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Abstract

In this paper, we introduce an embedding
model, named CapsE, exploring a capsule net-
work to model relationship triples (subject, re-
lation, object). Our CapsE represents each
triple as a 3-column matrix where each col-
umn vector represents the embedding of an
element in the triple. This 3-column matrix
is then fed to a convolution layer where mul-
tiple filters are operated to generate different
feature maps. These feature maps are recon-
structed into corresponding capsules which are
then routed to another capsule to produce a
continuous vector. The length of this vector
is used to measure the plausibility score of
the triple. Our proposed CapsE obtains better
performance than previous state-of-the-art em-
bedding models for knowledge graph comple-
tion on two benchmark datasets WN18RR and
FB15k-237, and outperforms strong search
personalization baselines on SEARCH17.

1 Introduction

Knowledge graphs (KGs) containing relationship
triples (subject, relation, object), denoted as (s,
r, o), are the useful resources for many NLP and
especially information retrieval applications such
as semantic search and question answering (Wang
et al., 2017). However, large knowledge graphs,
even containing billions of triples, are still incom-
plete, i.e., missing a lot of valid triples (West et al.,
2014). Therefore, much research efforts have fo-
cused on the knowledge graph completion task
which aims to predict missing triples in KGs, i.e.,
predicting whether a triple not in KGs is likely to
be valid or not (Bordes et al., 2011, 2013; Socher
et al., 2013). To this end, many embedding models
have been proposed to learn vector representations
for entities (i.e., subject/head entity and object/tail
entity) and relations in KGs, and obtained state-
of-the-art results as summarized by Nickel et al.

(2016a) and Nguyen (2017). These embedding
models score triples (s, r, o), such that valid triples
have higher plausibility scores than invalid ones
(Bordes et al., 2011, 2013; Socher et al., 2013).
For example, in the context of KGs, the score for
(Melbourne, cityOf, Australia) is higher than the
score for (Melbourne, cityOf, United Kingdom).

Triple modeling is applied not only to the KG
completion, but also for other tasks which can
be formulated as a triple-based prediction prob-
lem. An example is in search personalization, one
would aim to tailor search results to each spe-
cific user based on the user’s personal interests
and preferences (Teevan et al., 2005, 2009; Ben-
nett et al., 2012; Harvey et al., 2013; Vu et al.,
2015, 2017). Here the triples can be formulated as
(submitted query, user profile, returned document)
and used to re-rank documents returned to a user
given an input query, by employing an existing KG
embedding method such as TransE (Bordes et al.,
2013), as proposed by Vu et al. (2017). Previous
studies have shown the effectiveness of modeling
triple for either KG completion or search person-
alization. However, there has been no single study
investigating the performance on both tasks.

Conventional embedding models, such as
TransE (Bordes et al., 2013), DISTMULT (Yang
et al., 2015) and ComplEx (Trouillon et al., 2016),
use addition, subtraction or simple multiplication
operators, thus only capture the linear relation-
ships between entities. Recent research has raised
interest in applying deep neural networks to triple-
based prediction problems. For example, Nguyen
et al. (2018) proposed ConvKB—a convolutional
neural network (CNN)-based model for KG com-
pletion and achieved state-of-the-art results. Most
of KG embedding models are constructed to mod-
eling entries at the same dimension of the given
triple, where presumably each dimension captures
some relation-specific attribute of entities. To the
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best of our knowledge, however, none of the exist-
ing models has a “deep” architecture for modeling
the entries in a triple at the same dimension.

Sabour et al. (2017) introduced capsule net-
works (CapsNet) that employ capsules (i.e., each
capsule is a group of neurons) to capture entities in
images and then uses a routing process to specify
connections from capsules in a layer to those in
the next layer. Hence CapsNet could encode the
intrinsic spatial relationship between a part and a
whole constituting viewpoint invariant knowledge
that automatically generalizes to novel viewpoints.
Each capsule accounts for capturing variations of
an object or object part in the image, which can be
efficiently visualized. Our high-level hypothesis
is that embedding entries at the same dimension
of the triple also have these variations, although it
is not straightforward to be visually examined.

To that end, we introduce CapsE to explore a
novel application of CapsNet on triple-based data
for two problems: KG completion and search per-
sonalization. Different from the traditional mod-
eling design of CapsNet where capsules are con-
structed by splitting feature maps, we use capsules
to model the entries at the same dimension in the
entity and relation embeddings. In our CapsE, vs,
vr and vo are unique k-dimensional embeddings
of s, r and o, respectively. The embedding triple
[vs, vr, vo] of (s, r, o) is fed to the convolution
layer where multiple filters of the same 1×3 shape
are repeatedly operated over every row of the ma-
trix to produce k-dimensional feature maps. En-
tries at the same dimension from all feature maps
are then encapsulated into a capsule. Thus, each
capsule can encode many characteristics in the
embedding triple to represent the entries at the
corresponding dimension. These capsules are then
routed to another capsule which outputs a contin-
uous vector whose length is used as a score for the
triple. Finally, this score is used to predict whether
the triple (s, r, o) is valid or not.

In summary, our main contributions from this
paper are as follows:
•We propose an embedding model CapsE using

the capsule network (Sabour et al., 2017) for mod-
eling relationship triples. To our best of knowl-
edge, our work is the first consideration of explor-
ing the capsule network to knowledge graph com-
pletion and search personalization.
• We evaluate our CapsE for knowledge graph

completion on two benchmark datasets WN18RR

(Dettmers et al., 2018) and FB15k-237 (Toutanova
and Chen, 2015). CapsE obtains the best mean
rank on WN18RR and the highest mean reciprocal
rank and highest Hits@10 on FB15k-237.
•We restate the prospective strategy of expand-

ing the triple embedding models to improve the
ranking quality of the search personalization sys-
tems. We adapt our model to search personaliza-
tion and evaluate on SEARCH17 (Vu et al., 2017)
– a dataset of the web search query logs. Ex-
perimental results show that our CapsE achieves
the new state-of-the-art results with significant im-
provements over strong baselines.

2 The proposed CapsE

Let G be a collection of valid factual triples in the
form of (subject, relation, object) denoted as (s, r,
o). Embedding models aim to define a score func-
tion giving a score for each triple, such that valid
triples receive higher scores than invalid triples.

We denote vs, vr and vo as the k-dimensional
embeddings of s, r and o, respectively. In our
proposed CapsE, we follow Nguyen et al. (2018)
to view each embedding triple [vs, vr, vo] as a
matrix A = [vs,vr,vo] ∈ Rk×3, and denote
Ai,: ∈ R1×3 as the i-th row of A. We use a filter
ω ∈ R1×3 operated on the convolution layer. This
filter ω is repeatedly operated over every row of
A to generate a feature map q = [q1, q2, ..., qk] ∈
Rk, in which qi = g (ω ·Ai,: + b) where · de-
notes a dot product, b ∈ R is a bias term and g
is a non-linear activation function such as ReLU.
Our model uses multiple filters ∈ R1×3 to gener-
ate feature maps. We denote Ω as the set of fil-
ters and N =| Ω | as the number of filters, thus
we have N k-dimensional feature maps, for which
each feature map can capture one single character-
istic among entries at the same dimension.

We build our CapsE with two single capsule
layers for a simplified architecture. In the first
layer, we construct k capsules, wherein entries at
the same dimension from all feature maps are en-
capsulated into a corresponding capsule. There-
fore, each capsule can capture many characteris-
tics among the entries at the corresponding dimen-
sion in the embedding triple. These characteris-
tics are generalized into one capsule in the second
layer which produces a vector output whose length
is used as the score for the triple.

The first capsule layer consists of k capsules, for
which each capsule i ∈ {1, 2, ..., k} has a vector
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Figure 1: An example illustration of our CapsE with k = 4, N = 5, and d = 2.

output ui ∈ RN×1. Vector outputs ui are mul-
tiplied by weight matrices Wi ∈ Rd×N to pro-
duce vectors ûi ∈ Rd×1 which are summed to
produce a vector input s ∈ Rd×1 to the capsule
in the second layer. The capsule then performs the
non-linear squashing function to produce a vector
output e ∈ Rd×1:

e = squash (s) ; s =
∑
i

ciûi ; ûi = Wiui

where squash (s) = ‖s‖2
1+‖s‖2

s
‖s‖ , and ci are cou-

pling coefficients determined by the routing pro-
cess as presented in Algorithm 1. Because there
is one capsule in the second layer, we make only
one difference in the routing process proposed
by Sabour et al. (2017), for which we apply the
softmax in a direction from all capsules in the pre-
vious layer to each of capsules in the next layer.1

for all capsule i ∈ the first layer do
bi ← 0

for iteration = 1, 2, ..., m do
c← softmax (b)

s←
∑

i ciûi

e = squash (s)

for all capsule i ∈ the first layer do
bi ← bi + ûi · e

Algorithm 1: The routing process is extended

from Sabour et al. (2017).

1The softmax in the original routing process proposed
by Sabour et al. (2017) is applied in another direction from
each of capsules in the previous layer to all capsules in the
next layer.

We illustrate our proposed model in Figure 1
where embedding size: k = 4, the number of fil-
ters: N = 5, the number of neurons within the
capsules in the first layer is equal to N, and the
number of neurons within the capsule in the sec-
ond layer: d = 2. The length of the vector output
e is used as the score for the input triple.

Formally, we define the score function f for the
triple (s, r, o) as follows:

f (s, r, o) = ‖capsnet (g ([vs,vr,vo] ∗Ω)) ‖

where the set of filters Ω is shared parameters
in the convolution layer; ∗ denotes a convolution
operator; and capsnet denotes a capsule network
operator. We use the Adam optimizer (Kingma
and Ba, 2014) to train CapsE by minimizing the
loss function (Trouillon et al., 2016; Nguyen et al.,
2018) as follows:

L =
∑

(s,r,o)∈{G∪G′}

log
(
1 + exp

(
−t(s,r,o) · f (s, r, o)

))
in which, t(s,r,o) =

{
1 for (s, r, o) ∈ G
−1 for (s, r, o) ∈ G′

here G and G′ are collections of valid and invalid
triples, respectively. G′ is generated by corrupting
valid triples in G.

3 Knowledge graph completion
evaluation

In the knowledge graph completion task (Bordes
et al., 2013), the goal is to predict a missing entity
given a relation and another entity, i.e, inferring a
head entity s given (r, o) or inferring a tail entity
o given (s, r). The results are calculated based on
ranking the scores produced by the score function
f on test triples.
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3.1 Experimental setup
Datasets: We use two recent benchmark datasets
WN18RR (Dettmers et al., 2018) and FB15k-237
(Toutanova and Chen, 2015). These two datasets
are created to avoid reversible relation problems,
thus the prediction task becomes more realistic
and hence more challenging (Toutanova and Chen,
2015). Table 1 presents the statistics of WN18RR
and FB15k-237.

Dataset #E #R #Triples in train/valid/test
WN18RR 40,943 11 86,835 3,034 3,134
FB15k-237 14,541 237 272,115 17,535 20,466

Table 1: Statistics of the experimental datasets. #E is
the number of entities. #R is the number of relations.

Evaluation protocol: Following Bordes et al.
(2013), for each valid test triple (s, r, o), we re-
place either s or o by each of all other entities to
create a set of corrupted triples. We use the “Fil-
tered” setting protocol (Bordes et al., 2013), i.e.,
not taking any corrupted triples that appear in the
KG into accounts. We rank the valid test triple
and corrupted triples in descending order of their
scores. We employ evaluation metrics: mean rank
(MR), mean reciprocal rank (MRR) and Hits@10
(i.e., the proportion of the valid test triples ranking
in top 10 predictions). Lower MR, higher MRR or
higher Hits@10 indicate better performance. Final
scores on the test set are reported for the model ob-
taining the highest Hits@10 on the validation set.
Training protocol: We use the common Bernoulli
strategy (Wang et al., 2014; Lin et al., 2015b)
when sampling invalid triples. For WN18RR, Pin-
ter and Eisenstein (2018)2 found a strong evidence
to support the necessity of a WordNet-related se-
mantic setup, in which they averaged pre-trained
word embeddings for word surface forms within
the WordNet to create synset embeddings, and
then used these synset embeddings to initialize en-
tity embeddings for training their TransE associa-
tion model. We follow this evidence in using the
pre-trained 100-dimensional Glove word embed-
dings (Pennington et al., 2014) to train a TransE
model on WN18RR.

2Pinter and Eisenstein (2018) considered WN18RR and
evaluated their M3GM model only for 7 relations as they em-
ployed the inverse rule model (Dettmers et al., 2018) for 4
remaining symmetric relations. Regarding a fair comparison
to other models, we use the M3GM implementation released
by Pinter and Eisenstein (2018) to re-train and re-evaluate
the M3GM model for all 11 relations. We thank Pinter and
Eisenstein (2018) for their assistance running their code.

We employ the TransE and ConvKB implemen-
tations provided by Nguyen et al. (2016b) and
Nguyen et al. (2018). For ConvKB, we use a new
process of training up to 100 epochs and monitor
the Hits@10 score after every 10 training epochs
to choose optimal hyper-parameters with the
Adam initial learning rate in {1e−5, 5e−5, 1e−4}
and the number of filters N in {50, 100, 200, 400}.
We obtain the highest Hits@10 scores on the vali-
dation set when using N= 400 and the initial learn-
ing rate 5e−5 on WN18RR; and N= 100 and the
initial learning rate 1e−5 on FB15k-237.

Like in ConvKB, we use the same pre-trained
entity and relation embeddings produced by
TransE to initialize entity and relation embeddings
in our CapsE for both WN18RR and FB15k-237
(k = 100). We set the batch size to 128, the num-
ber of neurons within the capsule in the second
capsule layer to 10 (d = 10), and the number of it-
erations in the routing algorithm m in {1, 3, 5, 7}.
We run CapsE up to 50 epochs and monitor the
Hits@10 score after each 10 training epochs to
choose optimal hyper-parameters. The highest
Hits@10 scores for our CapsE on the validation
set are obtained when using m = 1, N = 400 and
the initial learning rate at 1e−5 on WN18RR; and
m = 1, N = 50 and the initial learning rate at
1e−4 on FB15k-237.

3.2 Main experimental results

Table 2 compares the experimental results of
our CapsE with previous state-of-the-art pub-
lished results, using the same evaluation proto-
col. Our CapsE performs better than its closely
related CNN-based model ConvKB on both ex-
perimental datasets (except Hits@10 on WN18RR
and MR on FB15k-237), especially on FB15k-
237 where our CapsE gains significant improve-
ments of 0.523 − 0.418 = 0.105 in MRR
(which is about 25.1% relative improvement), and
59.3% − 53.2% = 6.1% absolute improvement
in Hits@10. Table 2 also shows that our CapsE
obtains the best MR score on WN18RR and the
highest MRR and Hits@10 scores on FB15k-237.

Following Bordes et al. (2013), for each relation
r in FB15k-237, we calculate the averaged num-
ber ηs of head entities per tail entity and the aver-
aged number ηo of tail entities per head entity. If
ηs <1.5 and ηo <1.5, r is categorized one-to-one
(1-1). If ηs <1.5 and ηo ≥1.5, r is categorized
one-to-many (1-M). If ηs ≥1.5 and ηo <1.5, r is
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Method WN18RR FB15k-237
MR MRR H@10 MR MRR H@10

DISTMULT (Yang et al., 2015) 5110 0.425 49.1 254 0.241 41.9
ComplEx (Trouillon et al., 2016) 5261 0.444 50.7 339 0.247 42.8
ConvE (Dettmers et al., 2018) 4187 0.433 51.5 244 0.325 50.1
KBGAN (Cai and Wang, 2018) – 0.213 48.1 – 0.278 45.8
M3GM (Pinter and Eisenstein, 2018) 1864 0.311 53.3 – – –
TransE (Bordes et al., 2013) 743? 0.245? 56.0? 347 0.294 46.5
ConvKB (Nguyen et al., 2018) 763? 0.253? 56.7? 254? 0.418? 53.2?

Our CapsE 719 0.415 56.0 303 0.523 59.3

Table 2: Experimental results on the WN18RR and FB15k-237 test sets. Hits@10 (H@10) is reported in %.
Results of DISTMULT, ComplEx and ConvE are taken from Dettmers et al. (2018). Results of TransE on FB15k-
237 are taken from Nguyen et al. (2018). Our CapsE Hits@1 scores are 33.7% on WN18RR and 48.9% on
FB15k-237. Formulas of MRR and Hits@1 show a strong correlation, so using Hits@1 does not really reveal any
additional information for this task. The best score is in bold, while the second best score is in underline. ? denotes
our new results for TransE and ConvKB, which are better than those published by Nguyen et al. (2018).
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Figure 2: Hits@10 (in %) and MRR on the FB15k-237 test set w.r.t each relation category.
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Figure 3: Hits@10 and MRR on the WN18RR test set w.r.t each relation. The right y-axis is the percentage of
triples corresponding to relations.

categorized many-to-one (M-1). If ηs ≥1.5 and
ηo ≥1.5, r is categorized many-to-many (M-M).
As a result, 17, 26, 81 and 113 relations are la-
belled 1-1, 1-M, M-1 and M-M, respectively. And
0.9%, 6.3%, 20.5% and 72.3% of the test triples in
FB15k-237 contain 1-1, 1-M, M-1 and M-M rela-
tions, respectively.

Figure 2 shows the Hits@10 and MRR results
for predicting head and tail entities w.r.t each rela-
tion category on FB15k-237. CapsE works better
than ConvKB in predicting entities on the “side
M” of triples (e.g., predicting head entities in M-1

and M-M; and predicting tail entities in 1-M and
M-M), while ConvKB performs better than CapsE
in predicting entities on the “side 1” of triples (i.e.,
predicting head entities in 1-1 and 1-M; and pre-
dicting tail entities in 1-1 and M-1).

Figure 3 shows the Hits@10 and MRR
scores w.r.t each relation on WN18RR.
also see, similar to, verb group and
derivationally related form are symmet-
ric relations which can be considered as M-M
relations. Our CapsE also performs better than
ConvKB on these 4 M-M relations. Thus, results
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m 10 20 30 40 50
1 48.37 52.60 53.14 53.33 53.21
3 47.78 52.34 52.93 52.99 52.86
5 47.03 52.25 45.80 45.99 45.76
7 40.46 45.36 45.79 45.85 45.93

Table 3: Hits@10 on the WN18RR validation set with
N = 50 and the initial learning rate at 1e−5 w.r.t each
number of iterations in the routing algorithm m and
each 10 training epochs.

shown in Figures 2 and 3 are consistent. These
also imply that our CapsE would be a potential
candidate for applications which contain many
M-M relations such as search personalization.

We see that the length and orientation of each
capsule in the first layer can also help to model
the important entries in the corresponding dimen-
sion, thus CapsE can work well on the “side M”
of triples where entities often appear less fre-
quently than others appearing in the “side 1” of
triples. Additionally, existing models such as
DISTMULT, ComplEx and ConvE can perform
well for entities with high frequency, but may not
for rare entities with low frequency. These are rea-
sons why our CapsE can be considered as the best
one on FB15k-237 and it outperforms most exist-
ing models on WN18RR.

Effects of routing iterations: We study how
the number of routing iterations affect the per-
formance. Table 3 shows the Hits@10 scores on
the WN18RR validation set for a comparison w.r.t
each number value of the routing iterations and
epochs with the number of filters N = 50 and
the Adam initial learning rate at 1e−5. We see
that the best performance for each setup over each
10 epochs is obtained by setting the number m of
routing iterations to 1. This indicates the opposite
side for knowledge graphs compared to images. In
the image classification task, setting the numberm
of iterations in the routing process higher than 1
helps to capture the relative positions of entities in
an image (e.g., eyes, nose and mouth) properly. In
contrast, this property from images may be only
right for the 1-1 relations, but not for the 1-M, M-
1 and M-M relations in the KGs because of the
high variant of each relation type (e.g., symmetric
relations) among different entities.

4 Search personalization application

Given a user, a submitted query and the documents
returned by a search system for that query, our

approach is to re-rank the returned documents so
that the more relevant documents should be ranked
higher. Following Vu et al. (2017), we represent
the relationship between the submitted query, the
user and the returned document as a (s, r, o)-like
triple (query, user, document). The triple captures
how much interest a user puts on a document given
a query. Thus, we can evaluate the effectiveness of
our CapsE for the search personalization task.

4.1 Experimental setup
Dataset: We use the SEARCH17 dataset (Vu
et al., 2017) of query logs of 106 users collected
by a large-scale web search engine. A log en-
tity consists of a user identifier, a query, top-
10 ranked documents returned by the search en-
gine and clicked documents along with the user’s
dwell time. Vu et al. (2017) constructed short-term
(session-based) user profiles and used the profiles
to personalize the returned results. They then em-
ployed the SAT criteria (Fox et al., 2005) to iden-
tify whether a returned document is relevant from
the query logs as either a clicked document with a
dwell time of at least 30 seconds or the last clicked
document in a search session (i.e., a SAT click).
After that, they assigned a relevant label to a re-
turned document if it is a SAT click and also as-
signed irrelevant labels to the remaining top-10
documents. The rank position of the relevant la-
beled documents is used as the ground truth to
evaluate the search performance before and after
re-ranking.

The dataset was uniformly split into the train-
ing, validation and test sets. This split is for the
purpose of using historical data in the training set
to predict new data in the test set (Vu et al., 2017).
The training, validation and test sets consist of
5,658, 1,184 and 1,210 relevant (i.e., valid) triples;
and 40,239, 7,882 and 8,540 irrelevant (i.e., in-
valid) triples, respectively.
Evaluation protocol: Our CapsE is used to re-
rank the original list of documents returned by a
search engine as follows: (i) We train our model
and employ the trained model to calculate the
score for each (s, r, o) triple. (ii) We then sort
the scores in the descending order to obtain a
new ranked list. To evaluate the performance of
our proposed model, we use two standard evalu-
ation metrics: mean reciprocal rank (MRR) and
Hits@1.3 For each metric, the higher value indi-

3We re-rank the list of top-10 documents returned by the
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cates better ranking performance.
We compare CapsE with the following base-

lines using the same experimental setup: (1) SE:
The original rank is returned by the search en-
gine. (2) CI (Teevan et al., 2011): This baseline
uses a personalized navigation method based on
previously clicking returned documents. (3) SP
(Bennett et al., 2012; Vu et al., 2015): A search
personalization method makes use of the session-
based user profiles. (4) Following Vu et al. (2017),
we use TransE as a strong baseline model for the
search personalization task. Previous work shows
that the well-known embedding model TransE, de-
spite its simplicity, obtains very competitive re-
sults for the knowledge graph completion (Lin
et al., 2015a; Nickel et al., 2016b; Trouillon et al.,
2016; Nguyen et al., 2016a, 2018). (5) The CNN-
based model ConvKB is the most closely related
model to our CapsE.
Embedding initialization: We follow Vu et al.
(2017) to initialize user profile, query and doc-
ument embeddings for the baselines TransE and
ConvKB, and our CapsE.

We train a LDA topic model (Blei et al., 2003)
with 200 topics only on the relevant documents
(i.e., SAT clicks) extracted from the query logs.
We then use the trained LDA model to infer the
probability distribution over topics for every re-
turned document. We use the topic proportion vec-
tor of each document as its document embedding
(i.e. k = 200). In particular, the zth element
(z = 1, 2, ..., k) of the vector embedding for doc-
ument d is: vd,z = P(z | d) where P(z | d) is the
probability of the topic z given the document d.

We also represent each query by a probabil-
ity distribution vector over topics. Let Dq =
{d1, d2, ..., dn} be the set of top n ranked docu-
ments returned for a query q (here, n = 10). The
zth element of the vector embedding for query
q is defined as in (Vu et al., 2017): vq,z =∑n

i=1 λiP(z | di), where λi = δi−1∑n
j=1 δ

j−1 is the
exponential decay function of i which is the rank
of di in Dq. And δ is the decay hyper-parameter
(0 < δ < 1). Following Vu et al. (2017), we use
δ = 0.8. Note that if we learn query and document
embeddings during training, the models will over-
fit to the data and will not work for new queries
and documents. Thus, after the initialization pro-
cess, we fix (i.e., not updating) query and docu-
ment embeddings during training for TransE, Con-

search engine, so Hits@10 scores are same for all models.

vKB and CapsE.
In addition, as mentioned by Bennett et al.

(2012), the more recently clicked document ex-
presses more about the user current search inter-
est. Hence, we make use of the user clicked docu-
ments in the training set with the temporal weight-
ing scheme proposed by Vu et al. (2015) to initial-
ize user profile embeddings for the three embed-
ding models.
Hyper-parameter tuning: For our CapsE model,
we set batch size to 128, and also the number of
neurons within the capsule in the second capsule
layer to 10 (d = 10). The number of iterations in
the routing algorithm is set to 1 (m = 1). For
the training model, we use the Adam optimizer
with the initial learning rate ∈ {5e−6, 1e−5, 5e−5,
1e−4, 5e−4}. We also use ReLU as the activa-
tion function g. We select the number of filters
N ∈ {50, 100, 200, 400, 500}. We run the model
up to 200 epochs and perform a grid search to
choose optimal hyper-parameters on the validation
set. We monitor the MRR score after each training
epoch and obtain the highest MRR score on the
validation set when using N = 400 and the initial
learning rate at 5e−5.

We employ the TransE and ConvKB implemen-
tations provided by Nguyen et al. (2016b) and
Nguyen et al. (2018) and then follow their train-
ing protocols to tune hyper-parameters for TransE
and ConvKB, respectively. We also monitor the
MRR score after each training epoch and attain the
highest MRR score on the validation set when us-
ing margin = 5, l1-norm and SGD learning rate at
5e−3 for TransE; and N = 500 and the Adam ini-
tial learning rate at 5e−4 for ConvKB.

4.2 Main results

Table 4 presents the experimental results of the
baselines and our model. Embedding models
TranE, ConvKB and CapsE produce better rank-
ing performances than traditional learning-to-rank
search personalization models CI and SP. This in-
dicates a prospective strategy of expanding the
triple embedding models to improve the ranking
quality of the search personalization systems. In
particular, our MRR and Hits@1 scores are higher
than those of TransE (with relative improvements
of 14.5% and 22% over TransE, respectively).
Specifically, our CapsE achieves the highest per-
formances in both MRR and Hits@1 (our im-
provements over all five baselines are statistically
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Method MRR H@1
SE [?] 0.559 38.5
CI [?] 0.597 41.6
SP [?] 0.631 45.2
TransE [?] 0.645 48.1
TransE (ours) 0.669 50.9
ConvKB 0.750+12.1% 59.9+17.7%

Our CapsE 0.766+14.5% 62.1+22.0%

Table 4: Experimental results on the test set. [?] de-
notes the results reported in (Vu et al., 2017). Hits@1
(H@1) is reported in %. In information retrieval,
Hits@1 is also referred to as P@1. The subscripts de-
note the relative improvement over our TransE results.
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Figure 4: Learning curves on the validation set with the
initial learning rate at 5e−5.

significant with p < 0.05 using the paired t-test).
To illustrate our training progress, we plot per-

formances of CapsE on the validation set over
epochs in Figure 4. We observe that the perfor-
mance is improved with the increase in the num-
ber of filters since capsules can encode more use-
ful properties for a large embedding size.

5 Related work

Other transition-based models extend TransE to
additionally use projection vectors or matrices to
translate embeddings of s and o into the vector
space of r, such as: TransH (Wang et al., 2014),
TransR (Lin et al., 2015b), TransD (Ji et al., 2015)
and STransE (Nguyen et al., 2016b). Furthermore,
DISTMULT (Yang et al., 2015) and ComplEx
(Trouillon et al., 2016) use a tri-linear dot prod-
uct to compute the score for each triple. More-
over, ConvKB (Nguyen et al., 2018) applies con-
volutional neural network, in which feature maps
are concatenated into a single feature vector which
is then computed with a weight vector via a dot

product to produce the score for the input triple.
ConvKB is the most closely related model to our
CapsE. See an overview of embedding models for
KG completion in (Nguyen, 2017).

For search tasks, unlike classical methods, per-
sonalized search systems utilize the historical in-
teractions between the user and the search system,
such as submitted queries and clicked documents
to tailor returned results to the need of that user
(Teevan et al., 2005, 2009). That historical infor-
mation can be used to build the user profile, which
is crucial to an effective search personalization
system. Widely used approaches consist of two
separated steps: (1) building the user profile from
the interactions between the user and the search
system; and then (2) learning a ranking function
to re-rank the search results using the user profile
(Bennett et al., 2012; White et al., 2013; Harvey
et al., 2013; Vu et al., 2015). The general goal is
to re-rank the documents returned by the search
system in such a way that the more relevant doc-
uments are ranked higher. In this case, apart from
the user profile, dozens of other features have been
proposed as the input of a learning-to-rank algo-
rithm (Bennett et al., 2012; White et al., 2013).
Alternatively, Vu et al. (2017) modeled the po-
tential user-oriented relationship between the sub-
mitted query and the returned document by apply-
ing TransE to reward higher scores for more rele-
vant documents (e.g., clicked documents). They
achieved better performances than the standard
ranker as well as competitive search personaliza-
tion baselines (Teevan et al., 2011; Bennett et al.,
2012; Vu et al., 2015).

6 Conclusion

We propose CapsE—a novel embedding model
using the capsule network to model relationship
triples for knowledge graph completion and search
personalization. Experimental results show that
our CapsE outperforms other state-of-the-art mod-
els on two benchmark datasets WN18RR and
FB15k-237 for the knowledge graph completion.
We then show the effectiveness of our CapsE for
the search personalization, in which CapsE out-
performs the competitive baselines on the dataset
SEARCH17 of the web search query logs. In ad-
dition, our CapsE is capable to effectively model
many-to-many relationships. Our code is available
at: https://github.com/daiquocnguyen/CapsE.

https://github.com/daiquocnguyen/CapsE
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