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Abstract

Generating texts which express complex ideas
spanning multiple sentences requires a struc-
tured representation of their content (docu-
ment plan), but these representations are pro-
hibitively expensive to manually produce. In
this work, we address the problem of gener-
ating coherent multi-sentence texts from the
output of an information extraction system,
and in particular a knowledge graph. Graph-
ical knowledge representations are ubiquitous
in computing, but pose a significant challenge
for text generation techniques due to their
non-hierarchical nature, collapsing of long-
distance dependencies, and structural variety.
We introduce a novel graph transforming en-
coder which can leverage the relational struc-
ture of such knowledge graphs without impos-
ing linearization or hierarchical constraints.
Incorporated into an encoder-decoder setup,
we provide an end-to-end trainable system
for graph-to-text generation that we apply to
the domain of scientific text. Automatic and
human evaluations show that our technique
produces more informative texts which ex-
hibit better document structure than competi-
tive encoder-decoder methods. 1

1 Introduction

Increases in computing power and model capac-
ity have made it possible to generate mostly-
grammatical sentence-length strings of natural
language text. However, generating several sen-
tences related to a topic and which display over-
all coherence and discourse-relatedness is an open
challenge. The difficulties are compounded in do-
mains of interest such as scientific writing. Here
the variety of possible topics is great (e.g. top-
ics as diverse as driving, writing poetry, and pick-
ing stocks are all referenced in one subfield of

1Data and code available at https://github.com/
rikdz/GraphWriter
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Figure 1: A scientific text showing the annotations of
an information extraction system and the correspond-
ing graphical representation. Coreference annotations
shown in color. Our model learns to generate texts from
automatically extracted knowledge using a graph en-
coder decoder setup.

one scientific discipline). Additionally, there are
strong constraints on document structure, as sci-
entific communication requires carefully ordered
explanations of processes and phenomena.

Many researchers have sought to address these
issues by working with structured inputs. Data-to-
text generation models (Konstas and Lapata, 2013;
Lebret et al., 2016; Wiseman et al., 2017; Pudup-
pully et al., 2019) condition text generation on
table-structured inputs. Tabular input representa-
tions provide more guidance for producing longer
texts, but are only available for limited domains
as they are assembled at great expense by manual
annotation processes.

The current work explores the possibility of us-
ing information extraction (IE) systems to auto-
matically provide context for generating longer
texts (Figure 1). Robust IE systems are avail-
able and have support over a large variety of tex-
tual domains, and often provide rich annotations
of relationships that extend beyond the scope of

https://github.com/rikdz/GraphWriter
https://github.com/rikdz/GraphWriter
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a single sentence. But due to their automatic na-
ture, they also introduce challenges for generation
such as erroneous annotations, structural variety,
and significant abstraction of surface textual fea-
tures (such as grammatical relations or predicate-
argument structure).

To effect our study, we use a collection of ab-
stracts from a corpus of scientific articles (Ammar
et al., 2018). We extract entity, coreference, and
relation annotations for each abstract with a state-
of-the-art information extraction system (Luan
et al., 2018), and represent the annotations as a
knowledge graph which collapses co-referential
entities. An example of a text and graph are shown
in Figure 1. We use these graph/text pairs to train a
novel attention-based encoder-decoder model for
knowledge-graph-to-text generation. Our model,
GraphWriter, extends the successful Transformer
for text encoding (Vaswani et al., 2017) to graph-
structured inputs, building on the recent Graph
Attention Network architecture (Veličković et al.,
2018). The result is a powerful, general model
for graph encoding which can incorporate global
structural information when contextualizing ver-
tices in their local neighborhoods.

The main contributions of this work include:
1. We propose a new graph transformer encoder

that applies the successful sequence trans-
former to graph structured inputs.

2. We show how IE output can be formed
as a connected unlabeled graph for use in
attention-based encoders.

3. We provide a large dataset of knowledge-
graphs paired with scientific texts for further
study.

Through detailed automatic and human evalua-
tions, we demonstrate that automatically extracted
knowledge can be used for multi-sentence text
generation. We further show that structuring and
encoding this knowledge as a graph leads to im-
proved generation performance compared to other
encoder-decoder setups. Finally, we show that
GraphWriter’s transformer-style encoder is more
effective than Graph Attention Networks on the
knowledge-graph-to-text task.

2 Related Work

Our work falls under the larger scope of concept-
to-text generation. Barzilay and Lapata (2005) in-
troduced a collective content selection model for
generating summaries of football games from ta-

bles of game statistics. Liang et al. (2009) jointly
learn to segment and align text with records, re-
ducing the supervision needed for learning. Kim
and Mooney (2010) improve this technique by
learning a semantic parse to logical forms. Kon-
stas and Lapata (2013) focus on the generation
objective, jointly learning planning and generat-
ing using a rhetorical (RST) grammar induction
approach.

These earlier works often focused on smaller
record generation datasets such as WeatherGov
and RoboCup, but recently Mei et al. (2016)
showed how neural models can achieve strong re-
sults on these standards, prompting researchers
to investigate more challenging domains such as
ours.

Lebret et al. (2016) tackles the task of generat-
ing the first sentence of a Wikipedia entry from the
associated infobox. They provide a large dataset
of such entries and a language model conditioned
on tables. Our work focuses on a multi-sentence
task where relations can extend beyond sentence
boundaries.

Wiseman et al. (2017) study the difficulty of ap-
plying neural models to the data-to-text task. They
introduce a large dataset where a text summary of
a basketball game is paired with two tables of rel-
evant statistics and show that neural models strug-
gle to compete with template based methods over
this data. We propose generating from graphs
rather than tables, and show that graphs can be ef-
fectively encoded to capture both local and global
structure in the input.

We show that modeling knowledge as a graph
improves generation results, connecting our work
to other graph-to-text tasks such as generating
from Abstract Meaning Representation (AMR)
graphs. Konstas et al. (2017) provide the first neu-
ral model for this task, and show that pretrain-
ing on a large dataset of noisy automatic parses
can improve results. However, they do not di-
rectly model the graph structure, relying on lin-
earization and sequence encoding instead. Cur-
rent works improve this through more sophisti-
cated graph encoding techniques. Marcheggiani
and Perez-Beltrachini (2018) encode input graphs
directly using a graph convolution encoder (Kipf
and Welling, 2017). Our model extends the graph
attention networks of Veličković et al. (2018), a
direct descendant of the convolutional approach
which offers more modeling power and has been
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Title Abstract KG
Vocab 29K 77K 54K
Tokens 413K 5.8M 1.2M
Entities - - 518K
Avg Length 9.9 141.2 -
Avg #Vertices - - 12.42
Avg #Edges - - 4.43

Table 1: Data statistics of our AGENDA dataset. Aver-
ages are computed per instance.

shown to improve performance. Song et al. (2018)
uses a graph LSTM model to effect information
propagation. At each timestep, a vertex is rep-
resented by a gated combination of the vertices
to which it is connected and the labeled edges
connecting them. Beck et al. (2018) use a sim-
ilar gated graph neural network. Both of these
gated models make heavy use of label information,
which is much sparser in our knowledge graphs
than in AMR. Generally, AMR graphs are denser,
rooted, and connected, whereas the knowledge our
model works with lacks these characteristics. For
this reason, we focus on attention-based models
such as Veličković et al. (2018), which impose
fewer constraints on their input.

Finally, our work is related to Wang et al.
(2018) who offer a method for generating sci-
entific abstracts from titles. Their model uses a
gated rewriter network to write and revise sev-
eral draft outputs in several sequence-to-sequence
steps. While we operate in the same general do-
main as this work, our task setup is ultimately dif-
ferent due to the use of extracted information as in-
put. We argue that our setup improves the task de-
fined in Wang et al. (2018), and our more general
model can be applied across tasks and domains.

3 The AGENDA Dataset

We consider the problem of generating a text from
automatically extracted information (knowledge).
IE systems can produce high quality knowledge
for a variety of domains, synthesizing information
from across sentence and even document bound-
aries. Generating coherent text from knowledge
requires a model which considers global charac-
teristics of the knowledge as well as local charac-
teristics of each entity. This feature of the task mo-
tivates our use of graphs for representing knowl-
edge, where neighborhoods localize important in-
formation and paths through the graph build con-

nections between distant nodes through interme-
diate ones. An example knowledge graph can be
seen in Figure 1.

We formulate our problem as follows: given the
title of a scientific article and a knowledge graph
constructed by an automatic information extrac-
tion system, the goal is to generate an abstract that
a) is appropriate for the given title and b) expresses
the content of the knowledge graph in natural lan-
guage text. To evaluate how well a model accom-
plishes this goal, we introduce the Abstract GEN-
eration DAtaset (AGENDA), a dataset of knowl-
edge graphs paired with scientific abstracts. Our
dataset consists of 40k paper titles and abstracts
from the Semantic Scholar Corpus taken from the
proceedings of 12 top AI conferences (Ammar
et al., 2018).

For each abstract, we create a knowledge graph
in two steps. First, we apply the SciIE system
of Luan et al. (2018), a state-of-the-art science-
domain information extraction system. This sys-
tem provides named entity recognition for scien-
tific terms, with entity types Task, Method, Metric,
Material, or Other Scientific Term. The model also
produces co-reference annotations as well as seven
relations that can obtain between different enti-
ties (Compare, Used-for, Feature-of, Hyponym-
of, Evaluate-for, and Conjunction). For exam-
ple, in Figure 1, the node labeled “SemEval 2011
Task 11” is of type ‘Task’, “HMM Models” is of
type ‘Model’, and there is a ‘Evaluate-For’ rela-
tion showing that the models are evaluated on the
task.

We form these annotations into knowledge
graphs. We collapse co-referential entities into a
single node associated with the longest mention
(on the assumption that these will be the most in-
formative). We then connect nodes to one another
using the relation annotations, treating these as la-
beled edges in the graph. The result is a possibly
unconnected graph representation of the SciIE an-
notations for a given abstract.

Statistics of the AGENDA dataset are available
in Table 1. We split the AGENDA dataset into
38,720 training, 1000 validation, and 1000 test
datapoints. We offer standardized data splits to fa-
cilitate comparison.

4 Model

Following most work on neural generation we
adopt an encoder-decoder architecture, shown in
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Figure 2: Converting disconnected labeled graph to
connected unlabeled graph for use in attention-based
encoder. vi refer to vertices, Rij to relations, and G is
a global context node.

Figure 3, which we call GraphWriter. The input
to GraphWriter is a title and a knowledge graph
which are encoded respectively with a bidirec-
tional recurrent neural network and a novel Graph
Transformer architecture (to be discussed in Sec-
tion 4.1). At each decoder time step, we attend on
encodings of the knowledge graph and document
title using the decoder hidden state ht ∈ Rd. The
resulting vectors are used to select output wt ei-
ther from the decoder’s vocabulary or by copying
an entity from the knowledge graph. Details of our
decoding process are described in Section 4.2. The
model is trained end-to-end to minimize the neg-
ative log likelihood of the mixed copy and vocab-
ulary probability distribution and the human au-
thored text.

4.1 Encoder

The AGENDA dataset contains a knowledge
graph for each datapoint, but our model requires
unlabeled, connected graphs as input. To encode
knowledge graphs with this model, we restructure
each graph as an unlabeled connected graph, pre-
serving label information by the method described
below and sketched in Figure 2.

Graph Preparation We convert each graph to
an unlabeled connected bipartite graphs following
a similar procedure to Beck et al. (2018). In this
process, each labeled edge is replaced with two
vertices: one representing the forward direction
of the relation and one representing the reverse.
These new vertices are then connected to the en-
tity vertices so that the directionality of the former
edge is maintained. This restructures the original
knowledge graph as an unlabeled directed graph
where all vertices correspond to entities and rela-
tions in the SciIE annotations without loss of infor-
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Figure 3: GraphWriter Model Overview

mation. To promote information flow between dis-
connected parts of the graph, we add a global ver-
tex which connects all entity vertices. This global
vertex will be used to initialize the decoder, analo-
gously to the final encoder hidden state in a tra-
ditional sequence to sequence model. The final
result of these restructuring operations is a con-
nected, unlabeled graph G = (V,E), where V is
a list of entities, relations, and a global node and
E is an adjacency matrix describing the directed
edges.

Graph Transformer Our model is most sim-
ilar to the Graph Attention Network (GAT) of
Veličković et al. (2018), which computes the
hidden representations of each node in a graph
by attending over its neighbors following a self-
attention strategy. The use of self-attention in
GAT addresses the shortcomings of prior meth-
ods based on graph convolutions (Defferrard et al.,
2016; Kipf and Welling, 2017), but limits vertex
updates to information from adjacent nodes. Our
model allows for a more global contextualization
of each vertex through the use of a transformer-
style architecture. The recently proposed Trans-
former (Vaswani et al., 2017) addresses the inher-
ent sequential computation shortcoming of recur-
rent neural networks, enabling efficient and par-
alleled computation by invoking a self-attention
mechanism for global context modeling. These
models have shown promising results in a variety
of text processing tasks (Radford et al., 2018).

Our Graph Transformer encoder starts with self-
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attention of local neighborhoods of vertices; the
key difference with GAT is that our model in-
cludes additional mechanisms for capturing global
context. This additional modeling power allows
the Graph Transformer to better articulate how a
vertex should be updated given the content of its
neighbors, as well as to learn global patterns of
graph structure relevant to the model’s objective.

Specifically, V is embedded in a dense contin-
uous space by the embedding process described at
the end of this section, resulting in matrix V0 =
[vi],vi ∈ Rd which will serve as input to the graph
transformer model shown in Figure 4. Each ver-
tex representation vi is contextualized by attend-
ing over the other vertices to which vi is connected
in G. We use an N -headed self attention setup,
whereN independent attentions are calculated and
concatenated before a residual connection is ap-
plied:

v̂i = vi +
Nn

n=1

∑
j∈Ni

αn
ijW

n
V vj (1)

αn
ij = an(vi,vj) (2)

Here, ‖ denotes the concatenation of the N at-
tention heads, Ni denotes the neighborhood of vi
in G, Wn

V ∈ Rd×d, and where an are attention
mechanisms parameterized per head. In this work,
we use attention functions of the following form:

a(qi,kj) =
exp((WKkj)

>WQqi)∑
z∈Ni

exp((WKkz)>WQqi)
(3)

Each a learns independent transformations
WQ,WK ∈ Rd×d of q and k respectively, and
the resulting product is normalized across all
connected edges. To reduce the tendency of these
dot products to impede gradient flow, we scale
them by 1√

d
, following Vaswani et al. (2017).

The Graph Transformer then augments these
multi-headed attention layers with block networks.
Each block applies the following transformations:

ṽi = LayerNorm(v′i + LayerNorm(v̂i)) (4)

v′i = FFN(LayerNorm(v̂i)) (5)

Where FFN(x) is a two layer feedforward network
with a non-linear transformation f between layers
i.e. f(xW1 + b1)W2 + b2.

Stacking multiple blocks allows information to
propagate through the graph. Blocks are stacked
L times, with the output of layer l− 1 taken as the
input to layer l, so that vl

i = ṽl−1
i . The resulting

vertex encodings VL = [vL
i ] represent entities,

relations, and the global node contextualized by
their relationships in the graph structure. We refer
to the resulting encodings as graph contextualized
vertex encodings.

Embedding Vertices, Encoding Title As stated
above, the vertices of our graph correspond to
entities and relations from the SciIE annotations.
Because each relation is represented as both a
forward- and backward-looking vertex, we learn
two embeddings per relation as well as an ini-
tial embedding for the global node. Entities
correspond to scientific terms which are often
multi-word expressions. To produce a single d-
dimensional embedding per phrase, we use the last
hidden state of a bidirectional RNN run over em-
beddings of each word in the entity phrase, i.e.
BiRNN(x1 . . .xm) for dense embeddings x and
phrase length m. The output of our embedding
step is a collection V0 of d-dimensional vectors
representing each vertex in V .

The title input is also a short string, and so we
encode it with another BiRNN to produce T =
BiRNN(x′1 . . . x

′
m) for title word embedding x′.

4.2 Decoder

We decode with an attention-based decoder with
a copy mechanism for copying input from the
knowledge graph and title. At each decoding
timestep t we use decoder hidden state ht to com-
pute context vectors cg and cs for the graph and
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title sequence respectively. cg is computed using
multi-headed attention contextualized by ht:

cg = ht +

Nn

n=1

∑
j∈V

αn
jW

n
Gv

L
j (6)

αj = a(ht,v
L
j) (7)

for a as described in Equation (1) by attending
over the graph contextualized encodings VL. cs
is computed similarly, attending over the title en-
coding T. We then construct the final context vec-
tor by concatenation, ct = [cg‖cs]. We use an
input-feeding decoder (Luong et al., 2015) where
both ht and ct are passed as input to the next RNN
timestep.

We compute a probability p of copying from the
input using ht and ct in a fashion similar to See
et al. (2017), that is:

p = σ(Wcopy[ht‖ct] + bcopy) (8)

The final next-token probability distribution is:

p ∗ αcopy + (1− p) ∗ αvocab, (9)

Where the probability distribution αcopy over en-
tities and input tokens is computed as αcopy

j =
a([ht‖ct],xj) for xj ∈ V‖T. The remaining 1−p
probability is given to αvocab, which is calculated
by scaling [ht‖ct] to the vocabulary size and tak-
ing a softmax.

5 Experiments

Evaluation Metrics We evaluate using a com-
bination of human and automatic evaluations. For
human evaluation, participants were asked to
compare abstracts generated by various models
and those written by the authors of the scien-
tific articles. We used Best-Worst Scaling (BWS;
(Louviere and Woodworth, 1991; Louviere et al.,
2015)), a less labor-intensive alternative to paired
comparisons that has been shown to produce more
reliable results than rating scales (Kiritchenko and
Mohammad, 2016). Participants were presented
with two or three abstracts and asked to decide
which one was better and which one was worse
in order of grammar and fluency (is the abstract
written in well-formed English?), coherence (does
the abstract have an introduction, state the prob-
lem or task, describe a solution, and discuss eval-
uations or results?), and informativeness (does the
abstract relate to the provided title and make use

of appropriate scientific terms?). We provided ex-
amples of good and bad abstracts and explain how
they succeed or fail to meet the defined criteria.

Because our dataset is scientific in nature, eval-
uations must be done by experts and we can only
collect a limited number of these high quality dat-
apoints.2 The study was conducted by 15 experts
(i.e. computer science students) who were famil-
iar with the abstract writing task and the content
of the abstracts they judged. To supplement this,
we also provide automatic metrics. We use BLEU
(Papineni et al., 2002), an n-gram overlap measure
popular in text generation tasks, and METEOR
(Denkowski and Lavie, 2014), a machine transla-
tion with paraphrase and language-specific consid-
erations.

Comparisons We compare our GraphWriter
against several strong baselines. In GAT, we
replace our Graph Transformer encoder with a
Graph Attention Network of (Veličković et al.,
2018). This encoder consists of PReLU activa-
tions stacked between 6 self-attention layers. To
determine the usefulness of including graph re-
lations, we compare to a model which uses only
entities and title (EntityWriter). Finally, we com-
pare with the gated rewriter model of Wang et al.
(2018) (Rewriter). This model uses only the docu-
ment title to iteratively rewrite drafts of its output.
3

Implementation Details Our models are trained
end-to-end to minimize the negative joint log like-
lihood of the target text vocabulary and the copied
entity indices. We use SGD optimization with mo-
mentum (Qian, 1999) and “warm restarts”, a cycli-
cal regiment that reduces the learning rate from
0.25 to 0.05 over the course of 5 epochs, then re-
sets for the following epoch. Models are trained
for 15 epochs with early stopping (Prechelt, 1998)
based on the validation loss, with most models
stopping between 8 and 13 epochs. We use single-
layer LSTMs (Hochreiter and Schmidhuber, 1997)
as recurrent networks. We use dropout (Srivas-
tava et al., 2014) in self attention layers set to
0.3. Hidden states and embedding dimensions
are fixed at 500 and attentions learn 500 dimen-

2Attempts to crowd source this evaluation failed.
3Due to the larger size and greater variety of our dataset

and accompanying vocabularies compared to theirs, we were
unable to train this model with the reported batch size of 240.
We use batch size 24 instead, which is partially responsible
for the lower performance.
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BLEU METEOR
GraphWriter 14.3 ± 1.01 18.8 ± 0.28
GAT 12.2 ± 0.44 17.2 ± 0.63
EntityWriter 10.38 16.53
Rewriter 1.05 8.38

Table 2: Automatic Evaluations of Generation Sys-
tems.

sional projections. In Block layers, the feedfor-
ward network has an intermediate size of 2000,
and we use a PReLU activation function (He et al.,
2015). GraphWriter and GAT use L = 6 lay-
ers. The number of attention heads is set to 4. In
all models, for both inputs and output, we replace
words occurring fewer than 5 times with <unk>
tokens. In each abstract, we replace all mentions
in a coreference chain in the abstract with the
canonical mention used in the graph. We decode
with beam search (Graves, 2012; Sutskever et al.,
2014) with a beam size of 4. A post-processing
step deletes repeated sentences and repeated coor-
dinated clauses.

5.1 Results

A comparison of all systems in terms of automatic
metrics is shown in Table 2. Our GraphWriter
model outperforms other methods. We see that
models which leverage title, entities, and relations
(GraphWriter and GAT) outperform models which
use less information (EntityWriter and Rewriter).

We see that GraphWriter outperforms GAT
across metrics, indicating that the global contextu-
alization provided by GraphWriter improves gen-
eration. To verify the performance gap between
GraphWriter and GAT, we report the average test
metrics for 4 training runs of each model along
with their variances. We see that the variance of
the different models is non-overlapping, and in
fact all training runs of GraphWriter outperformed
all runs of GAT on these metrics.

Does Knowledge Help? To evaluate the value
of knowledge in the generation task we compare
our GraphWriter model to a model which does
not generate from knowledge. We provide expert
annotators with 50 randomly-selected paper titles
from the test set and ask them for a single judg-
ment according to the criteria described in Sec-
tion 5. We pair each paper title with the generated
abstracts produced by GraphWriter (a knowledge-
informed modes), Rewriter (a knowledge-agnostic
model), and the gold abstract (with canonicalized

Best Worst
Rewriter (No knowledge) 12% 64%
GraphWriter (Knowledge) 24% 36%
Human Authored 64% 0%

Table 3: Does knowledge improve generation? Human
evaluations of best and worst abstract.

Win Lose Tie
Structure 63% 17% 20%
Informativeness 43% 23% 33%
Grammar 63% 23% 13%
Overall 63% 17% 20%

Table 4: Human Judgments of GraphWriter and Enti-
tyWriter models.

coreferential mentions).
Results of this comparison can be seen in Ta-

ble 3. We see that GraphWriter is selected as
“Best” more often than Rewriter, and is less of-
ten selected as “Worst”, attesting to the value of
including knowledge in the text generation pro-
cess. We see that sometimes generated texts are
preferred to human authored text, which is due in
part to the disfluencies introduced by canonical-
ization of entity mentions.

To further understand the advantages of using
knowledge graphs, we provide a more detailed
comparison of the GraphWriter and EntityWriter
models. We select 30 additional test datapoints
and ask experts to provide per-criterion judgments
of the outputs of the two systems. Since both mod-
els make use of extracted entities, we show this list
along with the title for each datapoint, and mod-
ify the description of Informativeness to include
“making use of the provided entities”. Results of
this evaluation are shown in Table 4. Here we see
that including structured knowledge in the form of
a graph improves abstract generation compared to
generating from an unstructured collection of en-
tities. The largest gains are made in terms of doc-
ument structure and grammar, indicating that the
structure of the input knowledge is being trans-
lated into the surface form.

Generating from Title The Rewriter model
(Wang et al., 2018) considers the task of gener-
ating an abstract with only the paper’s title as in-
put. We compare against this model because it is
among the first end-to-end systems to attempt to
write scientific abstracts. However, the task setup
used in Wang et al. (2018) differs significantly
from the task introduced in this work. In order
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Title Block and Group Regularized Sparse Modeling for Dictionary Learning
Knowledge (dictionary learning, CONJUNCTION, sparse coding) ; (optimization problems, USED-FOR, dictionary

learning) ; (optimization problems, USED-FOR, sparse coding). . .

GraphWriter Sparse representations have recently been shown to be effective in many optimization problems. However,
existing dictionary learning methods are limited in the number of dictionary blocks, which can be expensive
to obtain. In this paper, we propose a novel approach to dictionary learning based on sparse coding . . .

GAT In this paper, we consider the problem of dictionary learning in well-known datasets. In particular, we
consider the problem of dictionary learning, where the goal is to find a set of dictionary blocks that maximize
the likelihood of a given set of dictionary blocks . . .

EntityWriter We propose a novel dictionary learning framework for reconstructed block/group sparse coding schemes.
The dictionary learning framework is based on the descent, which is a block structure of the group structure
. . .

Rewriter This paper presents a new approach to the k-means of the algorithm. The proposed approach is based on the
basis of the stationarity algorithm. The algorithm is based on the fact that the number of bits is a constant
of the base of the base of the input . . .

Gold This paper proposes a dictionary learning framework that combines the proposed block/group (BGSC) or
reconstructed block/group (R-BGSC) sparse coding schemes with the novel Intra-block Coherence Suppres-
sion Dictionary Learning algorithm. An important and distinguishing feature of the proposed framework is
that all dictionary blocks are trained simultaneously . . .

Title Image Interpolation with Directionlets
Knowledge (directionally adaptive image interpolation USED-FOR edge information) ; (numeric and visual quality,

HYPONYM-OF, directionally adaptive image interpolation) ; (directionlets, EVALUATE-FOR, multiple-
direction wavelet transform) . . .

GraphWriter In this paper, we propose a novel directionally adaptive image interpolation based on the multiple-direction
wavelet transform, called directionlets, which can be used as a directionlets to improve the numeric and
visual quality of the directionally adaptive image interpolation . . .

GAT In this paper, we propose a novel directionally adaptive image interpolation, called directionally adaptive
image interpolation, for directionally adaptive image interpolation , which is based on the multiple-direction
wavelet transform . . .

EntityWriter We present a novel directionally adaptive image interpolation for numeric and visual quality. The wavelet
transform is based on the wavelet transform between the low-resolution image and the interpolated image.
The high-resolution image is represented by a wavelet transform . . .

Rewriter We present a new method for finding topic-specific data sets. The key technical contributions of our ap-
proach is to be a function of the terrestrial distributed memory. The key idea is to be a function of the page
that seeks to be ranked the buckets of the data. The basic idea is a new tool for the embedded space . . .

Gold We present a novel directionally adaptive image interpolation based on a multiple-direction wavelet trans-
form, called directionlets. The directionally adaptive image interpolation uses directionlets to efficiently
capture directional features and to extract edge information along different directions from the low-
resolution image . . .

Table 5: Example outputs of various systems versus Gold.

to make a fair comparison, we construct a variant
of our model which is only provided with a title
as input. We develop a model that predicts entities
from the title, and then uses our knowledge-aware
model to generate the abstract. For this compari-
son we use the EntityWriter model with a collec-
tion of entities inferred from the title alone (Infer-
EntityWriter).

To infer relevant entities, we learn to embed ti-
tles and entities extracted from the corresponding
abstract in a shared dense vector space by min-
imizing their cosine distance. We use negative
sampling to provide definition to this vector space.
At test time, we use the title embedding to infer the
K = 12 closest entities to feed into the InferEn-
tityWriter model. Results are shown in Table 6,
which shows that InferEntityWriter achieves bet-

BLEU METEOR
Rewriter 1.05 8.38
InferEntityWriter 3.60 12.2

Table 6: Comparison of generation without knowledge
and with Inferred Knowledge (InferEntityWriter)

ter results than Rewriter, indicating that the inter-
mediate entity prediction step is helpful in abstract
generation.

5.2 Analysis
Table 5 shows examples of various system outputs
for a particular test instance.We see that Graph-
Writer makes use of more entities from the input,
arranged with more articulated textual context.
It demonstrates less repetition than GAT. Both
GraphWriter and GAT show much better coher-
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ence than EntityWriter, which copies entities from
the input into unreasonable contexts. Rewriter,
while fluent and grammatical, jumps from topic
to topic, failing to relate as strongly to the input as
the knowledge-aware models.

To determine the shortcomings of our model,
we calculate rough error statistics over the out-
puts of the GraphWriter on the test set. We no-
tice that 40% of entities in the knowledge graphs
do not appear in the generated text. Future work
should address this coverage problem, perhaps
through modifications to the inference procedure
or a coverage loss (Tu et al., 2016) modified to
the specifics of this task. We find that 18% of all
sentences generated by our model repeat sentences
or clauses and are subjected to the post-processing
pruning mentioned in Section 5. While this step is
a simple solution to improve generated outputs, a
more advanced solution is required.

6 Conclusion

We have studied the problem of generating multi-
sentence text from the output of automatic infor-
mation extraction systems, and have shown that
incorporating knowledge as graphs improves per-
formance. We introduced GraphWriter, featuring
a new attention model for graph encoding, and
demonstrated its utility through human and au-
tomatic evaluation compared to strong baselines.
Lastly, we provide a new resource for the genera-
tion community, the AGENDA dataset of abstracts
and knowledge. Future work could address the
problem of repetition and entity coverage in the
generated texts.
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