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Abstract

We compare three new datasets for question
answering: SQuAD 2.0, QuAC, and CoQA,
along several of their new features: (1) unan-
swerable questions, (2) multi-turn interactions,
and (3) abstractive answers. We show that
the datasets provide complementary coverage
of the first two aspects, but weak coverage
of the third. Because of the datasets’ struc-
tural similarity, a single extractive model can
be easily adapted to any of the datasets and
we show improved baseline results on both
SQuAD 2.0 and CoQA. Despite the similar-
ity, models trained on one dataset are inef-
fective on another dataset, but we find mod-
erate performance improvement through pre-
training. To encourage cross-evaluation, we
release code for conversion between datasets
at https://github.com/my89/co-squac.

1 Introduction

Question answering on textual data has served
as a challenge problem for the NLP community
(Voorhees, 2001; Richardson et al., 2013). With
the development of large scale benchmarks and
sufficiently simple evaluations (Trischler et al.,
2016; Nguyen et al., 2016; Hermann et al., 2015)
progress has been rapid. In recent evaluation on
SQuAD (Rajpurkar et al., 2016), performance ex-
ceeded that of annotators (Wang et al., 2018; Hu
et al., 2017; Wang et al., 2017).

In response to this development, there have
been a flurry of new datasets. In this
work, we analyze three such new proposed
datasets, SQuAD 2.0 (Rajpurkar et al., 2018),

QuAC (Choi et al., 2018), and CoQA (Reddy
et al., 2018).1 In each of these datasets, crowd
workers are asked to (1) produce questions about a
paragraph of text (context) and (2) produce a reply

1A review of other new datasets is in the related work.

by either indicating there is no answer, or provid-
ing an extractive answer from the context by high-
lighting one contiguous span. QuAC and CoQA
contain two other features: questions are asked in
the form of a dialog, where co-reference to previ-
ous interactions is possible and directly answering
yes/no is possible. CoQA also allows workers to
edit the spans to provide abstractive answers.2

We compare these three datasets along several
of their new features: (1) unanswerable questions,
(2) multi-turn interactions, and (3) abstractive an-
swers. Unanswerable question coverage is com-
plementary among datasets; SQuAD 2.0 focuses
more on questions of extreme confusion, such
as false premise questions, while QuAC primar-
ily focuses on missing information. QuAC and
CoQA dialogs simulate different types of user be-
havior: QuAC dialogs often switch topics while
CoQA dialogs include more queries for details.
Unfortunately, no dataset provides significant cov-
erage of abstractive answers beyond yes/no an-
swers, and we show that a method can achieve an
extractive answer upper bound of 100 and 97.8 F1
on QuAC and CoQA , respectively.

Motivated by the above analysis, we apply the
baseline presented in QuAC (Choi et al., 2018),
BiDAF++, a model based on BiDAF (Seo et al.,
2016), augmented with self attention (Clark and
Gardner, 2018) and ELMo contextualized embed-
dings (Peters et al., 2018) to all datasets. Exper-
iments show that this extractive baseline outper-
forms existing extractive and abstractive baselines
on CoQA by 14.2 and 2.7 F1 respectively. Finally,
we show models can transfer between datasets
with pretraining yielding moderate gains.3

2Also, SQuAD 2.0 and QuAC cover only Wikipedia text,
CoQA covers six other domains and QuAC is the only one
of these datasets that doesn’t allow the questioner to see the
context before formulating a question.

3To facilitate easy future cross-evaluation, we release
tools for conversion between these dataset.

https://github.com/my89/co-squac
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Dataset Entity
Salad

False
Premise

Topic
Error

Missing
Information

Content
Negation

Answerable
Questions

Total
Questions

CoQA 0.0 0.0 0.0 60.0 0.0 40.0 5 (0.5%)
SQuAD 2.0 21.3 21.3 13.5 16.1 16.1 10.9 230 (50.1%)

QuAC 5.5 0.0 16.4 71.2 0.0 6.8 73 (20.2%)

Table 1: Comparison of unanswerable questions on 50 random contexts from the development set of each dataset.
SQuAD 2.0 contains a diverse set of circumstances that make questions unanswerable, QuAC focuses on informa-
tion that could plausibly be in context material and CoQA does not significantly cover unanswerable questions.

Dataset Topic
Shift

Drill
Down

Return to
Topic

Clarification
Question

Definition
Question

Sentence
Coverage

Total
Questions

CoQA 21.6 72.0 2.9 0.0 0.7 63.3 722
QuAC 35.4 55.3 5.6 0.7 3.0 28.4 302

Table 2: Comparison of dialog features in 50 random contexts from the development set of each dataset.
CoQA contains questions that drill into details about topics and cover 60% of sentences in the context while
in QuAC dialog switch topic more often and cover less than 30% of sentences. Neither dataset has a significant
number of returns to previous topics, clarifications, or definitional interactions.

2 Dataset Analysis

In this section we analyze unanswerable ques-
tions, dialog features, abstractive answers in
SQuAD 2.0, QuAC, and CoQA. All analysis was
performed by the authors, on a random sample of
50 contexts (300-700 questions) from the develop-
ment set of each dataset.

2.1 Unanswerable Questions

In Table 1 we compare types of unanswerable
questions across dataset. We identify five types
of questions found between the datasets:
1. Entity Salad A nonsensical reference to enti-
ties found in the context or made-up entities (e.g.
“What infinite hierarchy implies that the graph
isomorphism problem s NQ-complete?”). Such
questions are unanswerable for any context.
2. False Premise A fact that contradicts the con-
text is asserted in the question (e.g. “When is the
correlation positive?” but in the context says “the
correlation is strictly negative”).
3. Topic Error A questions that references an
entity in the context but the context does not focus
on that entity (e.g “How many earthquakes occur
in California?” when the article focus is actually
about “Southern California” ). Such questions
potentially have answers, but it would be unlikely
for the answer to be found in the context.
4. Missing Information A question who’s an-
swer could be plausibly in the context but is not
(e.g. “What is the record high in January?” and
the article is about temperature extremes). Such
questions have an answer but it is not mentioned.
5. Content Negation A question which asks for
the opposite information of something mentioned

in the context (e.g. “Who didnt cause the disso-
lution of the Holy Roman Empire?”). Such ques-
tions either have answers that are the set of all en-
tities other than the one mentioned or answers that
could be found in some other context.

Results SQuAD 2.0 contains the highest diver-
sity of unanswerable questions of all datasets an-
alyzed. Some SQuAD 2.0 questions are unlikely
to be asked without significant foreknowledge of
the context material and do not occur in QuAC. 4

Both SQuAD 2.0 and QuAC cover a signifi-
cant number of unanswerable questions that could
be plausibly in the article. The difference in set-
tings and distributions of unanswerable questions
in SQuAD 2.0 and QuAC appear to be comple-
mentary: SQuAD 2.0 focuses more on questions
simulating questioner confusion, while QuAC pri-
marily focuses on missing information. 5

2.2 Dialog Features

In Table 2 we analyze five dialog behaviors:
1. Topic Shift A question about something pre-
viously discussed (e.g. “Q: How does he try to
take over? ... Q: Where do they live?”).
2. Drill Down A request for more information
about a topic being discussed (e.g. “A: The Sher-
pas call Mount Everest Chomolungma. Q: Is Mt.
Everest a holy site for them?”)
3. Topic Return Asking about a topic again af-
ter it had previously been shifted away from.

4Such questions resemble text from entailment datasets
such as SNLI (Bowman et al., 2015) and seem more likely to
arise if questioners are receiving very complex information
and become confused.

5CoQA does not contain a significant number of unan-
swerable questions, and many of the ones that do exist are
erroneously marked.
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Dataset Yes/No Coref Counting Picking Fluency Max F1

CoQA 21.4 3.2 1.3 0.6 4.2 97.8
QuAC 21.1 0.0 0.0 0.0 0.0 100.0

Table 3: Comparison of abstractive features in 50 random contexts in the develoment set of each dataset. Both
QuAC and CoQA contain yes/no questions while CoQA also contains answers that improve fluency through ab-
stractive behavior. The extractive upper bound from CoQA is high because most absractivive answers involve
adding a pronoun (Coref) or inserting prepositions and changing word forms (Fluency) to existing extractive an-
swers, resulting in extremely high overlap with possible extractive answers.

4. Clarification Reformulating a question that
had previously been asked.
5. Definition Asking what is meant by a term
(e.g. “What are polygenes?”)

Results QuAC and CoQA contain many similar
features but at very different rates, offering com-
plementary coverage of types of user behavior.
CoQA dialogs drill down for details significantly
more frequently and cover more than 60% of sen-
tences in the context material (Sentence Cover-
age). QuAC dialogs shift to new topics frequently
and cover less than 30% of sentences in the con-
text. Both datasets contain only a small numbers
of definition questions and returns to previous top-
ics and few requests for clarification.

2.3 Abstractive Answers
Table 3 compares abstractive behavior in
CoQA and QuAC. We observed five phenomena:
1. Yes/No Questions annotated with yes/no. In
QuAC such questions and their corresponding yes
or no are marked in addition to an extractive an-
swer. In CoQA, the single token “yes” or “no”
is simply asserted as the abstractive answer, with
an extractive answer provided in the rationale (e.g.
“Q: Is atmosphere one of them? A: yes”).
2. Coref Coreference is added to previously
mentioned entities in either context or question
(e.g. “Q: How was France’s economy in the late
2000s? A: it entered the recession”).
3. Count Counting how many entities of some
type were mentioned (e.g. “Q: how many specific
genetic traits are named? A: five”)
4. Picking A question that requires the answer
to pick from a set defined in the question (e.g. “Q:
Is this a boy or a girl? A: boy)
5. Fluency Adding a preposition, changing the
form of a word, or merging two non-contiguous
spans (e.g. “Q: how did he get away? A: by foot)

Results Both QuAC and CoQA have a similar
rate of yes/no questions. QuAC contains no other
abstractive phenomena while CoQA contains a

Overall F1

DrQA (Extractive) 54.7
DrQA + PGNet (Abstractive) 66.2

BiDAF++ w/ 0-ctx 63.4
BiDAF++ w/ 3-ctx 69.2

Table 4: Development set performance by training
BiDAF++ (Choi et al., 2018) models (extractive) on
CoQA data with handling yes/no and no-answer ques-
tions as in QuAC. Despite being extractive, these mod-
els significantly outperform reported baselines, DrQA
and DrQA + PGNet (Reddy et al., 2018).

in-F1 out-F1 F1

DrQA 54.5 47.9 52.6
DrQA + PGNet 67.0 60.4 65.1
BiDAF++ w/ 3-ctx 69.4 63.8 67.8

Table 5: Test set results on CoQA. We report in domain
F1 (in-F1), out of domain F1 on two held out domains,
Reddit and Science (out-F1) and the overall F1 (F1).

small number of predominately insertions, often
at the beginning of an extractive span, for corefer-
ence and or other fluency improvements. Because
abstractive behavior in CoQA includes mostly
small modifications to spans in the context, the
maximum achievable performance by a model that
predicts spans from the context is 97.8 F1. 6

3 New Extractive Baseline for CoQA

Our analysis strongly implies that beyond yes/no
questions, abstractive behavior is not a significant
component in either QuAC or CoQA. As such,
QuAC models can be trivially adapted to CoQA.

We train a set of BiDAF++ baselines from the
original QuAC dataset release (Choi et al., 2018)
by optimizing the model to predict the span with
maximum F1 overlap with respect to annotated ab-
stractive answers.7 If the abstractive answer is ex-

6To compute the upper bound, if abstractive answer is
exactly “yes”, “no”, or “unknown”, we consider the upper
bound to be 100. Otherwise, we use the CoQA evaluation
script to find a span in the context that has maximum F1 with
respect to the abstractive answer.

7We use the implementation on http://allennlp.
org, and do not modify any hyper-parameters except the the
maximum dialog length and that models were allowed to train
up to 65 epochs.

http://allennlp.org
http://allennlp.org
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F1 HEQQ HEQD

BiDAF++ w/ 2-ctx 60.6 55.7 4.0

Train SQuAD 2.0 34.3 18.0 0.3
Train CoQA 31.2 19.2 0.0
Ft from SQuAD 2.0 62.6 58.3 5.9
Ft from CoQA 63.3 59.2 5.1

Table 6: Cross dataset transfer to QuAC development
set. Models do not transfer directly (rows 3 and 4), but
after fine tuning improve performance (rows 5 and 6).

actly “yes” or “no”, we train the model to output
the whole rationale span, and classify the question
as yes/no with the appropriate answer. At eval-
uation time, if the model predicts a question is a
yes/no question, instead of returning the extracted
span, we simply return “yes” or “no”.

Results Table 4 and Table 5 summarize our re-
sults for training BiDAF++ with varying con-
texts on CoQA. Beyond the difference of under-
lying base question-answer models (DrQA (Chen
et al., 2017) vs. BiDAF (Seo et al., 2016)
with self attention (Clark and Gardner, 2018)),
BiDAF++ has two core differences with respect to
DRQA+PGNet: (1) instead of appending previous
questions and answers to input question tokens,
BiDAF++ marks answers of previous questions di-
rectly on the context, and (2) BiDAF++ uses con-
textualized word embeddings through ELMo (Pe-
ters et al., 2018). These differences, in combina-
tion with appropriate handling of yes/no and unan-
swerable questions significantly improves on the
existing extractive baseline (+14.2 F1) and even
on the existing abstractive baseline (+2.7 F1).

4 Cross-Dataset Experiments

In this section we consider whether models can
benefit from transfer between SQuAD 2.0, QuAC,
and CoQA, and show that the datasets, while in-
effective for direct transfer, can be used as pre-
training. In all experiments, we use BiDAF++,
either with two context or no context, depending
on if we are training for dialog settings or not,
with default configurations. Models are trained by
initializing from other models trained on differ-
ent datasets and we do not decrease initial learn-
ing rates from just training directly on the target
dataset. When SQuAD 2.0 is used to initialize
models that use context, we randomly order ques-
tions in SQuAD 2.0 and train as if questions were
asked in the form of a dialog. 8

8Likely a better strategy exists but we would like to
demonstrate transfer in the simplest way. We only report

In Domain F1

DrQA + PGNet 66.2
BiDAF++ w/ 2-ctx 67.6

SQuAD 2.0 41.4
QuAC 29.1
Ft from SQuAD 2.0 69.2
Ft from QuAC 68.0

Table 7: Cross dataset transfer to CoQA development
set. Models do not transfer directly (rows 3 and 4),
but after fine tuning improve performance (rows 5 and
6). For an explanation of why BiDAF++ outperforms
DrQA + PGNet, see Section 3.

F1 EM

Baseline 67.6 65.1
BiDAF++ 70.5 67.4

CoQA 38.1 32.4
QuAC 25.4 16.8
Ft from CoQA 72.5 69.4
Ft from QuAC 69.5 66.8

Table 8: Cross dataset transfer to SQuAD 2.0 develop-
ment set. BiDAF++ (Choi et al., 2018) outperforms
the baseline, a different implementation of the same
model (Rajpurkar et al., 2018) likely because of better
hyper parameter tuning.

Results Tables 6-8 summarize our results.
Across all of the datasets, BiDAF++ outperforms
other baselines, and there exists at least one other
dataset that significantly improves performance on
a target dataset on average +2.1 F1. Experiments
do not support that direct transfer is possible.

5 Related Work

Other proposals exist other than the three we an-
alyzed that expand on features in SQuAD (Ra-
jpurkar et al., 2016). For example, maintaining
question independence of context to reduce the
role of string matching and having long context
length (Joshi et al., 2017; Kociský et al., 2017),
higher level reasoning (Khashabi et al., 2018;
Clark et al., 2018; Yang et al., 2018), multi-turn in-
formation seeking interactions, in either table set-
tings (Iyyer et al., 2017; Talmor and Berant, 2018;
Saha et al., 2018), regulation settings (Saeidi et al.,
2018), or Quiz Bowl settings (Elgohary et al.,
2018). Other work considers multi-modal con-
texts where interactions are a single turn (Tapaswi
et al., 2016; Antol et al., 2015; Lei et al., 2018) or
multi-turn (Das et al., 2017; Pasunuru and Bansal,
2018). These efforts contain alternative challenges
than ones we analyze in this paper.

development numbers as these experiments are meant to be
exploratory.
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