., 2017), which is an
attention based architecture without LSTM, and
compare its results to the aforementioned seq2seq
model with attention.

4 Experimental Setup and Results

Data. We used a modern diacritized corpus of
4.5 million tokens that covers a wide range of top-
ics such as politics, religion, sport, health, and
economics. For testing, we used the freely avail-
able WikiNews corpus (18,300 words) (Darwish
et al., 2017) as a test set, which covers a variety
of genres. Table 2 reports the size of the training
and test sets including the unique diacritized and
undiacritized tokens and the percentage of OOVs
in the test set that don’t appear in the training set.
We randomly used 10% of the train data for val-
idation and the rest for training. We used a se-
quence length of 100, 500 and 7 tokens for word-
, character-, and window-based systems respec-
tively. The vocabulary is restricted to 100k words
types and 1,000 character units.

System Settings. The settings for LSTM-based
Seq2Seq model were: word embeddings and
LSTM states = 512; 2 layer unidirectional LSTM;
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Exp Description Core WER% CE WER% WER% DER% OOV%

01 Baseline Word 44.29 54.95 54.31 41.62 13.03
02 Baseline Char 41.29 41.95 48.31 36.62 0.00

03 Word 7g 14.83 19.01 20.69 18.92 11.04
04 Char 7g 2.78 6.11 8.32 2.19 0.00

05 Word 7g+overlap 14.50 16.57 18.05 18.14 10.97
06 Char 7g+overlap 2.04 3.23 4.94 1.34 0.00

07 Char 3g+overlap+voting 2.31 5.97 7.79 2.01 0.00
08 Char 5g+overlap+voting 2.37 3.57 5.49 1.49 0.00
∗09 Char 7g+overlap+voting 1.99 3.07 4.77 1.30 0.00

10 Char 11g+overlap+voting 3.03 3.93 6.40 1.78 0.00
†11 Char 7g+overlap+voting (Transformer) 2.05 3.04 4.77 1.29 0.00

12 Combination ∗09 +† 11 1.89 2.89 4.49 1.21 0.00

Table 3: Diacritization results: *g represents ngram size e.g. 7g means 7-gram context. Experiment 09 and 11 are
comparing NMT models – LSTM-based architecture with attention mechanism and Transformer model

and dropout rate = 0.3. The setting for the Trans-
former were: 6 encoder and 6 decoder layers each
of size 512; number of attention heads = 8; feed
forward dimension = 2048; and dropout = 0.1. We
used the OpenNMT (Klein et al., 2017) implemen-
tation with tensorflow for all experiments.

System Runs. We conducted a variety of exper-
iments as follows, namely: Word-level experi-
ments where the input is a sequence of words and
the output is a sequence of diacritized words:
– Baseline Word: uses the full sentences and
shows the deficiency of using NMT directly.
– Word 7g: uses non-overlapping windows of
7 words to compare to our best character-level
model, which also uses a window of length 7.
– Word 7g+overlap: uses a sliding window of 7
words.
Character-level experiments where the input is
represented as a sequence of character and the out-
put as a sequence of diacritized characters:
– Baseline Char: uses the full sentence.
– Char 7g: uses non-overlapping sequences of 7
words.
– Char 7g+overlap: uses a sliding window of 7
words without voting.
– Char ng-overlap+voting: uses a sliding window
of n words with voting, where we varied n to
equal 3, 5, 7, and 11. When n = 7, we exper-
imented with a seq2seq model with attention, a
Transformer model, and a combination of both.

Results. Table 3 summarizes the results of our
experiments. As the results clearly show, us-
ing an NMT model at word or character level
produced unusable results. Both Baselines suf-

Setup WER%

Our System 04.49

Microsoft ATKS (Said et al., 2013) 12.25
Farasa (Darwish et al., 2017) 12.76
RDI (Rashwan et al., 2015) 15.95
MADAMIRA (Pasha et al., 2014) 19.02
MIT (Belinkov and Glass, 2015) 30.50

Table 4: Comparison to other systems for full diacriti-
zation (Darwish et al., 2017).

fer also from excessive repetition of charac-
ters that are often meaningless hallucination
(e.g. “AalofaA}iti AaloHaAdiy waAlt∼awaAliy
Aaloayoiy AloanohaAti AaloanohaAti”). When
we limited the context to 7 words, the results im-
proved dramatically, nonetheless, the output still
suffered from a high ratio of OOVs. Using char-
acters instead alleviated the OOV problem. The
results improved dramatically with contexts of
length 7 yielding the best results. Using voting
lowered WER rate further, leading to a 4.77%
WER. Using a Transformer model led to nearly
identical WER to using our NMT model with at-
tention. However their results are somewhat com-
plimentary. Thus, voting on the predictions across
both systems improved the results further with a
4.49% WER. Table 4 compares our best system
with other systems. The WER of our best system
is 63.3% lower than the state-of-the-art.

Error Analysis. we randomly selected 100 er-
rors word-core and 100 case-ending errors we as-
certain the most common error types. For case-
ending, the top 4 error types were: long-distance
dependency (e.g. coordination or verb subj/obj),
which is an artifact of using limited context – 24%
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of errors; confusion between different syntactic
functions (e.g. N N vs. N ADJ or V Subj vs.
V Obj) – 22%; wrong selection of morphological
analysis (e.g. present tense vs. past tense) – 20%;
and named entities (NEs) – 16%. For long dis-
tance dependencies, increasing context size may
help in some case, but may introduce additional
errors (see Table 3). Perhaps combining multiple
context sizes may help. As for word-core, the top
4 errors were: incorrect selection for ambiguous
words, where most of these errors were related to
active vs. passive voice – 60%; NEs – 32%; bor-
rowed words – 4%; and words with multiple valid
diacritized words – 4%.

5 Conclusion

In this paper, we adapted a seq2seq model to build
a unified model for Arabic diacritic recovery. We
trained the model on a fixed length sliding win-
dow of n words that are represented using their
characters. We further employed voting to pick the
most common diacritized form of a word in differ-
ent contexts. The adaptation yielded a word error
rate of 4.49%, which is 63.3% lower than the best
state-of-the-art system. One possible future direc-
tion is to use a system combination with varying
context sizes with a weighted voting scheme. Fur-
ther, the explicit inclusion of a large gazetteer of
diacritized NEs in the training set would help di-
acritize them properly. We also want to examine
the effect of training data size to determine if more
data would yield better results.
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